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This paper provides a critical comparison of several approximate microfield distributions. Includ-

ed are versions of the nearest-neighbor and next-nearest-neighbor approximations together with two
approximations based on independent-perturber models. Where appropriate, results from a more
complete theory will be used as reference. Monte Carlo results will be used in. circumstances where

the validity of the reference results are uncertain.

I. INTRODUCTION

The problem of calculating photoemission or photoab-
sorption by hot matter in regions where spectral lines play
a significant role has long been of interest in astrophysics.
Further interest has been generated in the subject by the
development of high-powered lasers able to produce high-
density plasmas in the laboratory. In order to provide reli-
able calculations a detailed knowledge of spectral line pro-
files is required. Since the computation of accurate line
shapes is a major task, it is necessary to develop simple ap-
proximations suitable for large-scale numerical computa-
tions of opacities.

In relation to the line-shape problem several theories of
electric microfield distributions have been proposed. '

In the present paper we investigate some simple approxi-
mations to the microfield distributions. We present nu-
merical calculations and compare them with more accu-
rate theories and with each other. An analysis of these
simple theories as applied to a range of plasma densities
and temperatures, and to a variety of constituent composi-
tions, is included.

Section II provides a general discussion of electric mi-
crofield distributions. Sections III—V deal with simple
approximations to the microfield distribution. These are
followed by a battery of numerical results presented in
graphical form which are accompanied by appropriate ob-
servations and comments. A summary of results is pro-
vided.

II. GENERAL FORMALISM

We are interested in the electric microfield distribution
function Q(e) which is defined as the probability of find-

ing an electric field e, at a charged point located at rz, due
to % particles contained in a volume Q. The charge locat-
ed at ro is ge and each of the X particles carries a charge
Ze; here e is the magnitude of the electron charge and 7
and Z are positive integers. As a matter of convenience
we will refer to the charged point at ro as the zeroth parti-
cle. Then, if Z~+i represents the configurational partition
function for the X-particle system, we may write

Q(E)= f f drodr] ' dltve 5(E E)/Z~+]—

where rj represents the coordinate of the jth particle,
P=(kT) ', V represents the potential energy of the sys-

tem, and E represents the electric field at ro due to the X
particles in a given coordinate configuration.

If we follow the usual practice of introducing an in-

tegral expression for 5(e —E) we can rewrite Eq. (2.1) in
the form

Q(e) = f dl lT(l)sin(el),1

2 e

where

(2.2)

P (e)= — f dl 1T(l)sin(el),

where P(e) and Q(e) are related through the relation

4trQ(e)e de=P(e)de . (2.5)

We see then that the calculation of P(e) involves the en-

semble average of exp(i 1 .E) followed by the sine
transform indicated in Eq. (2.4). To our knowledge the
only reliable method to determine P(e) for all plasma den-
sities and temperatures is through the use of "computer
experiments. " However, such methods are expensive since
they require large-scale numerical computations. In this
paper the "accurate" theory mentioned in the Introduction
refers to that of Hooper et al. ' which has been shown to
agree well with Monte Carlo results for weakly and inter-
mediately coupled plasmas.

Proceeding, we follow Mozer and Baranger (MB) and
distinguish two types of electric fields, a high-frequency
and a low-frequency component. The distribution of the
high-frequency component is calculated by considering a
gas of ions interacting through a Coulomb potential and
immersed in a uniform neutralizing background. The dis-
tribution of the low-frequency component is determined
by considering a gas of ions interacting through an effec-
tive screened potential. The shielding of the ions in the
latter case is a way to account for electron-screening ef-

1T(l) = drodr dr e —t'~e'''E
ZN+1

(2.3)

Further, if we specify that the system is isotropic, we can
write
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N N
V= g gu(ij), (2.6)

fects since the electric fields due to ions vary slowly over
times on the order of electron relaxation times. The effec-
tive potential is usually taken to be the Debye-Hiickel' re-
sult, which applies to classical weakly coupled systems
and long times. The present paper emphasizes the low-
frequency distribution since it is this component of the
e1ectric microfield which is necessary as input in line-
shape calculations. " In the formal development, however,
there is little difference between the two components.

