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A model of an open system of oscillators which transmit energy from a source to a bath
predicts nonthermal excitation of a single mode at sufficiently high energy flux. A non-
linear interaction between the oscillators and the bath produces this far-from-equilibrium
steady state by channeling through a single mode energy which may be introduced diffusely
into the system. The steady state is stable against fluctuations, and relaxation to the steady
state is dominated by a single rate characteristic of the collective nature of the excitation.
As predicted by Frohlich, the model is in qualitative agreement with phenomena observed in

metabolizing cells.

I. INTRODUCTION

For many years there has been interest in the pos-
sibility of existence of nonthermal .excitations of
modes of oscillation of biological systems. It was
observed by Frohlich! that in living systems there
may be instances of anomalous excitation of certain
modes in the presence of an otherwise thermalized
spectrum of modes. He suggested that the appear-
ance of these modes was due to the flow of energy in
the system, usually due to metabolism in the system.
Since the scale of lengths involved suggested that
dielectric oscillations with frequencies of 10'!—10!?
Hz were involved, there might be, he further sug-
gested, the possibility of coupling to these modes
with microwave radiation of millimeter wavelength.
He also pointed out that such excitations might lead
to strong forces between elements of the system,
forces which might influence the progress of life
processes in critical ways.? Phenomena have been
observed which may provide support for the ex-
istence of both the direct interaction and the indirect
effects.

Raman-scattering experiments by Webb et al.® on
Escherichia coli cultures indicate that if and only if
the cells are metabolizing, Stokes and anti-Stokes
lines with frequencies in the range predicted by
Frohlich have nearly equal intensities, evidence of a
highly excited mode. A similar effect was observed
by Drissler and McFarlane* on living cells of
Chlorella pyrenoidosa. However in that instance it
was realized that at least part of the effect could be
attributed to a resonance with a carotenoid ab-
sorbtion band. Further study by Kinoshita et al.’
suggests that this resonance may be sufficient to ac-
count for the entire effect in Chlorella, but the issue
may still be open to further interpretation.
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The effect on growth of yeast cultures of irradia-
tion with a spectrum of millimeter microwaves has
been studied by Grundler and Kielmann.>” They
found that strongly frequency-dependent enhance-
ment and suppression of the growth rate of irradiat-
ed cells occurred even though the intensity of the ra-
diation was well below that necessary to cause sig-
nificant alteration of the temperature of the cul-
tures. Several resonances were observed. Cooper
and Theimer®® have drawn attention to the possibil-
ity that the nonthermal excitations may be directly
related to a ferroelectric state in the cell at the time
of reproduction. They have also suggested that such
a state may be characteristic of cancerous malignan-
cies. This suggestion has some support in an obser-
vation by Webb et al.!® of Stokes lines from mam-
mary tissue. Lines observed as single resonances in
normal tissue were found to be split into doublets in
cancerous tissue. As further evidence of such a fer-
roelectric condition, Pohl!! studied the attraction of
yeast cells on a suspended powder of BaTiO; and
concluded that there was some evidence for the ex-
istence for a long-range dispersion force. Studies of
the formation of rouleaux in mixtures of mammali-
an erythrocytes have been conducted by Rowlands
et al.'>~* and indicate that in mixtures of like cells
a long-range force of the type predicted by Frohlich?
influences the rate of rouleaux formation.

Early experiments by Smolyanskaya and Vilen-
skaya'® studied the rate of production to colicin in
E. coli bacteria irradiated with millimeter mi-
crowaves. In addition to a strongly frequency-
dependent effect on the induction coefficient to coli-
cin synthesis, they observed that the time required
for onset of the effect was greater at low tempera-
tures (20°C) than at higher ones (37°C), and that
once begun, the strength of the effect was indepen-
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dent of the microwave flux density. Frohlich!® has
explained this as indicating that a threshold power
level is required to induce the state of nonthermal
excitation, but that once initiated, the consequent
processes are unaffected by the incident power level.
A spectrum of resonances was observed.

Much more extensive reviews of the experimental
work have been presented by Jaggard,!” by
Frohlich,'®!® and by Webb.2® It does appear that
excitations of some kind have been observed in the
frequency range predicted by Frohlich. Since
thermal excitations of those frequencies would be
lost in noise at temperatures characteristic of living
systems, it is appropriate to give careful attention to
an understanding of features of a model which
Frohlich has proposed?"?? for the purpose of illus-
trating how such anomalous excitation may arise.
Both Frohlich’s original model and the more general
form predict the existence of a high level of excita-
tion of a single mode of oscillation in the presence
of sufficiently high energy flux. It is one of the
main points of this paper that explicit solutions of a
rate equation exist in a far-from-equilibrium regime
which appears to correspond to the circumstances of
the observed excitations. As discussed briefly else-
where,?>2* the solutions which correspond to the ex-
citations occur over a much broader range of rate
parameters than was anticipated earlier. The quali-
tative features of the excitation thus described are
consistent throughout the parameter range with the
qualitative characteristic of the experiments, includ-
ing the possibility that the frequency of the excita-
tion may vary as essential parameters are altered. It
is important to understand these variations in order
that information which the experimental results may
yield about the underlying processes can be more
fully explored.

In Sec. II, the establishment of the rate equation
will be outlined. An exact solution of a special case
of the steady-state rate equation will be explored in
Sec. III to illustrate essential aspects of the manner
in which even a simple dissipative system can exhi-
bit preferential excitation of some single mode in a
far-from-equilibrium steady state. Detailed asymp-
totic solutions of the general steady-state rate equa-
tion are developed in Sec. IV and then are applied in
Sec. V to study the stability of the nonthermal exci-
tations and the relaxation to the steady state at high
energy flux. In Sec. IV present conclusions and
some open questions are discussed.

II. THE RATE EQUATION

The model that Frohlich proposed?? was based on
an idealized system of oscillators, which were driven
by an external energy source and which could

transfer energy to and from a heat bath. The unique
feature of the model was the manner in which the
oscillator system could interact with the heat bath.
In addition to a simple one-to-one exchange of ener-
gy between one of the oscillators and a heat-bath
mode, Frohlich assumed the possibility that any two
of the oscillators could transfer energy simultane-
ously to a heat-bath mode in such a manner that one
oscillator would be further excited while the other
was being relaxed with the heat bath providing or
accepting the amount of energy needed for conserva-
tion of energy in the two-one interaction. Such a
process then leads one to expect that in a net
transfer of energy to the heat bath, the oscillator of
low frequency in the two-one interaction would be
stimulated. Frohlich was able to show qualitatively
that, in fact, at sufficiently high rates of energy
transfer, only one oscillator in the system, that of
lowest frequency, would be excited. Later,
Lifshits?>2® pointed out that a second two-one in-
teraction might be included, an interaction in which
two of the oscillators are both either excited or re-
laxed while the heat bath again responds to accom-
modate the energy change. The process proposed by
Lifshits competes with that proposed by Frohlich,
and if sufficiently strong might overcome it.
Frohlich?” responded that the magnitude of the
Lifshits terms would be unlikely to be of concern, an
argument which he further buttressed!® with an ap-
praisal of constraints which conservation of both en-
ergy and momentum would require.

