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We describe a method for the solution of initial-value problems for random processes arising
through adiabatic approximations from Markov processes of higher dimension. In applications to
overdamped Brownian motion and to the single-mode laser we calculate correlation functions and
discuss initial slips.

I. INTRODUCTION

The adiabatic elimination of fast variables from mul-
tidimensional stochastic processes is a twofold problem.
One part is the construction of a closed set of equations of
mation for the slow variables. The second, independent
part is the identification of the correct initial values (or
probability distributions) far the slow variables; this iden-
tification requires a nontrivial calculation when the origi-
nal initial-value problem is stated, as is often the case in
practice, for the complete set of slow and fast variables.

While the first of the two problems mentioned has re-
ceived considerable attention in the literature, ' discus-
sions of the second one are rather sparse. '" ' There is an
obviaus reason for this disparity of interest. The most
commonly studied random systems are Markovian in
character. It is intuitive to assume that the slow subsys-
tem of a Markovian system again has Markov properties,
and precisely that assumptian is made almost invariably.
It is thus simply taken for granted that initial-value prob-
lems for the slow subsystem can be formulated without re-
gard to the fast remainder.

We here propose to show that the Markov property of a
randam system does indeed carry over to a slow subsys-
tem, but only to lowest order in rf/r„ the ratio of the
time scales for fast and slow variables. If expectation
values and correlation functions for the slow variables are
calculated through power series in the time-scale ratio,
however, non-Markovian effects do, in general, show up in
the next-to-leading order.

The non-Markovian corrections in question can, even
though surviving at times of the order r, after the initial
preparation of the system, be identified as arising during
the first few rf. They manifest themselves as, e.g., differ-
ences between initial mean values imposed on the slow
variables at t=0 and the corresponding means some rf
later, when all fast transients have died out while the slow
ones are still practically unchanged. Obviously, inasmuch
as such "initial slips" must be taken into account, the sub-
set of slow variables cannot be said to constitute a Marko-
vian system by itself.

Even though non-Markovian initial slips formally ap-
pear as "corrections" of (at least) first order in the small
parameter rflr, they need not at all be small effects.
They may even be arbitrarily large, provided the initial
values of the slow and the fast variables are sufficiently
different from certain adiabatic equilibrium values. The
distinctive property of such adiabatic equilibria is that
they relax towards the absolute equilibrium through slow

transients only. (Arbitrary initial states go over into adia-
batic equilibria within a few rf.)

Stationary rnultitime correlation functions also involve
initial-slip effects for every coincidence of two-time argu-
ments. However, extreme nonequilibrium configurations
of the slow and the fast variables tend to enter stationary
correlation functions with only small statistical weight. It
is therefore not unreasonable to expect the corresponding
non-Markovian effects to be truly small corrections of
non qualitative importance.

As a quite interesting result we find that even the latter
expectation can be upset. In a single-mode laser operated
far above threshold, for instance, the field amplitude can
be much slower in its motion than the degrees of freedom
of the active atoms. It turns out that all correlation func-
tions of the field amplitude are deterministic in character,
to zeroth order in rf/r, . Fluctuations show up, together
with and inseparable from initial slips, in first order.
Even though small in relative magnitude, initial slips are
part of a qualitatively interesting phenomenon here.

Both our notation and the method to be employed are
similar to those of Refs. 1(g) and 2(b). We describe the
complete system by a (quasi-) probability density P(t) and
a generator of infinitesimal time translation L such that
the time evolution is given by

P(r)=LP(r) .

We assume that there is a unique stationary distribution P
which is reached from arbitrary initial distributions,
P= lim, Oe 'P(0). We need not assume P to be known
though.

With the reduced quasiprobability of the slow variables,

p(t) = J, P(r), (1.2)

we can associate a generator l(t) of infinitesimal time
translations too. This 'reduced" generator distinguishes
the initial time; it carries an explicit time dependence and
also depends on the initial condition imposes on the com-
plete system. However, as a function of t the reduced gen-
erator contains only fast transients and thus settles at
some limiting operator 1(00)=—I which is independent of
the initial distribution P(0). On the time scale characteris-
tic of the slow variables we thus have the asymptotic
equation of motion

p(t) =1p(t), t »rf .

