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This paper presents a rigorous theoretical investigation of the filamentation and modulational in-

stabilities of an upper hybrid laser radiation in a hot, collisionless and homogeneous plasma in the

presence of the self-generated dc magnetic field of the order of a few megagauss. Fluid equations

have been employed to find the nonlinear response of electrons. The low-frequency nonlinearity

arises through the ponderomotive force on electrons, whereas the high-frequency nonlinearity arises

through the current densities associated with the scattered sidebands. It is observed that the growth

rate of the filamentation instability decreases with increasing magnetic field, while the growth rate

of the modulational instability increases with increasing magnetic field. Furthermore, the growth

rate of the filamentation instability is higher by about one order of magnitude than that of the

modulational instability for the same set of plasma parameters.

I. INTRODUCTION

In the laser-pellet fusion plasmas the self-generated

magnetic field of the order of few megagauss is generated

due to a variety of reasons. ' Such high magnetic fields

must influence drastically the absorption processes of the

laser beams and the transport properties of the plasma. ' "
Again, since the powers employed in the laser-pellet fusion

experiments are very high, the nonlinear effects, e.g. ,

paramagnetic instabilities, profile modification, etc. ,

should become important. ' ' The earlier literature on

parametric instabilities of laser radiation is, however,

mainly restricted to the unmagnetized or weakly magnet-

ized plasmas. Therefore, the effects of the self-generated

high dc magnetic field on the various parametric processes

must be considered in detail.
The absorption of the laser beam in a plasma is depen-

dent upon the scattering processes in the underdense re-

gion since the resonance absorption is one of the major

processes by which the laser energy must reach the critical

density layer to be effectively absorbed. ' ' Therefore, the

scattering processes in a magnetized plasma play a
relevant part in the theoretical understanding of the

beam-target fusion experiments. Shukla et al. have

studied the nonlinear sidescattering of an upper hybrid

laser radiation by upper hybrid and lower hybrid waves in

an inhomogeneous plasma. Larson' and Johnston and

Kaufman ' have derived general expressions for the

coupling coefficients of the three-wave decay of elec-

trornagnetic waves in a magnetized plasma. Using the

fluid model Grebogi and Liu have investigated the

enhanced Brillouin and Raman scattering of extraordinary

laser radiation in a plane perpendicular to the self-

generated magnetic field by upper hybrid and lower hy-

brid modes in a plasma. Porkolab and Goldman have

studied the soliton and oscillating two-stream instability

of upper hybrid electrostatic waves in a plasma. Tripathi
and Sharma have also studied the decay instability of the

upper hybrid laser radiation into various channels of decay

by using fluid and kinetic descriptions. In all these studies

very-short-wavelength perturbations have been considered,
where b =k p, /2 » I (k is the propagation vector of the

perturbation and p, is the electron Larmor radius} and

only one scattered sideband is important. But for long-

wavelength perturbations, both the Stokes and anti-Stokes
components of the scattered waves should be important.
Moreover, depending upon the direction of propagation of
the perturbations, the incident beam may suffer filamenta-

tion and modulational instabilities. ' ' To the best
knowledge of the author no work seems to have been re-

ported in the literature on the filamentation and modula-

tional instabilities of the upper hybrid laser radiation,
where the self-generated magnetic field might play a vital

role.
In this paper we have given a rigorous theory for the

filamentation and modulational instabilities of a high-

power upper hybrid laser beam in a homogeneous plasma
in the presence of a high magnetic field. We consider the

long-wavelength perturbations which may be present in

the plasma due to the presence of an ion acoustic mode or
some other reasons. The nonlinearity in our analysis
arises through the ponderomotive force on electrons.

In Sec. II we have derived the nonlinear dispersion rela-
tion for the low-frequency electrostatic perturbation when

an upper hybrid laser radiation propagates in a direction
perpendicular to the self-generated dc magnetic field and

polarized in a plane perpendicular to the magnetic field.
The low-frequency nonlinear response of electrons in the
plasma has been obtained by the use of the fluid equations
which are sufficiently valid for the long-wavelength per-
turbations. The dispersion relation is then solved to obtain
the growth rates of the decay waves for the filamentation
and rnodulational instabilities in Sec. III. Some numerical
estimates of the growth rates are also given in Sec. III. Fi-
nally, a brief discussion of the results is presented in Sec.
IV.
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II. NONLINEAR DISPERSION RELATION

We consider the propagation of an upper hybrid laser

radiation (pump) in a homogeneous plasma along the x
axis with its electric vector polarized in a plane perpendic-

ular to the self-generated magnetic field B, along the z

direction:

(i) the momentum-balance equation

av
dr

(ii) the equation of continuity
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Here, co&
——(4nnpe /m)'~ and co, =e8, /mc are the elec-

tron plasma frequency and electron cyclotron frequency;
—e, m, n p, and c are electronic charge, mass, unperturbed
electron density, and the velocity of light in vacuum,

respectively. The incident laser radiation possesses an os-

cillatory magnetic field, Bp ——c kpX Ep/cop and gives rise to
an oscillatory drift velocity of electrons,

e Eoi X co, +icooEoi
&OJ.=—

2 2m CO —COp

where the symbol l denotes the component of the corre-

sponding vector transverse to the self-generated dc mag-

netic field B,
~
~z.