Frohlich had postulated the rate equation®! and
had not analyzed further the origin of the various
terms. Such an analysis has been presented by Wu
and Austin?®*73% in discussions of the derivation of
the rate equation from a Hamiltonian which incor-
porated the essential features of the Frohlich model.
It is however still not clear what limitations are
necessary for the validity of the rate equation. Wu
and Austin®! have argued that the rate equation is,
in fact, exact in essentially the Frohlich form with
the addition of Lifshits-type terms. However their
analysis, based on a diagrammatic Green’s function
approach, is brief and requires acceptance of an as-
sertion that the rate coefficients accommodate
through renormalization the affects of high-order
terms. This is in contradiction to a number of stud-
ies of derivation of rate equations, such as those by
Zwanzig et al.,*>73* wherein quantum correlation
effects produce qualitative as well as quantitative
changes when higher-order terms are considered. It
also was not made clear by Wu and Austin how in
an exact treatment the invariance of the dynamical
equations under time reversal goes into the irreversi-
ble character of the rate equation. The essential
features of derivation of an approximate rate equa-
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tion equivalent to Frohlich’s will only be outlined in
order not to deviate too far from the principal topic
of this paper, the solutions of the rate equation. A
more complete treatment of the rate equations will
be presented separately.

As Frohlich has discussed,!® the root of the prob-
lem arises in consideration of the effects of a strong
polarization field on a system which can deform in
response to the field. Thus, Frohlich argues, polari-
zation of a material P produces an electric self-
energy proportional to P2. This in turn leads to
elastic deformation, represented by divA, where A is
the elastic field. The net interaction of polarization
field and elastic deformation is proportional to
P2divA. (He also has stipulated that terms of higher

stability, but such terms will not be considered here.)
If one assumes that P and A may be represented asa
superposition of contribution of various modes of
oscillation, replacement of the oscillator amplitudes
by combinations of simple harmonic oscillator rais-
ing and lowering operators gives essentially the
Frohlich-Lifshits interaction. Both types of terms
follow from the P2divA interaction. The magni-
tudes of the coefficients depend then on the resolu-
tion of P and_of A into components, but the
presence of divA rather than A suggests that low-
wavelength elastic modes may have preferential
weighting. The elastic phonons play the part of the
heat bath. Adding terms to represent an energy
source thus leads to a Hamiltonian

order in P? are needed to assure ultimate mechanical
J

H= EEA a+zmaa+29b*b

Epm aat + 2 glral b + 2 ;I]ral aj; +Uural a; )b +H.c. |, 2.1

ir ,_],

where 4 :r,,Aa are creation and annihilation operators for modes of the energy source (either metabolic processes
or external sources such as microwave radiation) of frequency E,(#=1); a;r,a,- are creation and annihilation
operators for oscillators of frequency w;, and b,Jr ,b, creation and annihilation operators for bath modes of fre-
quency {2,. The open system of oscillators will be assumed to involve a finite number A4 of nondegenerate
modes. The w; will be enumerated so that i <j implies w; <w;. The coupling factors are rationalized in the
manner discussed above, but no particular functional form will be assumed here other than that both the
Frohlich two-one interaction strength £;;, and the Lifshits two-one interaction strength o;j» will be assumed
symmetrical in the oscillator indices, consistent with their common origin in the P? term. To avoid self-
excitation processes, it is assumed that ;. and oy, vanish. All oscillators will be assumed to satisfy the usual
commutation rules, although, as Wu and Austin have noted,*® the formalism carries through equally well if the
bath modes satisfy anticommutation rules instead. This would suggest, however, that the open system of oscil-
lators couples to a bath of fermions, such as conduction electrons in a metal, a situation which does not seem
appropriate here.

Beginning with the Hamiltonian (2.1), one seeks to derive rate equations for the expectation values of the oc-
cupation numbers of the oscillators in the open systems,

:Tr(pa,-Ta,-) , (2.2)

where p represents the density matrix for the source-system-bath complex. Expansion of the density matrix
through second order in the interaction terms then leads to a rate equation

hy=s; +®;(n; +1—ne™)
(w;
+ 3 Ayl + Dy —ny(ny+ 1D 1 Dyl (g Dy + D —mympe P01y (2.3)
J
where the primed sum has no term j =i. Here
;=13 |Pai| ‘NoS(Eqg—w;) , (2.4)
a

where N, is the occupation number of source mode a, assuming N, >> 1, and s; indicates the excitation rate of
oscillator mode Ai by the energy source or “pump.” The condition on N, assures energy flow only from the
source to the system. The time scale is long enough to replace time integrals in the perturbation expansion by
delta functions, which assures energy conservation. In the system-bath interaction terms,
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;=73 | & |25(wi—9r)“3w%1—
r e '—1

(2.5)

represents the excitation rate of oscillator i through interaction with the bath. The latter is assumed in thermal
equilibrium at temperature T (8=1/kgT). The Lifshits contribution is represented by terms of coefficients

1
FU=FJ,E41TE |UU’ ‘ 28(w,+w1—-ﬂ,)

eﬁ(w,-+mj)__

while the Frohlich terms are represented by terms with coefficients

1

8(e; —;— Q)
1

Aij£‘”’2|§ijr|2>< 1
r 8((0,—&)1—(1’)

The A;; are not symmetrical in the oscillator indices,
but rather they satisfy a balance condition which
follows from (2.7),

Poi (2.8)

Aije _Bwj =Aj,-€ B
All of the coefficients s;, ®;, I';;, and A;; are mani-
festly positive. Also, A; and I'; vanish. The as-
sumption N, >>1 [used in (2.4)] and the appearance
of the thermal weighting factors in (2.5)—(2.7)
represent a decoupling of the portions of the density
function related to the source and bath from that
representing the system of oscillators. The irreversi-
bility of the rate equation (2.3) is attributable to
these approximations.

More detailed information about the coupling fac-
tors §;;, and oy, would require more detailed specifi-
cation of the model. However, if these factors are of
the same order of magnitude, then
LP@i—9) 4 |

rij -~ Blo;+w;)
e —

In the papers by Frohlich and by Wu and Austin, it
has been assumed that the §;;, and o;; are generally
independent of the oscillator indices and further that
the oscillator spectrum is a narrow band, Aw << ®,,.
If T~25°C and w,,~ 10!! Hz, then Bw~10~2 and
(2.9) becomes, with the narrow-band assumption,
I L L (2.10)
ij w; +wj ij ij -+ .
It is not clear, however, that the { and o coefficients
will always lead to (2.10). It will be shown in Sec.
III that solutions of the rate equations (2.3) exist for
a wide range of values of A;; and I';; but that
throughout the range the solutions have the charac-
teristics of the nonthermal excitations.
It will be useful to use the notation

JPwi—op)

e—-ﬁ(wj—m,-) s J>1

’ l>]

(2.6)
2.7)
—
€=,™ 1), 2.11)
?’ijzrij(eﬂ(mi+mj)—1)=?’ji ’ 2.12)
and
)\,,-j:Aij(eﬁ(wi—mj)—l)=—A’ﬁ . (2.13)

Note that A;; is positive if i > j. The comparison of
magnitudes of y;; and A;; is in fact more important
in characterizing the solutions of the rate equations
than comparison of magnitudes of I';; and A;;. One
may in fact have I';; < A, while y;; > A;;.

