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The structure of the phase-locked zones in the sine map is examined. Attention is drawn to gen-
eral features of the map’s phase diagram and two, dynamically distinct kinds of bistability are dis-
tinguished: One type arises locally through a cusp catastrophe and the other, nonlocally, through
crossing (in the parameter plane) of remote stable manifolds. Numerical work indicates that a Can-
tor set of cusp bistabilities and other related features forms an infinite binary tree in every Arnol’d
tongue. (An infinite set of such structures lies arbitrarily close to the parameter line for the quasi-
periodic transition to chaos, and also appears in other phase-locked zones.) The binary tree of
features obeys the vector scaling found in the quartic map and seems to be generic for multiple-

extrema, one-dimensional maps.

I. INTRODUCTION

Many physical processes involve the entrainment of
nonlinear oscillators by a periodic external force. For in-
stance the periodically forced pendulum has served as a
paradigm for the study of the complex dynamics exhibited
by such systems.! Examples arise in the physical and bio-
logical sciences: The driven Josephson junction,? su-
perionic conductors,’ and normal and pathological cardiac
rhythms* are important instances. '

The continuous time evolution of these systems is
represented by differential equations, but return maps for
cross sections of the flow provide equivalent, simplified
discrete-time representations of the system’s evolution.
When strong dissipation is present, the resulting contrac-
tion in phase space produces attractors in the map or flow.
Injective folding® in the domain of the map is an impor-
tant feature of its dynamics and generates chaotic and dif-
fusive behavior. For example Curry and Yorke® have ex-
plored the effects of such distortion or breakup of invari-
ant curves in contracting maps of the plane.

It has become commonplace to replace the planar (dif-
feomorphic) return map by a suitably parametrized, one-
dimensional (1D) map. Such 1D maps imitate the
behavior of the dominant effective degree of freedom of
the system: For a dissipative oscillator this is a phase, but
the variable may be interpreted as an underlying periodici-
ty in lattice phenomena.

In this paper we study the sine map

X p1=X;+a+b sin(2wx,)=S(x,;;a,b) , (1)

which is now a widely used model for the nonlinear sys-
tems just described.

This map has arisen in a number of contexts and has
been studied previously by other investigators. For small
b [b<(2m)~'] the map is a diffeomorphism and the
dynamics (mod 1) have been extensively examined in con-
nection with the properties of mappings of the circumfer-
ence of a circle onto itself.” Very recent works have
focused on the universal scaling properties of this map in
the region b <(27r)~‘EbQ in connection with the transi-
tion from quasiperiodic motion to chaos on an attracting
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two-torus.® This attractor structure arises from two suc-

cessive Hopf bifurcations. At incommensurate frequen-
cies the spectrum signals a direct transition to
turbulence—like the Ruelle-Takens® mechanism. The crit-
ical by value corresponds to incipient folding in the flow.®
The fine structure of the phase-locking regions of this
map for b > (27)~! has also been investigated recently in a
biological context as a model for periodic stimulation of
spontaneously beating heart cells.!® The map dynamics
considered on the infinite interval, rather than mod 1, can
also model the diffusive behavior of some deterministic,
dissipative systems.!! These latter studies have considered
the case where a =0, but similar considerations apply to
the more general case of nonzero a: The diffusion process
is now biased and contains a drift term.

The present paper, which is most closely related to that
of Glass and Perez!° in that it focuses on the fine structure
of the phase-locking regions for b > (27)~!, was stimulat-
ed by our recent investigations of hysteresis and bistability
phenomena for the cubic map,'? and by the general
features of the subharmonic cascade discovered in the
quartic map by Chang, Wortis, and Wright.!* In some re-
gions of parameter space the local shape of the sine map is
similar to that of the cubic map, and one finds the bista-
bilities characteristic of a map with two extrema. One
form of bistability—a cusp-catastrophe phenomenon'?>—is
intimately connected with the crossing of superstable lines
found in the sine,'° cubic,'? and quartic!®> maps, and en-
tails an infinite binary tree of such features.!?