The oscillatory drift velocity of electrons due to the

pump wave and the oscillatory magnetic field of the pump
wave interact parametrically with the low-frequency mode

(co, k) in the plasma and produce two high-frequency side-

bands (coi 2=co+cop ki 2= k+ kp). These generated side-

bands, in turn, interact with the pump wave to produce a
nonlinear low-frequency ponderomotive force which am-

plifies and drives the perturbation (co, k). Thus, we are
considering the parametric decay of the pump wave into a
low-frequency perturbation and two high-frequency side-

bands. Since we consider the long-wavelength perturba-

tion, both the sidebands must be taken into account. '

The total response of electrons to this four-wave

parametric process is governed by the following fluid

equations:

where V, = (2k' T, /m)'~ is the electron thermal speed, n p

is the equilibrium electron density, kz is the Boltzmann
constant, and T, is the temperature of electrons in the

plasma. The second and third terms on the right-hand

side of Eq. (6) constitute the ponderomotive force which is

the major nonlinear source in the low-frequency response.
For the high-frequency response the nonlinearity arises

through the equation of continuity, Eq. (7). The linear

velocity components for the high-frequency sidebands are
obtained by solving Eqs. (6) and (7) as
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Now, without loss of any generality we assume that the

scattered electromagnetic sidebands (coi, ki) and (co2, k2)

propagate in the XZ plane, so that, k1~, k2~, k„=0. Also,

the low-frequency perturbation is assumed to be purely

electrostatic (E=—VP). Using Eqs. (6) and (7) and re-

taining all the components of the ponderomotive force, we

obtain the following expression for the nonlinear density

perturbation associated with the low-frequency electrostat-

ic mode in the plasma:

X,k e np
n(co, k)= P —

2 2 2 (Ep++Ep& Y),
4me 2m co(co~ —coo}

(10)

where
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is the electronic susceptibility and
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The nonlinear current densities at the high-frequency sidebands are given by

(14)
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Using Eq. (10) in the Poisson s equation and Eqs. (15) and (16) in the wave equations for the high-frequency sidebands,
we obtain
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and I is the unity tensor of rank 2 and n " is the nonlinear part of n (co, k). The linear part oi n (co, k) has been neglected
in Eq. (17) and nonlinear part of n(co, k) has been neglected in Eqs. (18) and (19). In Eq. (17) e is the linear dielectric
function of the low-frequency electrostatic perturbation. e& 2 in Eq. (21) are the linear dielectric tensors for the high-
frequency sidebands
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Eliminating P, Ei, and Ez from Eqs. (17)—(19) we obtain the nonlinear dispersion relation for the low-frequency pertur-

bation, after a little simplification, as
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are the determinants of D~ 2. A. Filamentation instability
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III. GROWTH RATES

When the resonance conditions

CO
~ 2 =CO+ Np,

ki 2
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are satisfied, we can expand' e and
~

D~ 2 ~

as

(29)

Here, we consider that the low-frequency electrostatic
perturbation is due to the ion acoustic mode (co=kC„C,
is the ion sound speed) in the plasma and is propagating in
the z direction, so that k„=0 and k, =k. Therefore, the
undamped growth rate yp of the filamentation instability
is given by Eq. (31) where

2COCOp
2

(32)
(

2 k2V2)2

and

CO =CO+ 1y,
E=& (y+ y& )(ae/a~),

~D, ~= (r+1. )(a~D, , ~/a

(30) BCOy 2

2NcN1 2
2

C4

X k,„,2.
2

2 '2
COp

2 2
COp —CO

2
'

2
COp COp1—
C CO

(33)

where y is the growth rate for the process under investiga-
tion, and yL, , yL, &, and yL, 2 are the damping rates of the
low-frequency mode and the high-frequency scattered
sidebands. We now neglect the linear damping of the de-
cay waves. It may be mentioned here that one could write
expressions for the linear damping rates of the decay
waves by considering the effect of collisions in the corre-
sponding dispersion relations of the decay waves. Thus,
the growth rate yp of the four-wave parametric process, in
the absence of the linear damping of the decay waves, is
given by

1 p& + P2

a
~
5,

~
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[
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We have calculated the growth rate of the filamentation
instability for the following plasma parameters:

cop=1.778X 1o

in rad sec ' (corresponding to CO&-laser radiation);

co, = 10' —10', cop
——(0. 1—2) X 10'

both in rad sec

V, =2.6X10

in cm sec ' (corresponding to T, =4 keV);

Cs =10
in cm sec

(31)

In the following we consider two special cases, viz. , the
filamentation and modulational instabilities of the in-

cident upper hybrid laser radiation.