It is also useful to define a total pump rate S,

S = 25,— , (2.14)
i
and write
s,-=a,-S, 2a,=l . (2.15)
i

An important sum rule involving .S follows by sum-
ming the rate equation over the oscillator indices.
The total excitation rate N is

N=3n=S+ 3 (®,—€n;)
i i

+ X [Tyj(ni+nj+ 1) —yymn;] .
"J

(2.16)
As a consequence of the balance condition (2.8), the
Frohlich terms in the rate equation do not contri-
bute to the total excitation rate of the system. Such
terms contribute overall only to transfers of energy

within the open system.
In the steady state, all the #; vanish and the sum
rule then requires that at most one n; be proportion-
al to S for large S. In Sec. III it will be shown if
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there are only two oscillators, either can be linear in
S, depending on the parameters, except for a special
case where both vary as S!/? at large S. Thus
Frohlich nonthermal excitation is expected for suffi-
ciently large S except in this special case. In Sec.
1V, it is shown that the linear dependence of one and
only one of the n; on large S follows as an asymptot-
ic result for any finite number of oscillators in the
system.
III. EXACT SOLUTION
FOR TWO OSCILLATORS

In an experimental situation, one would expect the

set of oscillators to contain a large number of
|

. (w0 —wy)
n1=a1S+<I>1—~eln1+A12(n2—n1eﬁw1 wz)

and

. () —
n2=a25 +¢I>2—62n2+A21(n1—n2eBm2 (02))

modes, and indeed the model was treated in that
way by Frohlich.?! However, the rate equations for
a system of only two oscillators can be solved exact-
ly for the steady-state excitation numbers, and so it
is possible to examine in detail how these excitation
numbers depend on S, on the transfer rates ®;, I" ij
and A;;, and on the pump coefficients {a;}. Some
of the features of the two-oscillator problem carry
over to the more general problem, and so the insight
gained in the simple case improves understanding of
the more general and more realisitic case.

For two oscillators, the rate equations (2.3) be-
come

—Apnin, +Tpny+ny+1)—ypnn, (3.1)

—Aynny+Ta(ny+ny+1)—yynn, . (3.2)

For the steady state n; =n, =0 one has a pair of equations bilinear in n; and n,. Elimination of either variable

leaves a quadratic in the other,

Aini+Bin—Ci_o, (3.3)
where
Ay=(€;+An—T2)(214+220) + (A + T Ny — Ay =€1(¥21 +A21) +2(As1721 — TaiAs1) (3.4)
By=(e;+ A =Ty )€+ A1 —T ) —(Ap+T ) Ay + ) + (P + T ) (v2— Agp)
—( @1+ T 1) (ra+A2) —[Ag +(ay —a3)y21]S (3.5)
and
Ci1=(O+ T ) Ap+T )+ e+ Ap—T )P+ ) +H[ae,+ A — (@ —ay)T 318 (3.6)

A similar equation for n, is obtained and amounts to interchanging indices 1 and 2 where appearing. Note
that 4, can usually be expected to be positive, but 4, can be negative. The sum rule (2.16) becomes, for two

oscillators in the steady state,

S+<I>1+<D2+2F12=(61—2F12)n1 +(62—2F21)n2 +2‘}/12n1n2 . (3.7)

After considerable algebra, one verifies that this
equation is satisfied by the exact n,n;:

n;=[ —B; + (B} +44;C;)'?1/(24;) . (3.8)

Moreover, the quantity B 2444,C 1 equals
B3 +44,C, for all values of S. Further algebra ver-
ifies that for S=0, (3.8) reduces to (eﬁm"—l)_1 as
expected. The roots with negative radical are not of
physical interest since n; must be positive.

Analysis of these formal results is made quite a
bit more difficult by the fact that the various coeffi-
cients can be either sign, depending on the value of
the parameters. Thus the result in (3.8) is acceptable
physically (n; >0) for either sign of A; if C;>0.

I
While this seems plausible, there is no proof that it
is assured. In order to examine these equations
more closely, it is necessary to make some estimates
of the magnitudes of the parameters. Asymptotic
properties can then be derived. The solutions which
correspond to these parameter choices can also be
displayed graphically as functions of S. In keeping
with Frohlich’s original suggestion, it will be as-
sumed that Bw; ~ 10~2, consistent with the tempera-
ture range of living systems and a frequency range
of 10''—10'2 Hz. One does not expect the oscillator
frequencies to vary too widely; so it seems reason-
able to specialize here to w,~ 1.1w; corresponding
to Frohlich’s narrow-band assumption. This is not
crucial but implies here that A;;~A,; and
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A1 ~1073A,,. Since the coordination of events to
produce simple interactions is more probable than
that needed to support more complicated interac-
tions, it appears plausible that the one-one transfer
rates ®; may be rapid than the two-one processes.
So, it is estimated that if the ®; are about 1 on a
suitable scale, the A;; factors are about 0.1. Then
the €; will be about 102 and the A,;~10~* It is
convenient to estimate relative strengths of the
Frohlich and Lifshits terms through A,; and y,,. If
¥21=0.113;~1073%, T, ~1073. If 9y, =104,
~1073, I'y;~0.1~A,,. For either of these cases,
both coefficients C; are positive. For the C; to be-
come negative, I'y; would need to be much larger
than would be expected here.

The coefficients A; are also positive in this range,
but for much smaller values of y,;, A, can be nega-
tive. Then

A=A +(a—ay)y >0,

and B, <0, B, >0. The excitation numbers n; are
then given as follows:

Ani—|By|n—C;=0,

B C B
Bl S B Ag 5
A4, An, 4, 4,
A,n%+Byn,—C,=0,
C, 4,3 G
n2—32~ B, ~ B,
ae1+Ay+(aj—ay)
- %€ 21 1—o)1 ', (3.10)

- A
The other solution for n, for 4, <0 is not compati-
ble in the sum rule with the only physically accept-
able solution for n,.