In sufficiently simple cases the asymptotic generator I can
be calculated rigorously. """' " Most often, however,
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the construction of I must, if possible at all, be based on
expansions in powers of small parameters such as the
time-scale ratio ~f /r, . '

In Sec. II we shall show how the effective initial distri-
bution p, tt(0), defined by

p(t)= f e 'P(0):e—'p, ff(0) t))rf (1.4)

can be calculated. The difference

p,tt(0) —J P (0)=p, tt(0) —p(0) (1.5)

L =Lp+L) . (2.1)

The first piece, Lp, describes the dynamics of the fast vari-

measures the initial slip mentioned above.
With the eventual gaal of calculating rnultitime correla-

tion functions of the slow variables in mind, we describe,
in Sec. III, the motion of the complete system on the time
scale ~, . Both the slow and the fast variables move slowly
in that regime, the fast ones being locked into an adiabatic
equilibrium with the slow ones at any instant, once the
early-stage rapid transients have died out. Our method
also allows us to determine the full stationary distribution
through a power series in the time-scale ratio.

In Sec. IV we treat one-dimensional Brownian motion
in an arbitrary potential, assuming a heavily overdarnped
case. The momentum of the Brownian particle is then
fast compared to the displacement and can therefore be el-
iminated adiabatically. We calculate the stationary two-
time correlation function of the displacement. Non-
Markovian initial-slip effects turn up in second order in
the transverse friction coefficient. It is quite interesting to
see that for a harmonic potential the asymptotic generator
l is of the Fokker-Planck form to all orders in the inverse
friction coefficient; nonetheless, the displacement under-
goes a Markov process to within corrections of second or-
der only.

We finally treat the single-mode laser in Sec. V. For the
near-critical regime we recover the well-known result that
the light amplitude undergoes a Markov process to within
corrections of the order of the small time-scale ratio. Far
above threshold, on the other hand, we show non-
Markovian effects to be of qualitative importance in the
sense already mentioned above.

II. THE EFFECTIVE INITIAL DISTRIBUTION

In order to establish the effective initial distribution for
the slaw variables we must follow their early-stage evolu-
tion, i.e., evaluate their distribution (1.2) for a time at
which all fast transients have just died out. By then extra-
polating the remaining slow motion back to t=0 we ob-
tain the effective initial distribution p,ff(0).

While the quantity p,tt(0) assigns the correct weight to
all slow transients it need not be positive; it is even possi-
ble that the twofold limiting procedure described above
yields a p,tt(0) which is non-normalizable. In such cases
meaningful results for expectation values and correlation
functions of the slow variables can still be secured by per-
forming the corresponding ensemble averages before extra-
polating the time back to t=0.

In order to implement the procedure just outlined we
must, in general, split the generator L into two additive
pieces,

LpR =0 R =1 (2.4)

and separate from the exponential expL pt the time-
independent part of its spectral decomposition as

e =R + e' —R (2.5)

By using the identity (2.5) in the perturbation series (2.3)
we obtain, to first order,

p(t)=p(0)+t f L,Rp(0)

+J dt'J L, e "—Rf P(0)

+ ~ ~ e (2.6)

In order to purge p(t) of fast transients we simply push
the upper limit in the time integral to infinity. On the
time scale characteristic of the slow motion we thus obtain

p(t)=p(0)+ f dt' f Li e ' —R f P(0)

+t LiRp 0 +
fast

(2.7)

The last term in (2.7) involves the first-order art of
the asymptotic evolution operator exp(lt), since L,R

1( )

'
fast

is the first-order contribution to l. g Therefore, the effec-
tive initial distributian finally results if we extrapolate the
right-hand side in Eq. (2.7) back to t=0,

p, tt()0=p( )0+f "dt f Li e ' R f P(0)—

+ ~ ~ ~ (2.8)

There is no difficulty in extending the calculation to
higher orders.