k =10 —10

in cm ', and

~
Voy/c

~

=10
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B. Modulational instability

In this case we consider that the low-frequency electro-
static perturbation (ro, k) propagates along the direction of
propagation of the incident laser beam (x axis), so that
k„=k and k, =0. We calculate the growth rate yc for the

modulational instability, where 8
~
Di 2 ~

/Broi z are given
by Eqs. (33) and

2cicop[co, k V, +(co kV, ) ]-
[cu2~ i (~~ k 2V2)2]2

(34)

The values of co for the calculation have been taken from
the phase-matching condition that the phase velocity of
the perturbation is equal to the group velocity of the in-
cident laser radiation:

The results of the calculation of yo as functions of roz, co„
and k are displayed in the form of curves in Figs. I, 2, and
3.

Figure I shows the variation of the undamped growth
rate yp as a function of the electron plasma frequency co&.

It is seen that the growth rate decreases with increasing co&

up to co~ =1.5X10' radsec '. The present theory is not
valid beyond this value of co&.

Figure 2 shows the variation of the growth rate yc as a
function of the electron cyclotron frequency ai, . The
growth rate decreases with increasing co, up to
co, =5)&10' radsec '. The present theory is not valid for
co, &5)&10' radsec

Figure 3 shows the variation of the grwoth rate yc of
the filamentation instability as a function of the wave
number k of the perturbation. The growth rate increases
slowly, attains a maximum value, and then decrease gra-
dually. It may be mentioned here that for large values of
k, b =k V, /2', )1. In this high-value regime of the
wave number k the fluid theory breaks down and the
Vlasov equation must be employed to find the nonlinear
response of electrons.
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The results of the calculations are also displayed in Figs.
I, 2, and 3. The variation of the growth rate with the elec-
tron plasma frequency co& is shown in Fig. l. The growth
rate decreases with increasing co& up to a certain value and
then increases slowly with co&. It is noticed from Fig. 2
that the growth of the inodulational instability increases
with the faster growth rate at the higher magnetic field.
The variation of the growth rate of the modulational in-
stability as a function of the wave number of the perturba-
tion is also shown in Fig. 3. It is observed that the growth
rate is almost insensitive to the value of k.

12

10

13
10

c (radsec")
FIG. 2. Variation of yo with co, . Solid curve represents the

modulational instability for
~

Vo~/c
~

=10 and co~=coo/4, and
the dashed curve represents the filamentation instability for

~
Vo~/c

~

=10 ' and co~=0. 85c00. Other parameters are the
same as in Fig. 1.
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FIG. 1. Variation of the undamped growth rate yo with the
electron plasma frequency co~ for the following parameters:
coo ——1.778)& 10 rad sec ', co, = 1.75 &(10" rad sec ' (8,= 1

MG), V, =2.6)& 10 cm sec ' (T, =4 keV), k =10 cm
C, =10' cmsec '. Solid curve represents the modulational in-
stability for

~
Vo~/c

~

=10 and the dashed curve represents the
filameutation instability for

~
Vo„/c

~

=10

-2
~(iO cm )

10

FIG. 3. Variation of yo with k. Solid curve represents the
filamentation instability for co~ =0.85coo, co, = 1.75 )& 10"
rad sec ', and

~
Vo~/c

~

=10, while the dashed curve
represents the modulational instability for co~ =coo/4,

co, =1.75&&10' radsec ', aud
~

Vo~/c
~

=10 . Other parame-
ters are the same as in Fig. 1.
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IV. DISCUSSION

A high-power laser radiation propagating transverse to
the direction of the self-generated dc magnetic field of the
order of a few megagauss is effectively unstable for the
filamentation and modulational instabilities in a hot, col-
lisionless and homogeneous plasma. For the following
typical plasma parameters:

coo= 1.778 )& 10

in rad sec ' (corresponding to a CO2 laser),

co, = 1.75 &(10'

in rad sec ' (corresponding to 8,=1 MG),

V, =2.6X 10

in cm sec ' (corresponding to T, =4 keV),

in cm sec

k =10

in cm ', and

i Vpy/c i
=10

(corresponding to the power density of the incident beam
—1 MWcm ), the growth rate of the filamentation in-
stability turns out to be —10 radsec ' and the growth
rate of the modulational instability turns out to be —10
rad sec '. It is also noticed that the growth rate decreases
with increasing magnetic field in the case of ftlamentation
instability, whereas the growth rate increases with increas-
ing magnetic field in the case of the modulational instabil-
ity.

By the choice of the perturbation we are restricting our-
selves to the long-wavelength perturbations. For higher
values of the wave number k of the perturbations, the
'fluid model of the plasma will break down. Again, the
minimum value of k must also be such that the perturba-
tion wavelength is less than the size of the laser fusion tar-
gets usually employed in the laser-target experiments.

It may be mentioned here that the effects of the inho-
mogeneity in the plasma and the saturation of the instabil-
ities are also the problem of great importance.
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