If rather than ¥, =10"'A,;, one takes 7,
=10A;; ~1073, then I';,~10"'~A,,. The C; are
still positive. The sign of A varies with the o; such
that A is greater or less than zero as aj is greater or
less than -;—(1+7»,~,~ /vij). Consider now the asymp-
totic behavior of the n;. For A>0, (3.9) and (3.10)
follow again as the asymptotic solutions. If a, and
Y21 are great enough that A <0,

& a162+A12——(a1—a2)I“12

= ~ s 3.11)
& B, (aa—ay)y21—Ay (
B,
ny=— Z
[(ay—a)y1—Ay]S (3.12)

T eV —A)+2(A 5y +Tihyy)

Recall that A can be negative only if ¥, exceeds A,;
sufficiently, so the denominators in both (3.11) and

(3.12) will be positive.
In the Frohlich limit, I';, vanishes and

ny=S/e, (3.13)
1

(wy—aq) )
POV

€
Ay

ny= |1+ (3.14)

It seems unlikely to occur in view of the previous es-
timates of the I';; and A, but, for completeness
consider a limit in which the Lifshits ¥,; dominates
and A, is negligible. Then, for a; > a,,

ny=(a;—a,)S /¢ , (3.15)
€, 1
= |1 . 3.1
2 + (al—aZ)Flz eB(("1+w2)__1 ( 6)

When a, > a,, n, is linear in S. The corresponding
expressions are obtained by interchanging indices 1
and 2 in (3.15) and (3.16). A nonthermal excitation
is thus predicted throughout the entire range of the
parameters y,; and A,;, provided only that the ener-
gy pump rate S is sufficiently great.

An interesting special case occurs when A van-
ishes, for then the only dependence of the n; on S is
through the C;,

A=0 =>n;=(C;/4;)'? (3.17)
or
172
[aie;+Ap—(aj—ay)T,]S
€1(Y21+A21) +2(Ag1¥21 —TaiAy)
(3.18)
and
172
e [az€+ Ay +(a;j—ay)Ty ]S
2= €2(Y21—A21) +2(A 12721+ TaiAy)
(3.19)

In the Lifshits limit, A=0 requires a;=a,=0.5
and

1/2 €
=2n,. (3.20)
€

€2S
2€172

ny=

In order to illustrate better the behavior of n; and
n, as functions of S, calculations of these quantities
have been performed using parameters in the range
discussed above. In particular, for Bw,=0.01,
Bw,=0.011, and A,=0.1, n; and n, were calculat-
ed for several values of a;(=1—a,) and S for
Y21=0.1A;; and for y,;=10A,,. The results of the
first calculation set are shown in Figs. 1(a) and 1(b).
It is apparent that after a period of increase with in-
creasing S a threshold region is reached. Further in-
crease of S then results in values of n, and n, which



28 FROHLICH’S MODEL OF NONTHERMAL EXCITATIONS IN . . .

T o. 5'. 0 T T T T T T T T
(a) =00 (b)
10° | 0% - .
.
x 5
LS 10% - i
=
2 n n2
z 10* 104 |- 4
=
g . . o0
G 10k 10° 05 ﬂ
E = a,=1.0
10% |- 102 1
A 1 1 - 1 - 1 1 1 1 1 1 1 1
1 0% 0* 108 1 10 10* 10° 10°

TOTAL PUMP RATE S

FIG. 1. n; vs S for A;;=10y,,=10"* Here and else-
where the (a) figure shows n; calculated from the exact
(3.8) and the (b) figure the corresponding n,. The values
of other parameters are as stipulated in the text. Depen-
dence of n; at large S is consistent with (3.11) and (3.12).
Displacement of points on the n; curve for the a; above
0.0 is within the width of the line for large S. [An expres-
sion more accurate than (3.11) indicates displacement of
the various n, curves independent of S.]

behave according to Egs. (3.9) and (3.10). Only n;
increases with S beyond the threshold value, regard-
less of the relative rates, a;,a,, at which energy is
provided to either oscillator by the pump. Even if
all the energy goes into the oscillator of higher fre-
quency, the oscillator of lower frequency is preferen-
tially excited as a consequence of the energy flow as
long as the quantity A is positive. As shown in Figs.
2(a) and 2(b) for the calculation with y,;=10A,, this
remains so even when y,; exceeds A,; as long as A is
positive. However, when a, is large enough, i.e.,
large enough a fraction of the energy put into the
system goes into the oscillator of higher frequency,
there is a qualitative change. Then for y,; > A,; and
for any a; small enough that A is negative, the oscil-
lator of higher frequency is preferentially excited
when S exceeds the threshold range, and the oscilla-
tor of lower frequency saturates in accord with Egs.
(3.11) and (3.12). It is apparent from the figures
that as an oscillator is more strongly driven, the
threshold value of S decreases. (No useful analytical
specification of the threshold value has been found.)
In Figs. 2(a) and 2(b), the S!/? dependence of n,
and n, at the transition value of a,, 0.55 in this case,
is apparent from the slope on the log-log plot. It
may be that the relative values of a; and a, can be
adjusted by changing the intensity of incident mi-
crowave radiation. If so it would be interesting if
the transition from positive A to negative A could be
observed experimentally. In view of the idealized
nature of this two-oscillator case, such an observa-
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FIG. 2. n; vs S for y,;=10A,;=10"3% All n; for
a;>0.45 (a; <0.55) are linear in S at large S, whereas all
n, for a;<0.45 (a;<0.55) are linear in S at large S.
Asymptotic S!/2 dependence of the crossover case
a;=0.45 (a;=0.55) is shown. For small a,; (large ;)
comparison is to the asymptotic (3.15) and (3.16). -

tion may not be practical. In Sec. IV, where asymp-
totic solutions of the steady-state rate equation are
discussed for an arbitrary number of oscillator
modes, the possibility of similar transitions will be
discussed.

In summary, it has been shown that if a pair of
oscillators can receive energy from a source and
transmit the energy to a heat bath via a form of bi-
linear interaction, at low energy-flux rates the occu-
pation numbers resemble the equilibrium (zero-flux)
values. In contrast to this near-equilibrium
behavior, when a threshold flux rate is exceeded, a
far-from-equilibrium steady state is observed in
which nonthermal excitation of the oscillators
occurs. It depends on both the relative transfer rates
due to the Frohlich and Lifshits processes and the
relative rates at which the sources drive the oscilla-
tors which of the oscillators will be preferentially ex-
cited, but except for a special transition case, one or
the other will become dominant. These qualitative
characteristics also follow from the rate equation
(2.3) for the steady-state excitation of a larger num-
ber of oscillators.

IV. ASYMPTOTIC SOLUTIONS
FOR Z OSCILLATORS

The fortunate situation which permits exact solu-
tion of the steady-state rate equation for two oscilla-
tors does not extend to the next simpler case of three
oscillators. For Z=3, elimination of variables in the
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rate equations leads to seventh-order polynomials
which do not appear to be tractable. The order of
the resolvant polynomial grows prodigiously with
the number Z of oscillators. Hence it is necessary to
benefit from the information gained from the Z=2
solutions and from inspection of the sum rule (2.16)
in order to go on.