The potential energy and field appearing in Eq. (2.1)
will differ for each distribution, although in both cases the
potential energy is assumed to be given by the sum of pair-
wise interactions

III. INDEPENDENT-PERTURBER MODEL

T(l) =Z~+1(l)/Z~+1(l =0),
Z„+,(l)= f . . f drpdr, dr„e i'~'"', —(3.2)

The independent-perturber-interaction model (IP model)
for calculating microfield distributions neglects all interac-
tions except those involving the zeroth particle. Lewis and
Margenau have used this model to calculate the high-
frequency component distribution. Here, we extend the
calculations to the low-frequency distribution.

In order to investigate the IP model we use the fact that
the Fourier transform of the microfield distribution may
be expressed as a quotient of two generalized configura-
tional partition functions

and the electric field by V(i) = V —P 'i I E . (3.3)

E= —(Xe)
—' VoV = Q e(r io),

j=l
e(r,o)= (Xe)—'&ou(r, p),

(2.7)

where Vo is the gradient with respect to rp.
For the low-frequency case, the interaction potentials

are given by

Z e —;./A~u(r )= e " D, O~ij, i(jJ

ZXe —~;p/&p
2

u(r;p) = e
rio

(2.8a)

(2.8b)

where the Debye length is A,D = (4m e n, P)', the ion
number density is n =X/A, the electron number density
is n, =%,/Q, and r;J=r; —rJ, rJ=

~ r;1 ~. Finally, since
the dimensionless combination Pu(r;~ )appears frequent. ly,
it is convenient to write Eq. (2.8) in revised form

V(l) = V (l)+ V, (l), (3.4)

where Vp(l) is the potential energy of an unperturbed
(reference) system and Vl(l} is the perturbation. With Eq.
(3.4) we may write

0 —P&l& 7)
Z~+i(~) =Z~+ (i) & (3.5)

where

Because Z~+, (i) may be interpreted as a configurational
partition function for a system with potential energy V(l),
we are able to take advantage of the previous theories
developed on this subject. In particular, we make use of
the thermodynamic perturbation theory proposed by
Zwanzig. ' In what follows we concentrate on Z~+1(l)
since Z~+1 is determined by setting 1=0 in the expression
for Z~+1(l).

The perturbation theory involves separating the poten-
tial energy into two parts

PZ e /Rp
pu(r J. ) =

r,, /&o
re Ap

0+i j, i&j
0 D

Z~+i(l)= f . . f drodr, dr~e

Z lp, rJ
exp —+3I p,r, ~&o

'
&o

0+i j, i &j
&f&o, i= f ''' f drAr&

&&f/Zx+i .

(3.6)

pu (r;o) =
Z+I"o,

exp —1/3I pe
r;J /RO Ap

pu(x;J. ) = Z Ip,
exp( —+3I o,x,J ), 0&i,g,

Z+I p,
Pu (x;o)= exp( —+31 p x o)

&io

Here, Ap is the electron-sphere radius defined by

, re pX, =A, —

and the plasma parameter I is given by

ZXPe
Rp

Defining a new variable x;J =r;i/Rp, Eq. (2.9) can be writ-
ten as

Equations (3.4)—(3.6) provide us with some basic results
concerning microfield distributions. In order to apply
them, we must choose a reference system, and hence,
specify Vp(l) and V, (l). We note that although the
separation of V(i) in Eq. (3.4) is arbitrary, we require
knowledge of the properties of the reference system if the
method is to be useful; for example, the free energy and
radial distribution function.

In the hope of gaining some insight into the problem of
choosing a reference system we digress somewhat and con-
sider a conjecture proposed by one of us (C.F.H). We
speculate that, in the calculation of microfield distribu-
tions, terms involving interactions between the zeroth par-
ticle and individual perturbers are more important than
those terms where the interactions are between the % per-
turbers only. The former are referred to as central terms
and the latter are the noncentral terms. The actual
discrimination between central and noncentral terms is ac-
complished by separating the central ones into short- and
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long-range parts. Each of these central parts is in turn
treated by different expansion schemes. It can be shown
by straightforward manipulation that the formalisms
developed by Hooper et al. are equivalent to the fol-
lowing: Let the reference system in Eq. (3.4) consist of all
noncentral plus all long-range central terms and the per-
turbation of all the short-range central terms. Proceed by
treating the reference system in a Debye-chain expansion'
followed by a rapidly convergent virial expansion of the
perturbation.