The most important qualitative feature of the effective
initial distribution is already visible in the first-order term
in Eq. (2.8). The explicit evaluation of the p,rt(0) —p(0) ob-
viously requires knowledge of the initial distribution P(0)
of both the slow and the fast variables. A nonzero differ-
ence p,tt(0) —p(0) is thus the manifestation of a non-
Markovian effect in the dynamics of the slow variables.

ables, it may contain the slow variables parametrically but
does not contribute to the time rate of change of any of
the slow variables. The rapid motion described by Lp
should be probability conserving in character according to

L~=o (2.2)

for arbitrary X.
If we neglected the remainder in L, L ~, we would take

the slow variables as entirely still parameters. Their distri-
bution p(t) would, according to Eqs. (1.2) and (2.2), forev-
er coincide with p(0)= P(0). To zeroth order in Li

fast
there is thus no difference between p(0) and p,tt(0), i.e., be-
tween the true and the effective initial distributions.

We may calculate the difference between p(0) and p, ff(0)
by first expanding the exponential operator in Eq. (1.2) in
powers of L&,

p(t)=p(0)+ f dt' f Lie ' P(0)+ . (2.3)

We now assume that Lp has a unique stationary eigen-
function R,
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III. THE SLOW MOTION OF THE FAST
VARIABLES

After a preparation of the complete system correspond-
ing to an initial distribution P(0) all variables will undergo
rapid transients. Once these transients have died out the
resulting distribution P (t} may be characterized as
describing an adiabatic equilibrium of the fast variables,
i.e., an equilibrium contingent, at any instant, on the
current values of the slow variables. During the subse-
quent relaxation towards the absolute equilibrium the fast
variables are dragged along by the slow ones and thus
move no faster than these.

We need to know the large-time behavior of P(t) just
described if we want to calculate multiple-time correlation
functions of the slow variables. Even if such a correlation
function is sought with respect to a time scale on which
only slow transients can be noticed, we must determine the
weight of these slow transients through effective initial
conditions for every coincidence of two-time arguments of
the correlation function in question; the effective initial
condition at such a coincidence involves, as we have seen
in Sec. II, the complete distribution P at the corresponding
initial time.

In calculating the large-time behavior of P(t) we have
to be somewhat more careful than in Sec. II since we now
want to account for the whole course of the slow tran-
sients rather than for their initiation only. It is convenient
to describe the adiabatic regime with the help of an identi-
ty due to Zwanzig,

sion (3.3) can be used to construct P perturbatively as

LotP =Rp+ f dt e (1—9')L ~Rp+0
(3.5)

IV. BROWNIAN MOTION

y»&, (4.2}

the momentum becomes a fast variable and can be elim-
inated adiabatically. The slow motion of the reduced
probability density p(q, t), i.e., the motion on a time scale

(4.3)

can be described by an equation of motion of the form

p(q, t) =1p(q, t), (4.4)

where the time-independent generator l is a differential
operator with respect to q. The perturbative construction
of l can be based on the choice" ' " '

We here consider one-dimensional Brownian motion of
a particle in an external potential P(q). The corresponding
Fokker-Planck equation ' for the probability density
P(q,p, t) of the displacement q and the momentum p,
P=LP, is specified by the generator

a a a'
P+ (re+0'(q)]+, rd (41}

Bq Bp Qp

where y and yd denote the damping and the diffusion con-
stants, respectively.

In the limit of large damping,

P(t) =e ' ' '(1 —H)P(0)+Rp(t)

(3.1)
t

+ f «'e ' '(1 H)LRp(t t')—, —
a ap+

Bq Bp
(4.5)

in which H denotes the projector

fast
(3.2) d +P'a

Bq

and then yields l as a series in powers of 1/y,

a!= —+—p"+0-
aq r y' y'

(4.6)

The identity (3.1} is useful for our purpose since it
represents the complete distribution P(t) as dragged by the
reduced distribution p(t) of the slow variables.

Now we again exploit the smallness of the time-scale ra-
tio by decomposing L as in Eq. (2.1) and expanding all ex-
ponential operators in powers of L &. The first term in Eq.
(3.1) is then immediately seen to decay to zero through
fast transients while the remaining terms give rise to a
perturbative description of the adiabatic drag as

P(t)~Rp(t)+ f dt'e 0 (1—%)L,Rp(t t')+—
(3.3)

In zeroth order the adiabatic regime is represented, of
course, by the product of the conditional equilibrium dis-
tribution R of the fast variables with the distribution

p( t) = e "p,tt(0) (3.4)

of the slow variables. The first-order correction to this
zero-order distribution is also displayed in Eq. (3.3). The
higher-order terms are easily found as well.