In the steady state, N vanishes and (2.16) can be

rewritten
J

a;S +; +2 [Ayn;+Tiyn+ Dl=n; [e;+ ' [Aji

J
Trial solutions of the form
ni=c; 1S+ 3 ¢; _S™!, for some select i
t=0
and

nj= > ¢;_S~¢ forall jo#i

t=0

S—f—z(b +2 F,]—z ei—ZE'Fij n;
J

ij i
+ z'yijninj . (4.1)
Lj
It is compatible with (4.1) that one of the n; will be
linear in S for sufficiently large S, while the remain-

ing n; are of order SO The steady-state rate equa-
tion can be put in the form

(4.4)

are substituted into (4.2), and coefficients of given powers of S are isolated to obtain the following set of equa-

tions. From (4.2) for n;,

S: a;=c;y [&+ X' [Aj;—Tji+cjolAy +7’ij)]] ) 4.5)
J
SO @, + >/ [ejolAy+Ty)+Ty1=ci1 X (A +7vi)ej, 1
J j
+cio [€i+ z’ [Aj,- —Fj,' +Cj,0(7\.,-j +‘}’,'j)] ] s (4.6)
J
S (A +Ty)e;n=ci1 2 i+ Vi), —(n + 1)+ €1 —n [€i+ 2 (A;i=T;) ]
J J J
n
+ Aij+vi) >, Ci—rCj,—(n—r) > 4.7)
J r=0
and from (4.2) for n;,
St oaj+ (A +Tjie1=cjoci1(Aj +vi) » (4.8)
S02 q)]+ 2 ij + 2’ (Ajk +I“1k )ck,O:cj,O 6j ~+ 2’ (Akj—l"kj) ] +Ci,lcj,—l()\'ji +’V],)
k k k
+¢j0 2" Mjx+Vj ko » (4.9)
k
ST 2 (M +T ek, —n =165, —(n+1(Aji + Vi) +¢j [6j+ > (A —Tyy)
k k
n
+ E' ()‘jk +yfk) 2 Ci,—rChk,—(n—r) * (4.10)
k r=0

From (4.8), the product c; ic; o depends linearly only on c¢; ;, so substitution into (4.5) then gives a simple equa-

tion for ¢; j,
Mij+7i

o DTV
a;— 2

=C,
}\' + J’ i1

€+E [ ji = Fji+( +FJ,)

lj +7/ij

, 4.11)
Aji +vii




which can be rewritten

AT e Pk
¢ |€ +4sinh(Bw;) Y ————
BT 'zk Aki +Vii
Aki — Vi
=a;+ Y ap— . (4.12)
! zk M Vi

From (4.8) with ¢; ; now known,
(Aj+Ti)+a;/ciy
Aji +Vii '

c j,0= (413)
Similarly, from (4.9), the products ¢; ;c; _ are func-
tions of the c;o and the unknown c;,. Substitution
into (4.6) then gives a linear equation in c; in terms
of the known ¢;; and c;o. Thus if the coefficient of
¢ is nonzero, c;, is known. The c; _; then follow
from (4.9). When ¢; _(,_;) and ¢; _, are known for
all n <N, the products c; ;¢j _(ny+1) can be elim-
inated between (4.10) and (4.7) to give an equation
linear in ¢; _y. Solution of this equation permits
solution of (4.7) for ¢; _(y41)- Thus by induction,
the entire set of coefficients for the trial solution fol-
lows, provided no vanishing coefficients appear in
the chain. For the asymptotic solution, it suffices to
concentrate on (4.12) and (4.13).

In Frohlich’s limiting case,?? all I';j, and hence all
7ij» vanish. Then c; and c; o are very simple,

Ci,1=1/€i ’

ajE,-

Aj;

1
eﬁ(“’j_“’i)_

¢jo= |1+

b

1
for all F’J=0 . (4.15)

Some of the c;, will be less than zero if i exceeds 1.
Physically, the only acceptable solutions are those
for all n;,n; >0. Hence in the Frohlich limit, the
only mode of oscillation in which a nonthermal ex-
citation is predicted is that in which the frequency is
least, w;. Since c;; does not involve a; in a singular
manner, the c; also will be regular in ;. Therefore
in the Frohlich limit, the oscillator of least frequen-
cy will be preferentially excited for sufficiently large
pump rate S, regardless of the manner in which the
energy is put into the system of oscillators even
when «,; vanishes. One can see from (4.12) and
(4.13), that this will not always be the case. If for all
pairs j > i, Aj exceeds yj;, there is no complication,
and for any set of pump coefficients {a;}, c;; is well
defined and positive. Further, that A;; exceeds v
for j greater than i implies that A;; +7;; is negative
for the same pair i and j. Thus if i exceeds 1, some
of the cjo will be negative. However, if for some
J >1i, v exceeds Aj, an increase of the pump coeffi-
cient a; (accompanied by corresponding diminish-

28 FROHLICH’S MODEL OF NONTHERMAL EXCITATIONS IN . .. 387

ment of the other a; to maintain their sum equal to
1) can cause the right-hand side of (4.12) to become
negative except for c¢;;. Thus as in the case for
Z =2, multiple excitations may occur for general Z
when some y; > Aj;. The present model is not suffi-
ciently specific to establish more completely when
this will happen or what particular combinations of
the a; and the ¥;;,A; might produce crossover from
nonthermal excitation of one mode to that of anoth-
er. Later in this section a specific mechanism will
be assumed to illustrate this point more completely.

In the simple case of two oscillators, the availabil-
ity of exact solutions makes it possible to discuss ex-
plicitly the crossover case, where both oscillators are
strongly nonthermally excited. Such a situation,
where a pair or more of the n; are proportional to
S172 is not in obvious conflict with either the sum
rule (4.1) or the rate equation (4.2). In the exact case
Z=2,

n;=(a;S +b;)"?~8"* ¥ d;, _,S7*, (4.16)
t=0

where a@; and b; are constants from the 4; and C; of
(3.4) and (3.6). Substitution of this form into (4.1)
and (4.2) leads to algebra of such complexity that it
appears intractable for Z > 3. Even for Z=3 the re-
strictions on the coefficients a;, ®;, A;, and I';
comparable to the crossover condition for two oscil-
lators, A=0, are not suitable for useful analysis.
Thus it cannot be stated with confidence that the
conditions on the coefficients suitable for causing
crossover from nonthermal excitation of one mode
of oscillation to similar excitation of another can be
described in as simple a manner as given in (4.16).
The high order of the resolvant polynomials also
suggests more complicated functional forms are in-
volved when Z > 2.