The purposes of the present paper are, first, to provide
an overview of the periodic structure of phase-locked or-
bits in the sine map by describing features of this structure
in both parameter and configuration space; and second, to
investigate the binary cascade within the Arnol’d tongues
which parallels such structure in the quartic map.'> Our
numerical work indicates the existence of a Cantor set of
cusp bistabilities within each tongue showing the vector
scaling found for the quartic map.

II. PHASE DIAGRAM

The general structure of the phase diagram for small b
is well known and consists of phase-locking zones charac-
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terized by the rotation number p, whose boundaries are
easily computed from perturbation theory.” The regions
contained within the boundaries corresponding to rational
p have a “tongue” shape, while the dynamics correspond-
ing to irrational p occur along lines in the (a,b) plane. On
the b=0 line, p=a, and the regions of rational rotation
number are just the set of points with rational a values; as
b increases, the Arnol’d tongues develop out of these
points, and the stable phase-locking solutions occupy re-
gions with finite measure.

The main focus of this study is on the structure of the
phase-locking regions for b>(27)~! where the map
possesses extrema which give rise to complex dynamics
and bistability. The boundaries of the rational-rotation-
number regions correspond to the appearance of a stable
periodic orbit by a tangent bifurcation process and, thus,
can be computed numerically for general b values by solv-
ing the simultaneous equations

SM(x;a,b)=x and S™V(x;a,b)=s (2)

with slope s =1. (SY'=508" 1, the Nth composition
of the map). Within each tongue further pitchfork
(s=—1) and tangent bifurcations occur for b > (27)~ !
The nature of this fine structure is explored here and in
Sec. III. Some idea of the richness of this structure can be
obtained by examining Fig. 1, where we see a hierarchy of
subharmonic orbits within each Arnol’d tongue—choose
the tongue emanating from a =0 for definiteness [Fig.
2(a)]. The region labeled 1 is the stability zone of the fun-
damental period; where this zone (or a zone corresponding
to a subharmonic) crosses other tongues, bistability exits.
The fundamental zones of every tongue are only singly
stable, unlike the higher subharmonics. This feature is as-
sociated with the (degenerate) cubic superstability at by,
where maximum and minimum superstable lines [s=0,
dashed line labeled s; in Fig. 2(a)] meet tangentially. In
complete analogy with earlier results for the cubic map,'?
for subharmonic zones the extrema are always distinct and
give rise to crossing superstable lines (s,) which are in-
directly associated with bistability in such regions. The
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FIG. 1. Phase diagram showing some of the stable phase-
locking regions for the sine map. The configurations of crossing
harmonic and tangent boundaries within the Arnol’d tongues
signal the existence of underlying cusp-catastrophe manifolds.
The labels b; (=0.282) and b, (=0.5) are the b values at which
the sections through the solution manifold for the a =0, %, and
1 tongues are shown in Figs. 3 and 4. For b > (27)~! the map
develops extrema.
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FIG. 2. (a) An enlarged view of the tongue emanating from
a=0. Period 1 is stable in region 1 and superstable along the
dashed line s,. Period 1 bifurcates to period 2 on A. Period 2 is
stable in region 2 and superstable along the pair of dashed lines
s, which cross twice, forming a loop which encloses a cusp at
the junction of the tangent boundaries ¢'. Period 2 bifurcates to
period 4 along lines 4’ which cross once to the right of the cusp.
(b) An enlarged view of the cusp region in the tongue emanating
from a = -;— Near the cusp period-4 orbits coexist (cf. Fig. 1).