Suppose we carry the above conjecture to an extreme.
We assume that the central terms contain most of the
relevant information, while the noncentral terms are weak
and almost unimportant. Here, weak is to be interpreted
not in the usual sense, as described by a small plasma
parameter for example, but instead as having a very small
effect on the final result. If this point of view is correct,
then we are justified in formulating an alternative refer-
ence system that consists of all of the central contribu-
tions; that is, the reference system is given by the IP
model. The validity of our assumption, and consequently
of our choice for Vo(I), may be ascertained from Figs.
5—8, where it is shown that the IP model is in reasonable
agreement with the results of Hooper et aI. , ' especially
in cases where g &Z.

Now let us examine the implications of the preceding
discussion. First, the separation of V(l) is given by

N
Vp(l)= g u(0,j)— E

P

e(rjp)=
~
e(rip)

~

. (3.10)

By means of our conjecture, we assume V1 to be weak and
expand Eq. (3.8) in terms of the Thiele's semi-invariants or
curn ulants,

& V1 )o/ —
& V1 &oo=

2 f dr1dr2u(r12)

X[go(r/, r2, l) —go(rl, r2'0)] .

(3.12)

In Eq. (3.12), go( r1, r2, i) is the radial distribution function
in the reference system

(3.11)

where the ellipsis represents the higher-order cumulants.
We shall restrict the rest of the analysis to the first-order
cumulants.

At this point we differentiate between high- and low-
frequency microfields, and concentrate on the latter.
Now, the pairwise-additive form of V1 for the low-
frequency component allows us to write

(which equals all central terms),
N N

V, (l)= Vl ——g g u(i,j)
(3.'7) Q —P&p(i)

g(pr /r 2 )1= '0 . d rod r3 d 1 /ve
ZNO+1(l)

j=2i =1
j &1

(3.8)

where

(which equals all noncentral terms). Substitution of Eq.
(3.7) into Eqs. (3.1)—(3.6) yields

T(i)=T/P(i)(&e ')0/l&e ')00),

= 1+—f d r of( r 1o,l)f ( r 20' I)

where

f(rjp,.l) =exp[ Pu(r)0)+i I —-e(rJ0)] —1 .

(3.14)

(3.15)

QO —Pv(r1p)
Typ(l) =exp 4~n dr1or1oe

0

sin[le(r/p)] —1
le(r10)

(3.9)

The simple result in Eq. (3.14) is a direct consequence of
choosing the IP model as the reference system. Observe
that the potentials appearing in Eqs. (3.12)—(3.15) are
shielded Coulomb interactions, given by Eq. (2.8). Substi-
tution of Eq. (3.14) into (3.12) yields

& Vl)0/ —
& V1 )00=16lr n g ( —1) (2k+1) f drlor1o Itk+n/(r/~0~ D)

k=0

10
X d"20r20 lk+1/2(r20~~D)0

X [[e "jk(le(rlo)) 40][e — ", jk(ie(r20)) (3k, p]

—5k 0(e —1)(e —1)J .
—Pv (r1p) —Pv(r2p) (3.16)

The functions I and K refer to modified Bessel functions
of the first and third kind, respectively, while jk specifies
a spherical Bessel function of order k. ' In obtaining Eq.
(3.16) we expanded v(r12) in terms of Legendre polynomi-
als Pk

U(r12) = y (2k +1)uk(rlo, r20)Pk(p),
k=o

1

uk(r, o, r20) = —, dp, u(r, 2)Pk(p),—1
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10 2N (&10)=4~n d~20~20g (~20)
0

(4.5)

r1o r2op=
110120

(3.17)

+ {~20 ~~D )~{~ 10 ~ ~20 )

r10 )~20 (3.18)

where kD in Eq. (3.18) refers to electron screening.
The double integral in Eq. (3.16) is of a particularly

tractable form. In fact, it is formally similar to the second
term in the Mozer and Baranger scheme except that in
Ref. 5 all interactions are screened by ions and electrons
while here they are screened by electrons only. The same
difference exists between Eq. (3.9) and the first term in the
Mozer and Baranger expansion.