In Frohlich’s original discussion of this type of
model, the realization that a nonthermal excitation
should occur was achieved in a different way from
that described above. It is of interest to review that
approach here in order to compare the two. To be-
gin, the steady-state rate equation is put in the form

@S +Fy({n; ) =n[Fy({n;})e™ —Fi({m; ],
4.17)

wherein the Fj;, functionals of the {n;, j+i}, are de-
fined as

j

and
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Fai({n;j})=®; + E'[Aije—ﬁwj(

J

Bo;

—{—l",-je nj] . (419)

A formal solution of (4.17) gives an implicit equa-
tion

aiS'
Fi;

1
eB(w,-—yi)___l

; (4.20)

n; = 1+

where a new quantity u; is introduced by the defini-
tion
eﬁyi Fy 1 —Bo;

E—=1+—— '(A"e ]_F..)
Fy Fy = 0 y

X[njeﬁwj—(nj+1)] ,

(4.21)

a definition successful since both F,; and F;; are
positive. For zero S, n;+1 equals nje “/ and u; is
zero. If S'is nonzero, n; exceeds by a quantity & ; the
value nj of n; for zero S. Then

n;e™ —(n;+ 1) =n,0e™ —(nj0+ 1)
+8;e®—1)>0.  4.22)

Thus as long as Ajje —ho; exceeds I';;, all i and j, the
quantity p; will be greater than zero for nonzero S.
The n; thus have the form of a modified Bose distri-
bution, with the quantity u; identified as a chemical
potential. Again from the steady-state sum rule it
follows that some n; will be linear in S while the
others, n;, will be of order S 9. Then asymptotically

) A;+T 5
e _;;_“L e (4.23)
Aje " +Tje
from which
i 1I 1 I‘ji(emwi—l) -
pj~oi+ Zln |l — —————p | <o, .
B AJ,+FJ,6 '

(4.24)

The equality holds either at absolute zero, a condi-
tion not of interest for biological systems, or in the
Frohlich limit in which all T';; vanish. From (4.20)
and (4.24), it then follows that n; will be negative
for all j <i if i exceeds 1. Hence the physical re-
quirement that all n;,n; be positive selects from
among the Z mathematical possibilities one physi-
cally acceptable one, that i=1. As for y;, the re-

quirement that

S 1
n; ~C," 1S~ Fli eﬂ(mi _.“'i)_ 1 (4.25)
implies
pi—oi——~in |14 =2 (4.26)
B cinFy |- ‘

This makes more precise the manner in which, as
Frohlich asserted,?’?? u; must approach w; in order
to give a n; which is predominant over the other 7;.
Since the mathematical description from
(4.17)—(4.26) is reminiscent of condensation in an
ideal Bose-Einstein gas, it has been asserted by
several authors that the nonthermal excitations in
biological systems may be manifestations of Bose
condensation. One may object that Bose condensa-
tion usually refers to a system in thermal equilibri-
um, not in a far-from-equilibrium steady state.
Moreover, Bose condensation is understood as a
consequence of a statistical distribution of popula-
tion of available states, not a consequence of an ex-
plicit dynamical mechanism. However, from (4.18)
and (4.19), Fy; and F,; both reduce to ®; if the non-
linear coupling mechanism is absent, and then the u;
vanish regardless of the value of S. One can go fur-
ther in assessing the importance of the nonlinear
mechanism in this effect. The defining statements
of the I';; and A;; in (2.6) and (2.7) were used to sup-
port the argumentation including (2.9) and (2.10)
that in general A;; is much greater than I';;. It is
apparent from (2.9) that if the original coupling fac-
tors §;; and oy; are of the same order gf magnitude,
then T';; will be on the order of Aje “i, sufficient
to give a positive u; in (4.21). However, it is not
mandatory that the coupling factors give this result,
and it is interesting to consider the special case
where Ajje 7 equals T';; for all pairs of oscillators.
Then, from (4.21) the u; vanish identically for any
pump rate S, and so an anomalous 7; can in no way
be associated with Bose condensation. But in this
case (4.12) and (4.13) become (with Aje " =T)

A
ci1 |€+4sinh(Bw;) 3’ —
M TR PR (e P
tanh(Bawy /2)
=q;— ' ay———, (4.27)
i Ekak tanh(Bw, /2)
nj~cjo= 1+ —— - s
Y cijAji(1+e Boiy 1 ePr 1
joi . (4.28)

In (4.28), the unmodified Bose distribution appears
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explicitly in the n;. The n; are postitive for all j re-
gardless of the value of i, provided c;, is positive.
In (4.27), the coefficient of c;; is positive, and the
right-hand side is positive for suitable choice of the
pump coefficients {a;}, subject to the spectrum of
the oscillators. If this positive condition is so for
some particular choice of i, then it is equivalent to
state that

a;tanh(Bw; /2)> 3, aitanh(Bwy /2) . (4.29)
ks£i

For any other index j, it follows that

ajtanh(Bw;/2)— Y, axtan(Bwy /2)
k+£j

< —2 2 aktanh(Bcok/2) .
ki, j

Consequently, at most one oscillator will be non-
thermally excited, in agreement with the sum rule
(4.1). But from the sum rule, it is expected that at
least one oscillator will have n; proportional to S.
Thus even in the case where Fréhlich’s u; vanishes
identically for any S as a consequence of a particular
mechanism, the nonlinear excitation of some one os-
cillator will occur for sufficiently great value of S.
It appears from (4.27) that if the {a;} are varied by
changing the intensity of microwave radiation at
various frequencies, it may be possible to alter selec-
tively which mode of oscillation undergoes non-
thermal excitation. In this connection it is interest-
ing that multiple excitations have been observed in
two different sets of experiments, those of Grundler
and Kielmann®’ and of Smolyanskaya and Vilen-
skaya.!” If this similarity of the experiments and
the present theory should be found to be more than
coincidental, it should help determine better the rel-
ative importance of the Frohlich terms and those
suggested by Lifshits.

Since it was convenient to alter parameters in the
calculations for two oscillators, the analog of this
special case was run, and the results are presented in
Fig. 3. It is apparent that qualitatively the behavior
of n; and n, as functions of S are like those shown
in Fig. 2, where also y,;> A,;. The different value
of a (or ;) at which the crossover transition occurs
reflects the different ratio of y,; to A,;. To carry
this a step further, a case was run in which the
Frohlich p; might be negative. With I'}, approxi-
mately 1.1A,¢ 2, the data were calculated which
were plotted in Fig. 4. It is interesting to note a new
feature. Here, when there is driving of only one os-
cillator, the excitation of the other is less at high
pump rates than at lower pump rates. (This sug-
gests that Frohlich’s u; is positive even in this case.)
The strength of the Lifshits term is such that the
high rate of energy transfer causes some deexcitation

(4.30)

107

10%

S
T

EXCITATION NUMBER n.

TOTAL PUMP RATE S

FIG. 3. n; V§ S for ')/2122. 10 < 10—‘3, }\4212 10~4
(Ty1=Aje ~Per ). General qualitative similarity to the
curves of Figs. 2(a) and 2(b) is evident. Crossover with
asymptotic S/ dependence occurs here for a;=0.476 19
(@,=0.52381). n, for a;=0.0, or n, for a;=0.0, is nearly
independent of S.

of the passive oscillator, while the other is strongly
driven. When both are driven to some degree, both
are excited as usual.