If stationary multitime correlation functions of slow
variables are to be calculated we must know the equilibri-
um distribution P. It is only in fortunate special cases
that an exact result is known for P. Otherwise the expan-

It is appropriate to point out that the generator l turns
out to be a Fokker-Planck operator up to the order 1/y .
It is only in fifth order in the inverse friction expansion
that third-order derivatives with respect to q may appear.
For a harmonic potential P-q, the expansion (4.6) can
also be derived from the exact result,

I =[y/2 —(y'/4 —1)'"] d+q
Bq Bq

(4.7)

(q(t)q(0)) = f dqqe 'p, tt(q, 0) . (4.9)

which is of the Fokker-Planck form in all orders in
i(g), i(e)

One might be tempted to surmise that the displacement
undergoes a Markov process inasmuch as the generator l is
a Fokker-Planck differential operator. It is easy to see,
however, that an effective Markov process results in
lowest order in 1/y only.

In order to illustrate this statement we consider the sta-
tionary two-time correlation function of the displacement,

(q(t)q(0)) = f dq f dp qe~'qP(q, p) . (4.8)

In the limit (4.3) this function is stripped of fast transients
and can be determined from
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1
2

-q exp ——P(q)+ ~
d 2

(4.10)

Actually, the first-order term in the series (2.8) vanishes
for the present case because the stationary distribution
P(q,p) is even in the momentum p. Up to corrections of
fourth order in 1/y we easily obtain

p.tt(q, O)= q+ —((}'(q) p(q)
1

—q+ —y'(q) e
—&"I". (4.11)

The correlation function (2.8) thus reads

(4.12)

Clearly, the term proportional to y constitutes a devia-
tion from the regression theorem valid for Markov pro-
cesses.

For a purely harmonic potential the result (4.12) can be
further evaluated. Up to corrections of fourth order for
both the decay constant and the effective initial distribu-
tion we obtain

(q (t)q (0) ) =d 1+—exp t —+ ——1 1 1

y y'
(4.13)

Again, we conclude that non-Markovian effects show up
in second order in 1/y.

Another point of general interest can be discussed for
the harmonic case. It is not only the asymptotic generator
l and thus the decay constants of all slow transients which
can be calculated rigorously for that benign potential but
also the effective initial condition p,tt(q, 0). The exact
time-dependent distribution of the displacement originat-
ing from sharp initial values for both q and p,
P(q, t

~
qopo), is presented in Chandrasekhar's classic pa-

per. If we erase from this result the fast transients
(which decay like e +) and then extrapolate the remain-
ing slow transients (which decay like e '~~) back to t=O
we obtain a non-normalizable distribution p,tt(q, O). This is
interesting, but not really surprising. The effective initial
distribution is a formal device for generating the weights
with which the slow transients appear at large times; since
it assigns zero weight to all fast transients it does not
represent the state of the particle at early times and is
therefore not bound to obey the requirement of normaliza-
bility.

The disaster just described does not happen if the initial
distribution for q and p is a sufficiently smooth function.
Especially if Chandrasekhar's distribution is convoluted
with the initial distribution (4.10), we may, in the result,
drop all fast transients and then let t go to zero without
incurring any existence problems. More difficult cases
may require that t be kept finite until after expectation
values are evaluated.

The effective initial distribution p, tt(q, O) to be used here is
given by the series (2.8) with the initial distribution

P (q,p, 0)=qP(q, p)

V. THE SINGLE-MODE LASER

X ' 1+20'p+2 1 —2op 1+ yl

yll .
r4

+ (1—2op)
~s

2

ns

(5.4)

Among the parameters characterizing a single-mode
laser the following six are the most important ones. "
First, there are damping constants yz and yll for the atom-
ic polarization and inversion pertinent to the active level
pair in each atom. A damping constant ~ measures the
rate at which diffraction and reflection losses tend to at-
tenuate the mode amplitude. A coupling constant g (pro-
portional to the dipole matrix element for the active level
pair, normalized to have the dimension of a frequency) de-
scribes the effective strength of the interaction of the ac-
tive atoms and the field mode. Finally, the number of ac-
tive atoms N and the unsaturated inversion 2o.p per atom
characterize the pump mechanism providing the energy on
which the laser feeds.