The coefficients Uk(I'10, I'20), which can be evaluated expli-
citly, have the form"

Z e
Uk«10, &20) = -&k+1'(&10~~D)~J +1Z2kT

with g(r~o) the radial distribution function defined by Eq.
(4.11). The simple result in Eq. (4.3) may be interpreted as
follows: P(rIp)

~ lp is asymptotically the product of the
probability of finding a particle at r1 given that the zeroth
particle is at ro and the probability that there are no parti-
cles within a sPhere of radius r10 centered at ro. This in-
terpretation is possible since the two probabilities are in-
dependent in the Ip model. However, if the interactions
between the X particles are not neglected, then the product
of these probabilities are no longer independent. There-
fore, in the remainder of this section we will examine the
validity of Eq. (4.4).

%'e return to the previous given definition of P(r10) and
observe that the effect of the 6 functions may be simulat-
ed by placing a hard core of radius r10 centered about the
zeroth particle. That is,

P(l' I)0=f1 f ' ' f dip ' dr~e /Z~+I (4 6)

IV. NEAREST-NEKxHBGR APPRGXIMATIGN nP(rip)=N f f dr2 . drze /Z&, (4.7)

The nearest-neighbor {NN) approximation to the micro-
field distribution assumes that the electron field at ro is
dominated by that of the nearest neighbor. The usual
derivation, based solely on heuristic arguments, is given in
many places; see, for example, Lewis and Margenau. 4

Here we choose another approach which we believe pro-
vides additional insight. With the NN assumption the ex-
pression for P(e) can be written as

P(E)=4IrE n f drIP(r, p)6(e —e(rip)), (4.1)

and

@=g P(rJ.P),
J=2

oO~ &jo(I 10

0» PJ0) PI 0
(r p)= '

where we have introduced the potential V" defined by

(4.8)

where nP (r10)d r10 is the probability that the NN {the par-
ticle closest to ro) is in dr10 at r10. P(r10) may be ex-
pressed in terms of an ensemble average

A cluster expansion for Eq. (4.7) may be accomplished by
introducing the Mayer functions

2AP(» )=10
~ ~ o d r» ~ ~

2
ZN+1

N

X + e(&JP—&IP»
J=2

1, y&0
e(y) = '0 0

(4.2)

{4.9)

Then, with the help of Eq. (4.9) we can write Eq. (4.7) in
the form

nP(rip)=11g(1 lp)+II f d12g(1 lp, r2p)X(r2p)

+ drldr3g(rip r20 r30)X(~zp)X(r30)+
2

The 8 functions appearing in Eq. (4.2) guarantee that the
particle at r1 is indeed the NN of the zeroth particle.

The evaluation of Eq. (4.2) is difficult except within the
framework of some approximation. For example, in the
IP model P (

rip�

) slIIlpllf les considerably to
—Pv (T lO)P (r10)—+e

ip

lo 2 —pv(r2o)
Q exp —4m.n dI"20~ 2oe

0

N —1 j
=ng (r,p)exp g pJ(r, p)

g!
(4.10)

In Eq. (4.10) the g 's are the reduced distribution functions

Sn g(rip, . . . , r30)

N! —+ ~ pvd rs+1 drN8 /ZN+1(x —s)!

(4.11)

a result previously obtained by Lewis and Margenau. In
an effort to take into account the effects of the interac-
tions between the X particles, it has been common prac-
tice' to replace the factors exp( —Pv) in Eq. (4.3) by the
exact radial distribution functions

the PJ's are cluster integrals defined as

pJ(rip)= f dr2 . drJ+IUJ(r20 . rj+1,0)

XX(r2P). . . X(r, +I,P), (4.12)

lO)P(r1o)=P0(r1o) =g(r1o)e
where the functions UJ are obtained by inverting the fol-

(4.4) lowing Ursell expansion':
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g(r&o r2o)g (r1o)= U&(r2o)

g ( r 10, r20, r30)g (r lo ) = Ul ( r20) Ul ( r30)

+ U2(r20 r30&

and so on.
Equation (4.10) gives an expression for P(rip) in terms

of the radial distribution function plus corrections. The
corrections are due to the exlcuded volume effects of the
8 functions.