The effect of adding more complicated interaction
terms to the rate equation (2.3) has been considered
by Moskalenko et al.3® They suggest from analyses
of rate equations for phonons in solid-state systems
that cubic and quartic interaction terms should be
concluded. The result gives counterparts to the
present (4.17)—(4.21), differing only in more compli-
cated forms for the Fy;({n;}). They conclude from
the similarity in form of the equations that the sub-
stance of earlier predictions by Frohlich?? and others

107

EXCITATION NUMBER n,
3
T

L 1 1 I 1 1 1 1 L L L L L

TOTAL PUMP RATE S
FIG. 4. n; vs S for y,;=2.31X1073, Ay;=10"*
(Ty=1.1Aze " %). General qualitative similarity to the
curves of Figs. 2(a) and 2(b) is apparent. Crossover from
divergent n; to n, occurs at a;=0.478 35 (a,=0.52165).
n; for a;=0.0, or n, for a,=0.0, decreases with increas-
ing S.
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are unchanged. However, Moskalenko’s F,;({n;}) is
not necessarily positive, and Eq. (4.21) would not
yield a valid definition of a function y; if the ratio
of F|; to F,; were negative. The discussion by
Moskalenko et al.>® shows that a certain mathemati-
cal form can be achieved but not that the existence
of the form is guaranteed. Thus the effect of
higher-order interactions on the prediction of non-
thermal excitations remains an unresolved question.

The existence of the asymptotic solutions corre-
sponding to the physical nonthermal excitations has
thus been demonstrated, both by calculation of exact
equations for Z=2 and by display of appropriate
coefficients for Z > 2, to occur in a situation where
Bose condensation cannot be involved. But such a
concept is not needed to understand the phenomena
which are predicted. Physically, the nonthermal ex-
citations can be understood straightforwardly as the
consequence of a suitable nonlinear mechanism in a
situation of energy flow sufficient to result in a far-
from-equilibrium steady state of the open system.
The nonlinear mechanism, in fact, induces the phase
coherence needed for excitation to large amplitude
and also makes possible a collective effect in which
excitation of one component of the open system af-
fects the excitation of all the other components.

As in the special case of Z=2, the general asymp-
totic solutions show that the nonthermal excitation
is predicted for arbitrary Z even when the y;; are
large enough that the A;; can be neglected. Then for
Yij > | A [

n;g(Za,-—l)S/ei s (4.31)
a j€i
(2 i 1 )F,j

1
eB(w,-+mj)_1

J£Ei . (4.32)

This requires that a; exceed 0.5 (which can happen
for at most one mode) in order that both »; and the
n; be positive. This result, as well as that of Eqgs.
(4.27) and (4.28), illustrates the importance of both
the interactions and the pump coefficients in deter-
mining the character of the collective far-from-
equilibrium steady state.

V. STABILITY AND RELAXATION TIMES

i

b

It is desirable to gain some information about the
time dependence of solutions of the rate equation
(2.3). However, an exact solution does not appear
possible even in the simplest case Z=2 because of
the nonlinear terms. For this reason, it is necessary
to resort to linearization of the equations by consid-
ering small variations 7; of the n; about the steady-
state solutions n;. Thus it is assumed that

n;=njs+mn;, mj<<n;, forallj. (5.1)

Substitution into (2.3), with recollection that the n;
satisfy (4.2), leads upon expansion to linearized
equations for the 7;,

nj=— (€ + X [Axj—Trj+nes A +7ja )1 | m;
k
+ 2 [ A+ T —njs Mg + v ) i - (5.2)
k

In general, the solutions to these equations have the
form

Z At
n;(t)= 2 hje , (5.3)
r=1

where the A, are the eigenvalues of the coefficient
matrix in (5.2), and the hj, are coefficients deter-
mined from specific initial conditions. It should be
noted that the relaxation processes represented by
the A, are characteristic of the system of oscillators,
not of the features of individual modes @ j, for all of
the modes contribute to the determination of the
eigenvalues.

Let i denote the mode for which n; is linear in S.
Then (5.2) becomes

Mm=— [&+ X' [Ax — T +nis (i +va)1 |7
X
—nis " (Mg + Vi Mk » (5.4)
x

where on the right-hand side, terms of order S° have
been neglected where compared with the terms of
order S. Substitution of the form (4.13) for the ny,,
k=£i, gives the simple equation

_ai

Ci1

;= Ni—nis >, Rige + Vi Mk - (5.5)
%

In a similar manner, (5.2) reduces for j+i to

) aj;
nj=- c_—jlﬂi —nis(Aji +75i)m;
i

+ 2 [Ajk

k~i,j

-*—ij—njs(}»jk +'}’jk)]77k . (5.6

Introduction of the exponential time dependence
e ~™ then gives the following set of equations for the
eigenvalues A, :

a;
0= |A—— |mi+ni > (Mg — Vi Mk > (5.7)
Ci,1 k
a;

C i,

+ 2 [Aj+Tie—n e +vi) 1k
ki,

j#=i . (5.8)



One can proceed by direct calculation of the deter-
minant of the coefficients of the 7;, but to do so it is
necessary to use again the magnitude of S in the
various terms. It is also possible to do this more
|
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directly by consideration of the presence of S-
dependent terms in (5.7) and (5.8).

Assume A, to be of order S°. Then (5.8) can be
written

1
= Lo+ [Ap+Tin—nsAx+vi)1m (5.9)
i is(Aji +7ji) e k%, ¢ e g g
|
Iteration of (5.9) beginning with the term in 7,
shows that the terms in the sum are less than the in- O=n; ((Aji+vj)+—5—— 9 2 ar(Agi — Vi) |Mi -
itial term by a factor S~! and so can be neglected. rCL deri
Substitution of the resulting approximation for the (5.15)
7; into (5.7) then gives Then
—1 A —7.
4% 1« Mi—Vu o =— 3 a——2 (5.16)
O= Mf————D'ax7———— il ke Mt
Ci1 Gl T Aki+ Vi
(5.10) and so
: '}/kl
It follows, using (4.12), that Ar =i (i 4750 = Ci 1 é, FNitvi 7»;: + Vi ’
Ay T r>1. (5.17)
A =€; +4sinh(Bw;) 2 L«"—’-— . (511D
M Vi The A, and the Z —1 A, are all real. In the event
For r-£1, assume that for j >i all A;; > y;;, then the nonlinear excita-
’ tion will occur for the mode of least frequency wj,
Ap=ni(Aji +7vi)+06, , (5.12) and all the leading terms for any of the A, are posi-

where 6, to be determined, is assumed of order S°.
Then from (5.8)

@)
O0=— '17]1‘+6r77j
L
+ 3 [Ag+Tu—ni(Ay+vu)lny (5.13)
1%,
and

1223
O0=— :771' + 15 (Aji +Vji — Ak — Vi M
i

+ > [Au+Twy—ni(hg+vi) 1
I£ik

ks£i,j . (5.14)

As in the discussion of (5.8), solution of (5.14) for
7, and iteration beginning with the term in 7);
shows that except for the term in 7; the terms in the
sum are smaller than the others by a factor of S !
and so can be neglected. Thus one concludes that
for k not equal to i or j, 7, is less than either 7; or
7; by a factor of S~', and so the sum in (5.13) can
also be neglected. Then 7; is obtained from (5.13) in
terms of 7; and with (5.12), (5.7) becomes to order S

tive. Since the A, are on the order of S while A,
is on the order of S, the terms in (5.3) proportional
to exp(—A,t) will diminish rapidly and leave A,
representing the predominant process by which the
n; relax to n;. Moreover, because of the fact that
the A;,A, are positive, the steady state is stable
against fluctuation.