superstable lines cross twice, forming a loop, at a left dou-
bly superstable point and at a right bistability. This bista-
bility arises from a cusp catastrophe within the loop, and
is a local, generic feature for every subharmonic zone. It
is quite distinct from the “nonlocal” bistability from
crossing tongues, or as we shall see later, from the crossing
of subharmonic zones within a tongue. Such cusp-induced
bistability also appears in a fundamental zone which arises
by tangent bifurcation for b > by [see, for instance, the
period-2 zone near (,1) shown in Fig. 1], since in such a
zone, again the superstable lines cross rather than merge.
Figure 2(b) shows a similar cusp structure in the tongue

. 1
emanating from @ = 5.
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Further insight into these processes can be gained by ex-
amining the manifold structure in {x} X {a,b} space. In
Fig. 1 the marks b, and b, indicate the values at which
sections were taken to construct Figs. 3 and 4. In Fig. 3
the manifolds corresponding to the phase-locking zones
which originate at a =0, %, and 1 are displayed. About
the integer a lines, one has identical sinusoidal manifolds
of the period 1 orbits. Part of these manifolds are stable
and part unstable, and these portions coalesce at the boun-
dary of the tongue. As b decreases, the amplitude of the
sine wave decreases, and the wave becomes flat at b=0.
The central period-2 manifold is a smaller-amplitude,
higher-frequency wave which corresponds to the narrow-
ing of the tongue for higher, periodic, phase-locking
zones. All such fundamental manifolds are connected
periodic structures in x, which become flat at b =0 where
the sine map has continuous symmetry. The closed loops
in Figs. 3 and 4 correspond to the manifolds which arise
from the fundamental by a subharmonic process. The an-
tisymmetry of these loops arises from the symmetry prop-
erties of the underlying map. The manifold structure in
Fig. 3 is derived from the cut through the period-4 cusp at
a=+. Thus the period-4 manifolds are tangent to the
a=+ line at four places; if b is increased further, the
manifolds develop a sigmoidal shape in these regions cor-
responding to the appearance of a pair of period-4 orbits.
Figure 4 shows the development of these manifolds for a
larger b value corresponding to the cusp point, which ap-
pears at b, (=+) along integer a lines, where the period-2
orbit undergoes orbit doubling. One now sees loops on the
sinusoidal period-1 manifolds corresponding to the pitch-
fork bifurcation to produce period-2, and since b is set at
the cusp point, the period-2 manifolds are tangent to the
integer a lines. Like the period-4 case described above, for
b larger than b,, the manifolds develop a sigmoidal shape
in these regions when the period-2 orbit-doubling bifurca-
tion occurs. The period-2 and period-4 manifolds about
a=+ develop further: Clearly the manifolds deform
strongly as a result of the increasing amplitude of the fun-
damental periodic manifolds and their subharmonics as b
increases. The infinity of manifolds corresponding to ra-
tional rotation numbers must clearly loop in the (x,a,b)
space in a complicated way in order to avoid crossing.

Another feature of Fig. 4 is worth noting: At this value
of b the period-1 manifolds corresponding to the period-1
orbits a=0 and 1 just touch the line a =5. Hence, at
(a,b)=(+, %), one manifold has coexisting period-1 orbits,
and one manifold is associated with the minimum of the
map while the other is associated with the maximum.
This is also clear from Fig. 1 where it is seen that the
tangent boundaries corresponding to these regions cross.
This is just an example of the nonlocal bistability that was
briefly mentioned earlier.

We see that the tangent and harmonic boundaries corre-
sponding to phase locking with rational-rotation-number
cross in the (a,b) plane in a complicated way giving rise to
bistability: This is precisely the feature that was noted by
Glass and Perez!® in their studies of this system. Howev-
er, we find that, in addition, each Arnol’d tongue develops
an underlying cusp catastrophe manifold for some value
of b>(2m)~!. As a result one may observe hysteresis as-
sociated with the cusp bistability, and the coexisting orbits
may be continuously deformed into one another by mov-
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FIG. 3. Manifold structure in (x,a) space for b=5,=0.282
corresponding to the tongues emanating from a =0, é—, and 1.
The period-1 manifolds about @ =0 and 1 and the period-2 man-
ifold about a =4 are shown. These connected manifolds con-
tain both stable and unstable portions. The unconnected period-
4 manifold which arises by a pitchfork bifuraction from the
period-2 orbit is also shown in the figure. Since the section is
taken through the cusp of this subharmonic, the period-4 mani-
fold is tangent to the a = %— line in four places.

ing around the cusp: Nonlocal bistability does not possess
this feature.