The virial expansion in Eq. (4.10) is valid for systems
whose pair interactions are short ranged, such as a shield-
ed Coulomb potential. For Coulomb systems, with their
long-range interactions, the virial expansions diverge term
by term and a "renormalization" procedure is necessary.
Such a procedure has been described in detail by Salpeter'
who proposed an expansion in the plasma parameter in-
stead of the density. In addition to the plasma parameter
the evaluation of Eq. (4.10) involves the length parameter
r10 which may be interpreted as an effective hard-sphere
radius of the zeroth particle. Consequently, we introduce
an effective packing fraction g

4 3
10n

An expansion in terms of g is now possible, provided that
g is sufficiently small. However, the parameter g is not
necessarily small since it clearly depends on r10 which can
vary from zero to infinity. Therefore, the value of such an
expansion is limited: limited to situations where q is
small. But it is this very limitation which is necessary to
assure the validity of the approximation in Eq. (4.5).

Proceed by noting that the X(rjo) occurring in the clus-
ter integrals P~(rip) restrict the range over rj. to a sphere
of radius r10 Centered ai rj. Thus, make the transforma-
tion to the dimensionless variable

0.6—

0.4—

I

I
I \

I \

I

I

I

I

I
I

0.2—

0.0 '

0.0 1.0 2.0 3.0 4.0 5.0

This development explicitly serves to demonstrate how
restrictive the approximation appearing in Eq. (4.5) really
1s.

V. NEXT-NEAREST NEIGHBOR

The next-nearest-neighbor (NNN) approximation tries
to improve on the results of the previous section by in-
cluding the electric field due to the second-nearest neigh-
bors, as well. Hence,

P{E)=27rE n J dridr26(e —E(r]p) —E(r2p))

FIG. 1. NN microfield distribution function P(E) is com-
pared with the results of a more complete calculation labeled H
(Hooper). All ionic constituents are singly charged. Field vari-
able is dimensionless; E =@/ep, where 6p is the normal field
strength e/R p. Rp is the "ion-sphere radius" for electrons (here-
after referred to as the electron-sphere radius), not ions.

u = r/r&0

and consequently obtain,

J
3n

P, (rip) =
4m

dug ' du J

(4.15)
XII(r )0, r20)

with n H(r, , or)2ord, dr& representing the probability that
the two NN are in d r

~
at r i and d r2 at r2. In terms of an

ensemble average we have

j( 10u20~. . . ~ ~10uj+1 0} O.B—

XX(v~0) . . X(uj+1) . (4.16)
P(E)

For small enough r&0, such that g « 1, we can write

P(r io) =g(r io)exp du Ui(ripu)X(u)
4m

+o(q ) (4.17)
0.2—

I 5.4I

which reduces to P0(r&0} to first order in g only after
some additional approximations, e.g. , if

o.o =-
0.0 1.0 5.0 4.0 5.0

g ( r 10 r 2p) =g ( r 10)g ( r20)g ( r 12) (4.18)

(4.19)

FICx. 2. NN microfield distribution function P(E) is com-
pared with the results of a more complete calculation labeled TH
(Tighe and Hooper}. All ionic constituents are 17 times charged.
Field variable E is dimensionless; E =e/ep, where E'p=e/Rp and
Rp in the electron-sphere radius.
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P(E)—

TH

NNN (I P)

O.e—

P(E)—

0.4— NNN(EFF; V(12) =0)

X=9

0.2— 0.2—

0.0
0.0 I.Q 2.0 3.0 4.0 5.0

E

FIG. 3. A comparison of microfield distribution calculated
with two versions of the NNN approximation, with the result of
a more complete TH calculation. All ionic constituents are 9
times ionized. Field variable E is dimensionless, scaled in terms
of the electron-sphere radius.