We shall now consider cases for which the atomic
damping constants are much larger than the other param-
eters of equal dimension,

yl l
))g (5.1)

The atomic polarization and inversion then tend to fol-
low the field mode amplitude adiabatically.

As a first step in exploiting the adiabatic limit (5.1) we

may, starting from a master equation describing the
dynamics of both the active atoms and the field, ""el-
iminate the atomic degrees of freedom. In this way we
have recently derived an equation of motion for the re-
duced density operator of the field mode. ' ' If we
represent this density operator by a mixture of coherent
states' as

P(t)= f dr f dip(r, P, t)
~

re'~)t(re'~ ~, (5.2)

the weight function p(r, , t) has a generator I of infini-
tesimal time translations "' which is of the Fokker-Planck
form and reads

= a a' a'I= D„(r)+ zD—(r)+ zDtt, (r) . (5.3)
dr BP

The construction of l and, especially, of the drift coeffi-
cient D, and the diffusion coefficients D and D~~ in Ref.
2(b) is based on a certain splitting L =Lo + L i of the gen-
erator L for the density operator of the atoms and the
field. The main piece Lp includes all parts of L which
directly contribute to the time rate of change of atomic
observables: it depends on the complex field amplitude
re'~ pararnetrically, and thus describes a relaxation of the
atoms on the time scale given by the atomic damping con-
stants yz and yll, towards a conditional equilibrium con-
tingent on re'~; the field amplitude can be said to be still
on the time scale of the atomic relaxation. The result (5.3)
is then obtained in second order in the remainder L

&
and

holds for times larger than the atomic decay times. The
diffusion coefficients turn out to arise in second order and
read

Ng /4'D (r)=
(1+r /n, )
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and
Ng2 1+2op+r /n,

Dtt, (r) =
4yi r (I+r In, )

where the so-called saturation photon number,

ns yJ y~ (
/4g (5.5)

appears as the natural scale on which the diffusion coeffi-
I

troNg '/yi
r

1+r /n,
(5.6a)

and a second-order contribution whi~h can be represented

by

cients depend on r . The radial drift coefficient has a
first-order contribution

2Ng ooK/yi
D,' '= —ra«+. (I+r /n, )

2' r 4Ng o'o/yi r 2 r 2

N 1 ———2—
y~~ n, (I+r /n, ) n, n,

Ng'/riy~~
+ (1+r /n, )"

2 Nr2 r2
80-o +4oo 1

n, ns

'2
2

+8cp 1+—+ 3+— 1+—
ns n, n,

(5.6b)

It is interesting to note that the results (5.4} and (5.6a)

have been obtained independently by Lugiato et al. ' As

an important benefit of the adiabatic limit we immediately

have the static quasiprobability for the field amplitude as

the stationary eigenfunction of I,

D„(r)+D' (r)
p-exp — dr

D (r)
(5.7)

This distribution function describes the static photon

statistics of the laser.
We may also inquire into the special properties of the

laser output as represented by the stationary correlation

function for the light amplitude
oo 2'

Gi(t)= f dr f dPtrzre '~e 're'~p,
(5.8)

Gq(t)= f dr f

distr„r

e 'r P .

In these formal expressions trz means the trace operator
for the atoms, L the generator of infinitesimal time
translations in the complete atom-field master equation,
and P the corresponding stationary solution which is a
density operator for the atoms and a quasiprobability for
the field amplitude in the sense of Eq. (5.2).