The above description is simply an overall view of the
structure of the phase diagram. In fact each Arnol’d
tongue develops an infinite hierarchy of cusps which arise
from further orbit doublings associated with the subhar-
monic bifurcation process. The nature and mechanism for
the origin of this structure is the subject of the next sec-
tion.

III. BINARY-TREE STRUCTURE IN THE TONGUES

In this section we discuss the structural details of the
phase diagram within the Arnol’d tongue arising from
a=b=0 as shown in Fig. 2(a). Additional numerical
work indicates that all the features described here occur in
all other tongues, but shrink and approach by as the order
of the phase-locked zone increases [cf. Fig. 2(b)].

The fundamental of this @ =0 tongue arises by tangent
bifurcation along a==*b. Above the line by the funda-
mental bifurcates subharmonically along the hyperbolic
boundary 4 [see Fig. 2(a)]. All such boundaries have the
asymptotic slope +1. Within the first subharmonic region
close to by there is the cusp bistability mentioned earlier.
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FIG. 4. Manifolds of Fig. 3 are again shown at b =b,=+.
All have widened corresponding to the widening of the tongues
as b increases (cf. Fig. 1). The tongues at a =0 and 1 now have
subharmonic manifolds at the cusp catastrophe. The period-4
subharmonic manifold about a =+ has folded into a sigmoid
shape. This structure has higher subharmonic loops crossing it
(not shown).
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An orbit-doubling bifurcation occurs at the cusp, but a
tangent bifurcation occurs elsewhere along the lines ¢,
meeting at the cusp. The first subharmonic zone has two
subharmonic boundaries, 4’, that cross once just to the
right of the cusp. In all, the first subharmonic zone has
two outer, harmonic processes and two inner, tangent pro-
cesses, giving it a swallow shape [see Fig. 2(a)]. The
superstability lines s, within the first subharmonic zone
cross twice, once left and once to the right of the cusp.
(The left crossing is doubly superstable and the right one
locates coexisting superstable orbits.) Thus the subhar-
monic boundaries A’ move from one superstable line to
another in going from an outer, harmonic prong to an
inner, tangent prong. In view of this crossing of the lines
s,, the relation of the structures in the first subharmonic
zone to A implies the duplication of such structure in the
second subharmonic zone with respect to A": In each of
these zones distinct maximum and minimum superstabili-
ty lines also cross twice enclosing a cusp, and two subhar-
monic boundaries cross once to the right of this cusp.
(Glass and Perez!® have displayed the period-4 superstable
crossings consistent with this feature.) Repetition of this
argument implies that with each period doubling, the
number of these zones doubles generating (through an in-
finite binary tree) a Cantor set of cusps (bistabilities) and
the associated superstable crossings. The first few features
of this tree are shown in Figs. 5(a) and 5(b). The general
configuration of superstable crossings has already been ob-
served by Chang, Wortis, and Wright!®, who showed
universal (vector) scaling properties of their structure.
Every tongue, however fine, has this Cantor set of
features.

Chang et al.,'? point out that the doubly superstable or-
bits converge (along suitable paths in the tree) to tricritical
points, which are also characterized by the accumulation
points of cusps, superstable orbits, or indeed other tricriti-
cal points. (Tricritical points also lie at one end of
Feigenbaum critical lines [i.e., the line limits of subhar-
monic sequences in the (a,b) plane] associated with the
Cantor set of fine, diagonal processes in the interior of the
tongue; see Fig. 5.)