3

H( r& orzo)= f ' ' ' f d13 ' dree
ZN+1

N

X Q e(r —R),

0.0
I.Q

the form

0.0 2.0 3.0 4.0 5.0
E

FIG. 5. A comparison of microfield distributions calculated
with two many-body approximations IP and MB 1, with results
from a more complete many-body theory TH. IP results include
only electron screening of the ion whereas MB 1 includes some
ion as well as electron screening. There is an ion at the origin
with a 17+ charge, but the perturbers are singly charged. Field
variable is in dimensionless units scaled in terms of the normal
electron field at the origin.

R =max Ir,o, rzo) .

J =3

{5.3)
2EP(e)=—f dl l sin(el)T(l), (S.4)

Without any approximation, we may rewrite Eq. (5.1) in where

2

T(l)= dr~drzH(rio rz)oe xpIi 1.[e(r&o)+~(rzo)]I
2

=8m n f driorfo f drzorzo P ( —1)"(2k+1j)k(le(r&o))jk(le(rzo))Hk(rio rzo) (5.5)

and
1

~k(~10 I'20)= 2 dPII(r1P r20)~k{P)—1

The evaluation of Eq. {S.5) requires knowledge of
H(r10, r2p), which in general, is difficult to evaluate. In
the IP approximation H(r 10, r2p) is given by

r 10 r20

~10~20
(5.6)

Q.e—

P(E)

0.4

TH

0.6—

P(E)

0.2—

TH

IP

MB I

X=9
Z=9
r = (9) r0, = I, OB

0.2

0.0 '

0.0 I.O 2.0 3.0
E

4.0 5.0

0.0
I.O0.0 2.0 3.0 4.0 5.0

FIG. 4. A comparison of microfield distribution calculated
with two versions of the NNN approximation, with the result of
a more complete TH calculation. All ionic constituents are 9
times ionized. Field variable E is dimensionless, scaled in terms
of the electron-sphere radius.

FIG. 6. A comparison of microfield distributions calculated
with two many-body approximations IP and MB 1, with results
from a more complete theory TH. IP results include only elec-
tron screening of the ion whereas MB 1 includes some ion as well
as electron screening. All ionic species have a charge of 9+ .
Field variable is in dimensionless units in terms of the electron-
sphere radius.
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FIG. 9. A comparison of the microfield distributions calcu-
lated with IP and TH methods with MC results. All ionic con-
stituents carry a charge of 9+ . Dimensionless field variable is
scaled in terms of the electron-sphere radius.
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FIG. 10. A comparison of the rnicrofield distributions calcu-
lated with IP and TH methods with MC results. All ionic con-
stituents carry a charge of 17 + . Dimensionless field variable is
scaled in terms of the electron-sphere radius.

where

0, g & e(rpp) —e(r&p) or e & e(r2p)+e(r~p)

B(r)p r2p) = ' 1 E=e(r2p) —e(r$p) or 6=e(r2p )+e(r/p )

2, E'(r2p ) —F(r ~p ) & 6 & c(r2p ) +E(r ~p ) .

(5.15)

The results in Eqs. (5.14) and (5.15) are of a particularly
tractable form.

It is easily seen from Eq. (5.12) that applying the IP ap-
proximation to H(r&p, rzp) is actually redundant. There-
fore, substitution of Eq. (5.7) into Eq. (5.5) yields Eq.
(5.14) except for all radial distribution functions in the Eq.
15.14) are replaced by the factors exp{ —PU). Both results,
Eq. (5.14) with appropriate g(r) factors or with the ex-
ponential factors appropriate for the IP approximation,
will be used later in Sec. VI to obtain numerical results.

VI. NUMERICAL RESULTS

In this section we compare ion microfield distributions
generated using the various approximations introduced in
the preceding sections with corresponding results pro-
duced with the aid of a more complete procedure. In ad-
dition, where available, comparisons are made with Monte
Carlo (MC) results —computer simulations. Finally, we
emphasize that a variety of plasma conditions and compo-
sitions are surveyed.