In order to evaluate the correlation functions G;(t) we

can introduce the reduced generator 1 as

Gz(t) = f dr f d4) r e 'p, tt(0)

[and similarly for G, (t)] and determine the effective initial
distribution p, (0)ttfrom Eq. (2.8) with P(0) =r P. The sta-

tionary state P can then be obtained through Eq. (3.10).
We shall skip the lengthy but elementary algebra which

yields the expressions
2Ng'

~~br —~o+
c}r

CJp
r

and the correlation functions (5.9) it is appropriate to
comment on the nature of our perturbative approxima-
tions. The expansions in powers of L~ obviously involve

the ratios ~/y&
~~

as expansion parameters. It is more dif-

ficult to find out in which sense the ratios g/yz
~~

are ex-

pansion parameters. One difficulty lies in the fact that

part of the atom-field interaction is included in Lp. This

inclusion may be understood as a partial resummation of a
"bare" expansion in powers of g/yz ~~. It is undoubtedly

necessary to use such a partially summed expansion since

the adiabatic equilibrium of the fast atomic variables in a
laser supporting a strong field is very different from the

absolute equilibrium in a vanishing field.
The qualitative argument just given cannot, of course,

explain for which values of ~, g, y&, and y~
~

the field damp-

ing part of L~ should be treated as of the same order as

the atom-field interaction part. Unfortunately, such an

explanation can only be given in the self-consistent way to
be described now, together with the explicit evaluation of
the general results (5.7) and (5.9}.

For a laser operated near threshold, i.e., for
0'p 0'ih =K'�/2Ng, both the stationary moments ( r ")
and the corresponding cumulants will turn out to be of
nth order in n, ,h=+N

~y~
k/, the photon number at

threshold. If this number is smaller than the saturation

photon number n, it is natural to scale the amplitude r as

r =r /n, h, and to use the small parameter n,h, /n, to
simplify all of the general formulas given above. Up to
corrections of relative order n,h, /n, and ~/y&

~~
the genera-

tor (5.3) then takes the form

1+2gp
+

4 Br' r ' i)(t'
+ (5.10)

(5.9)
t

G&(t)= f dr f der e ' l+ rs(r) r p, —
Br well known to describe a noisy van der Pol oscillator. ""

Similarly, the non-Markovian slip terms in (5.9) turn out
to correct the leading terms in order a/yz and must there-
fore be neglected in the van der Pol limit. All of this is
self-consistent since the static moments (r i") as well as

the corresponding cumulants, derived from the static
eigenfunction of I dp to indeed prove to be of order
unity. "' We, therefore, do not have anything to add to
Risken s classic discussion of a near-critical single-mode

in which the function

Ng Op (1+r )/n +2'/ys(r) =
yi (1+r /n, )

represents the non-Markovian initial slip to lowest order
in L&.

Before we proceed to discuss the static distribution (5.7)

G, (t) = f dr f dP re '~e ' l+ rs (r) re'~p, —
Br
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laser. '

that t
We now think of the pump strength as increased such

t at the mean photon number becomes comparable to n

or even enters the
D( 1 )

s the deterministic regime determined by
S

p

Nyl
I

ndet
2

(~p +thr) (5.1 1)

which may be assumed larger yet than n, . The scaling

self-consistent elow. That scaling immediat 1 1

drift correction D, as well as the diffusion coeffi-
cients to be smaller than D ' " b

'
th /

Therefore and i
y eit er ~/ or

in contrast to the near-critical behavior
the laser am litu
order. The h si

p itu e now moves deterministicall t 1 d'
y o ea ing

e p ysical reasons for the smallness of all fluc-
tuations in a laser well above thre h ld, f

1I ~ ~ ~

es o are, o course, am-

p itude stabilization and a slowing down of
diffusion

ng own o the phase

In order to describe the small fl t
f0 ~

uc uations in question
we irst replace the radial amplitude as an independ t
variable b itsy

'
deviation g from the most probable value r

of r in the static distribution (5.7),

r = r +~a~n, g . (5.12)

This tran ftransformation contains, as a notational device, a a-
~ ~

effectiv
o count orders with respect to the

e fective expansion parameters a/ d /y
final results e may be set equal to one.

yq
l l

an g q . In all

By expandmg m powers of v e we obtain, from (5.7)
the static moments

n,'r'( r ) = ~0 ~thr
1 /2

D D D ( )

D I (1) 2)D I (1))2

(5 ~ 13)