We now outline a method by which an infinity of such
tricritical points may be located within an Arnol’d tongue;
we have investigated the vector scaling in the (a,b) plane
for a number of such tricritical points.

Consider the solution lines in the (a,b) plane represent-
ing the mapping of the maximum M of the map into the
minimum m in an odd number of steps and vice versa,
that, is the lines such that

SYM;a,b)=m, j odd

3
and 3

S®(m;a,b)=M, k odd .

We call the first set of lines ., and the second .%,.
The doubly superstable orbits belong to the intersection
FuNS,,, with the additional constraint j+4k =2" for
integer n. This (intersection) vertex set may be reached
along arcs of 3, N.%,,, so that the union and intersec-
tion of %, and .%,, contain a natural realization of the
infinite binary tree (#) of vector-scaling structures. On
this tree up (#) and down (d) are defined as relative direc-
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FIG. 5. (a) Detail of the period-2 subharmonic of the a =0
Arnol’d tongue near the cusp. The period-4 zone has a cusp
with tangent and crossing subharmonic boundaries. Two period-
8 zones appear on either side of the period-4 zone, and so on. (b)
Enlargement of the neighborhood of the period-4 cusp. The two
period-8 daughters of the period-4 cusp are resolved. Each
period-8 cusp has two period-16 cusps (not shown), etc.

tions to the last step taken in the direction of increasing
period. We show some of the lines of %3y U.%, in Fig.
6.

In Fig. 6 we can easily see, starting from the period-4
doubly superstable orbit, that we may move u or d in the
(a,b) plane to a period-8 orbit; from either of these
period-8 orbits we may move u or d to a period-16 orbit
on % . In fact the situation is geometrically rather simple:
From any doubly superstable orbit an u * or d ® walk al-
ways lies along a smooth, relatively straight curve—a stem
in £y or &,,. Whatever the first finite number of steps
taken on 4, the scaling approaching a tricritical point
along a stem is 8%=7.284. .., which as has been pointed
out,’ is Feigenbaum’s'* quartic exponent. We have also
verified, for a number of walks, that eventually, side-
branch structure at ud,u’du’d,...,u>d, for example,
scales with the second “odd-perturbation” exponent found
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FIG. 6. Graph of curves M; and m; for odd j, where
Su={M;} and S,,={M,} (see text). M crosses m, at a doubly
superstable orbit (D). A subharmonic exists for j+k =2" (in-
teger n). Along stem M, intersections with m, (at 4D, 8D, 16D,
etc.) scale with exponent 8%'=7.284... and accumulate at T,.
With respect to M, the (subharmonic) side-branch points 8'D,
16'D (upper), 32'D, etc., scale with exponent 8% =2.857... .
Along (stem) m; from 4D , 8'D, 16'D (lower), etc., scale with 8%
reaching the tricritical point T,. Again side-branch points
16D, 32"D, etc., scale with exponent 87 accumulating at T’,.
The cusps 4C, two 8C’s, etc., scale with exponent 8% with
respect to the appropriate stem.

by Chang et al.,'* for the quartic map, 8%’ =2.857... .
All the side branches are eventually parallel near the tri-
critical point 7, which is reached by a u ® walk. Globally
on # this second exponent governs side-branch scaling
with respect to a chosen stem or any other stem’s “lateral”
features like cusps, other side-branch points in the vertex
set, and indeed their tricritical limits. The eigenvectors
for the scaling directions about a given T are defined by
the stem leading to T(~8%’) and side branches (~8%).
[The eigenvectors in this instance refer to structures in the
(a,b) plane.] Figure 7 is a schematic representation of the
above features.