Before considering detailed analysis we want to describe
a general feature that appears to be common to all the ap-
proximations considered. As the value of the plasma
parameter is increased from small to larger values, the ap-
proximation curves "move through" the more complete
result (and also through the MC results). Hence, the NN
results for low values of I have a peak that is significantly
higher than the correct result and shifted to smaller field
values. However, as the value of I increases, the NN peak
drops below that of the more exact results and the differ-

ence in the position of the peaks decreases. For the NNN
results, the behavior is similar, the primary difference be-
ing a decreased rate at which the relative positions of the
curves change with a corresponding increase in I . The IP
model also shows a similar behavior, but the transition is
from the opposite direction and at a still slower rate.

The version of the NN approximation that has been
studied is the one commonly used, Eqs. (4.4) and (4.5): a
radial distribution function is employed in its calculation
in place of a Boltzmann factor. Because of its simplicity
and the plausable nature of its heuristic derivation, this
version of the NN approximation is widely used. One
purpose of this paper is to point out and illustrate the defi-
ciencies of this method; for example, it always yields an
incorrect weak-coupling limit. The magnitude of this
problem is indicated in Fig. 1. Furthermore, as shown in
Fig. 2, it cannot be counted on to yield good strong-
coupling results either. Qf course, in an intermediate re-
gion, there may be fortuitous agreement.

Two versions of the NNN approximations are con-
sidered, both of which neglect correlations between the
two neighbors. The difference between the two lies in the
nature of the interactions between the zeroth particle and
each perturber: one version uses interactions which in-
clude ion and electron screening while the other has only
electron screening. As seen in Figs. 3 and 4, these versions
can lead to considerably different results, although neither
generates a useful approximation over the entire range of
plasma parameters considered here. The weak- and
strong-coupling results are again in error although the rate
of change with plasma parameter is less than that encoun-
tered with the NN results. The inclusion of interneighbor
correlations will not improve matters.

The last set of approximations considered also has two
subcategories: the independent perturber model IP dis-
cussed in Sec. III, and the MB 1 model which uses only
the first term of the Mozer-Baranger theory. Although
both of these models involve perturbers acting indepen-
dently of one another, the IP model uses interactions
screened by electrons only, whereas the MB 1 model em-
ploys interactions screened by electrons and ions. The
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MB 1 model can be generated by replacing the Boltzmann
factor appearing in Eq. (3.9) by a radial distribution func-
tion, the Debye-Huckel approximation, in which screening
due to both electrons and ions is included. The resulting
expression TMB~(l) can be used to calculate P(e) in the
MB1 approximation. As seen from Figs. 5—8 the IP
model approximates the more complete calculation over a
wide range of plasma conditions. Interestingly, the IP
model is always superior to the MB1 model. Also, it
should be noted that the least accurate application of the
IP model occurs when it is applied to intermediately cou-
pled cases, e.g. , Fig. 6.

Finally, we discuss Figs. 9 and 10 which compare MC
results with IP and reference calculations. These cases
correspond to very strongly coupled plasmas. Figure 9
corresponds to an effective plasma parameter I of -4
and in Fig. 10, the value of I -15. The agreement in Fig.
9 between all curves may well be acceptable for many pur-
poses. In Fig. 10, the agreement has worsened, but is still
surprisingly close when the perturbative nature of the ana-
lytic theory is considered.

either the NN or NNN models. Its weak-coupling
behavior is excellent and it also provides accurate repre-
sentations of many situations where the constituent ions
are strongly coupled. Its worst results occur for inter-
mediate values of the plasma parameter as seen in Fig. 6.
However, even here the IP approximation may provide re-
sults that are sufficiently accurate for many purposes.

On the other hand, the NN approximation is seldom
valid. Hence, its use may lead to conclusions that are not
even qualitatively correct. In any event, considerable cau-
tion must be exercised in the use of this approximation.
Finally, while the NNN approximation is found to have
deficiencies similar to those encountered with the NN
model, its region of validity is different and somewhat ex-
tended.

A final implication of the preceding comments is that
any approximation to the microfield distribution function
that is successful over a significant range of plasma
parameters must be a many-body calculation as opposed
to one based on a few-body treatment.
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