It has been shown that when yj; >Aj, certain
values of the pump coefficients {a;} may lead to a
mode other than @, being excited. The comments
about the positive character of A; and the A,, r > 1,
still apply however, so the w; excitation is also stable
against fluctuation when driven, and A; still indi-
cates the most slowly decaying process. Thus the
time required for the system to relax to the steady
state will be on the order of

1 )" —Yki
T= =c; 1 |a;+ ap—————— . (5.18)
PV 2 , kk: + Vi

This rate reflects the collective nature of the non-
thermal excitation. As a check of the reasonableness
of this result, note that in the Frohlich limit, y;; =0,
and then 7 equals 1/€,. This is consistent with the
sum rule (2.16), for N depends only on the ®;, and
the highly excited mode ®; will dominate in the
sum.
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Although it is not possible to make general state-
ments about the crossover from nonlinear excitation
of one mode to another, the case Z=2 still gives
some insight. Then both n; are on the order of
S172, and the condition that A vanishes, as in (3.16),
can be used to simplify the eigenvalue equations to
give

0= (A—20Y2112)M1 — 201V 211 1572 (5.19)
and
= —2ayY21M2M1 + (A =227 21155)7; - (5.20)
From this,
A=0, AM=27(any+an) . (5.21)

In this case, the steady state is in neutral equilibrium
rather than stable equilibrium against perturbation
by fluctuations. This seems plausible, and perhaps
the result is typical of the crossover steady states for
more complicated systems.

In a laboratory situation, the time required for the
steady state to become manifest will depend on
several factors, depending in part on the variable
which is being observed. In experiments such as
those involving Raman scattering, observation of the
excited mode is direct, and after suitable threshold S
is reached, a relaxation time of the character of the 7
in (5.18) should be observed. In experiments where
the observation is indirect, the time for cells to
reproduce or to congregate may be influenced by the
presence of the nonthermally excited state, but those
times can be expected to differ from 7. The physical
relaxation time thus can have several components of
which (5.18) may be only one.

A different estimate of the relaxation time was
given by Wu and Austin.3! They estimated 7 by cal-
culating the lifetime of the nonthermally excited
state, and found it, in the Frohlich limit, to depend
on the A;; coefficients. Such a time scale is ap-
propriate to intrasystem transfers of energy as S is
increased. However, when threshold is reached,
these intrasystem transfers balance, as (2.16) indi-
cates, and relaxation to the steady state is not affect-
ed by them. A time scale depending on the A;; may
be important, however, in determining the time
needed to reach threshold as S is increased.

CONCLUSIONS

Study of the generalized Frohlich model of non-
thermal excitations of a driven open system leads to
a better realization that in the steady-state energy
coupled into a spectrum of modes of the system may
be channeled through a single mode of the system
prior to discharge into the bath. This concentration

of energy flow occurs as a consequence not of a sta-
tistical process, but rather as a consequence of the
presence of a suitable nonlinear interaction between
the modes of the system and the modes of a heat
bath with which the system communicates. In the
Frohlich limit, where only difference modes are ex-
cited by the nonlinear interaction, the result is espe-
cially simple. Only the system mode of least fre-
quency will be preferentially excited, even though
there may be zero energy put into that mode directly
from the energy source. In the more general case
where sum modes also are excited by the nonlinear
interaction, it still follows that in the steady state at
most one mode will undergo nonthermal excitation,
while the remainder remain in or near the equilibri-
um distribution of the system. The determination of
which one of the modes will be preferentially excited
has been shown to depend both on the relative mag-
nitudes of the coupling factors for the terms of the
nonlinear interaction, and on the relative amounts of
energy put into the various modes. Since the latter
may be controlled from an external source, there is
the interesting possibility that a particular non-
thermal excitation may be stimulated under proper
conditions. In any case, a threshold rate of energy
flow must be present to produce the preferred exci-
tation.

The analysis of the model presented here succeeds
because of the special bilinear nature of the inter-
action. The method is not well adapted for consid-
ering the effect of higher-order interactions. One
infers from the stability of the modes against small
displacement from the steady state that small cubic
or quartic interaction terms are not likely to alter
the effect significantly. One expects, however, that
large high-order terms will bring about an important
change. The prediction of the present model that
the nonthermal excitation will increase indefinitely
with increasing energy flow would lead one to ex-
pect destruction of the system at sufficiently high
flux. Frohlich has pointed out'®' that the presence
of a term of fourth order in the polarization P is to
be expected and would ultimately stabilize the exci-
tation. Bilz et al.3¢ have discussed this point further
in the context of interaction between the elastic field
and the polarization field in a ferroelectric medium.
Further study is needed to understand how such
terms translate into contributions to the Hamiltoni-
an (2.1) and the rate equation (2.3) of the present
model, and how such contributions may limit the
nonthermal excitations. It should be noted that
some higher-order terms were considered by
Kaiser’” in a derivation of a Peierls-Boltzmann
equation describing the transport of phonons. How-
ever, where comparison of his results to the Frohlich
rate equation was made, no extensive use was made
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of the extra terms and so their possible limiting ef-
fect appears still to be determined.

The Frohlich model is not unique in predicting
nonthermal interaction. Bhaumik et al.3® have con-
sidered an interaction linear in the bath and oscilla-
tor modes but which leads to a form similar to (4.15)
or (4.20) upon consideration of perturbation terms of
second order in the interaction. An entirely dif-
ferent approach was taken by Fain*** who con-
sidered disruption of thermalization of the bath it-
self as a consequence of intense energy flow.

The Frohlich model does not attempt to identify
the dynamical character of the oscillations in the
open system, so it is of interest that other work
shows promise in providing information of that
type. The propagation of solitons or solitary exci-
tons in the essentially one dimensional structures of
a-helical protein molecules has been considered by
Davydov.*' Del Giudice et al.*>*® have discussed
qualitative comparisons of features of such excita-
tions with the Raman-scattering observations in
Chlorella pyrenoidosa reported by Drissler and
MacFarlane* and with similar observations on E.
coli by Webb et al.® and the other systems discussed
by Webb.?’ Del Giudice et al. have also discussed
the relevance of the Frohlich model as illustrating
how diffuse energy flowing in an open system can be
channeled into special modes such as the Davydov
solitons.*»* An extension of the Davydov theory

has been made by Scott*>*® and applied to the

Raman-scattering data of Webb et al.3 taken on
metabolizing E. coli. Scott calculated the energies of
two Davydov solitons for a-helix proteins. Without
further adjustment of parameters, he found that the
frequencies of the Raman lines from E. coli could be
described nicely as harmonic or sums or differences
of the soliton frequencies. A comparison of the os-
cillations of the Frohlich model with solitons was
also made by Bilz et al.?¢

It will be important to develop experimental in-
formation adequate to understand both the dynami-
cal mechanism of the nonthermal excitations which
have been reported and the interaction mechanisms
which produce a concentration of energy in one
mode when many modes are driven. In this way
there may result new insights into the progress of
molecular processes peculiar to the far-from-
equilibrium states associated with living systems.
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