From the structure of the phase diagram we see that it
is always possible to reach the fundamental periodic zone
from a remote tricritical point along a stem, but these re-
gions do not obey Feigenbaum (scalar) scaling with ex-
ponent 8;=4.669. . ., but rather they obey two-exponent
vector scaling for the stem part of the walk. For such a
remote tricritical point the nearest bands of subharmonic
cascade with 8y scaling start at some (high) subharmon-
ic.® Far into the tree hierarchy, the lowest subharmonic
of such a sequence becomes arbitrarily high, and the num-
ber of such sequences and their associated tricritical points
increases as 2". These sequences are just the diagonal pro-
cesses referred :o earlier in Fig. 5(a).

Although there appears to be very strong evidence for
Change et al.,'® vector scaling ubiquitously in % for stem
walks, the associated eigenvectors change in absolute and
relative orientation: In any neighborhood of a tricritical
point, the angle between a stem and its branches increases
with the number of branch turnings on the walks. In the
limit of an infinity of such turnings, this angle seems to
approach 180°. Thus any scaling feature in the neighbor-
hood of a tricritical point T has embedded in it other simi-
lar, smaller, skewed scaling features arising from the in-
finity of possible side turnings in the tree traversals near
T. Some features of these secondary and/or higher sub-
structures are, under an affine tranformation, self-similar

FIG. 7. Schematic representation of the tree of doubly su-
perstable orbits (vertices) of Fig. 6. From vertex R; successive
vertices R,, R3, R;, etc., scale with exponent 8%’ accumulating
at the (primary) tricritical point T, and side-branch structure
relative to R, T scales with exponent 8%, e.g., the distance from
R\ T, to the secondary tricritical points T,, T, T, etc., accu-
mulating at T,. T, is the limit of vertices R3, R}, R{, etc., scal-
ing with 8%’ along R,T,. Tertiary tricritical points T, T3, etc.,
accumulating at T, are shown. The angles R, R 2T>, R,R 3T3,
etc., increase with the number of side turnings at the roots R,
Rj, etc. Any T has an infinity of T’s in its neighborhood.

to the primary structure near 7. The neighborhood of
every T contains Cantor-point sets arising from this
structural hierarchy. These features are illustrated
schematically in Fig. 7. The local coalescence of eigenvec-
tors implicit in the proposed limiting angle behavior ap-
pears to be evident in udud, dudu, etc. walks. Limiting
colinearity of the 8%} and 8% eigenvectors implies singular
behavior.

IV. CONCLUSION

The sine map has become important recently since it is
a model showing® a universal quasiperiodic transition to
turbulence. In this paper we have drawn attention to gen-
eral features of the periodic zones of this map’s phase dia-
gram and to an infinite hierarchy of bifurcations within
these periodic zones. This feature apparently always
occurs within any subharmonic progression in the sine
map. The configuration of superstable lines correspond-
ing to this structure has also been observed by Glass and
Belair."”> Two further cases, the cubic map and the quartic
map, also exhibit the same phenomenon, and it seems to
be generic for multiple-extrema, one-dimensional maps.
Within the higher-order Arnol’d tongues of the sine map,
the entire binary-tree structure lies arbitrarily close to the
parameter line for the quasiperiodic transition to chaos,
and may therefore have experimental relevance to the
“neighboring” chaotic phenomena.
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Chang, Wortis, and Wright'3 discovered vector scaling
in the tree structure for the quartic map; we have demon-
strated the existence of their scaling about a number of tri-
critical limit points terminating walks on the tree, and
conjecture that is obeyed at an infinity of such points.
This scaling is most easily followed on the set of doubly
superstable orbits, at crossings of superstable lines; associ-
ated “bistable” crossings also appear on these lines—an
important additional dynamical feature embedded in the
tree is bistability arising locally from a cusp catastrophe
(this feature is intimately connected with the two kinds of
superstable crossing).

The tree structure is a vector generalization of
Feigenbaum’s one-parameter scaling and suggests that
general one-dimensional—map models and the dissipative
planar maps and flows, which they are intended to imi-
tate, will show similar dynamical variety.
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