2nkr ) =(r) "+en(2n —1)(r) " n D /D '
pp p

(5.14)

where the carets represent evaluation at the most robable
radial amplitude,

e mos pro a e

r =(n, /o, h, )' (op —o,h, )' +0 (e) . (5.15)

The results (5.13), (5.14), and (5.15) show that the photon

or ( cr —cr )/ uni
n d«or 0-0—— ( 1) and as nnumber does indeed scale as n f —0(

,h, )/O. ,h, not too much larger than unit . M
S

over we rn ay conclude that the moments ( r ") define a

Gaussian distribution of width n D /D ' "
1n, „,, located at

r = r . is is in accord with Haken's 1 f ds ear y in ings.

the
igni ar y, we introduce the transformation (5 12)
generator (5 ~ 3) in order to evaluate the c

into
eva uate t e correlation

scribes a lin
unc ions; t . In zeroth order in e the gener t I d

a linear gaussian process for which all
and eigenfunctions are known. T
or er e the phase diffusion decouples from th e motion

ra ia coordinate g. To obtain the G; (t) to order
e we must calculate the ei
the radial a

'
genfunctions and eigenvalues of

t e radial part of l through ordinary perturb t' hur a ion t eory .

bute. The c
y, on y t e first excited state turns o t ts ou o contri-

e corresponding eigenvalue is easily found as

, (2) 1

+ 2
D t (1)

A——DPF

D t (1)
T

2

(5.16}

The final result for the firs-
1

0

e irst-order correlation function
a so involves the ei

'
genvalue pertaining to the first excited

state for the phase diffusion,

Pp ——Dpp,
and reads (now e = 1)

(5.17)

T

G, (t)= (r2) n, — e
D t (1)

I'

D
2

&

„—)r+ r&)r

1'

The second-order correlation function takes the form

(5.18}

G (t) =
& '&'+2& ') 2 r s e (5.19)

or, in a more common normalization,

G2( t)

&„2&2
='+ 4

D„
s e «()~1)

T

= 1 +«-« (5.20)

The non-Markovian initial 1
'

hs ips s owing up in these
correlation functions may be sm 11 ff
smaller, thou h t

e sma e ects—they are no
sma er, though, than the other corrections to the leadin

es ing y, t e initial slip shows
up in t e normalized second-order correlation f
the deviation from

rre a ion unction, as
on rom unity, for large times while the dif-

fusion correction determine th t ds a eviation at t=0.
e ri t correction D, isIt is also noteworthy that the drift

present, together with the diffusion constant in th
an 5.14) as well as in the eigenvalue I . '3

0.01

I
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I

I
I

I

1

1

I
I
I
I
I
1
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1
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FIG. 1. C

~o ~ ~thr

Correlation coefficient a [see (5 20) fe . as a unction of
0 o /cath for details see text.
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The sign of the coefficient a defined in (5.20) deter-

mines whether the emitted photons bunch or antibunch in

the early stage of the adiabatic regime, y
' &t& I '. Fig-

ure 1 shows that coefficient as a function of 0.0/o. ,h, for
+= 10, pz =

p~ ~, K /py =0.005 (solid lines) and ~ /yq
——0.009

(broken lines), and various values of n, . Note that there is

always antibunching for sufficiently strong pumping. The
magnitude of the antibunching,

~

u ~, saturates at tt/y~,

that limit being dominanted by the initial slip contribu-

tion. Consequently, antibunching will hardly be observ-

able in the extreme adiabatic limit a/y&~0. For the larg-

est values of ~/y& still compatible with our adiabatic ap-

proximation, however, the effect may be quite detectable.

At any rate, we conclude that the effect can be much more

pronounced at times yz ~~
&&t &1 ' than at t=0 where

(r )/(r ) 1=0(1/n—, ).

We should add that all our final results (5.13) through
(5.20) remain unchanged when, instead of the representa-
tion (5.20), the Wigner function' or Glauber's g function
or any other quasiprobability is used to represent the den-

sity operator of the field. ' " This innocent remark is, in
13,2(b)fact, an important one since D may be negative' ' ' ' in

which case the representation (5.2) cannot be used.
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