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Threshold for electron heating by two electromagnetic waves
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The interaction of an electron with two electromagnetic waves propagating in an isotropic plasma

is studied with the use of a super-Hamiltonian formalism. Large-scale stochasticity thresholds are

analytically estimated. The results may be relevant to laser-plasma interaction.

I. INTRODUCTION

II. SUPER-HAMILTONIAN OF THE MOTION

Let us consider two transverse electromagnetic waves

propagating in an isotropic medium. They can be
described by the vector potential:

2

A( r, t) = g A( j)cos ( k~ r co1t) . —
j=1

(2.1)

The transition from regular to stochastic behavior in

deterministic systems is a relevant problem in plasma
physics. A number of important effects such as the ap-

pearance of magnetic islands in toroidal configurations, '
ion heating by lower-hybrid waves, ' wave instability
saturation via harmonic generation, or the formation of
suprathermal electron tails in laser-plasma interaction
can be interpreted in terms of that transition.

In this work we study the electron motion in the field of
two electromagnetic waves propagating in the same direc-

tion in a relativistic plasma. We estimate analytically the
large-scale stochasticity threshold for the electron heating.
For wave amplitudes above the threshold the electron is

expected to explore a wide range of velocity space. The
electron motion is described by a nonintegrable Harnil-

tonian. We will use an autonomous super-Hamiltonian

form instead of the usual time-dependent relativistic
Hamiltonian. The role of the collisions is assumed to be

negligible because we are dealing with high-frequency
fields.

The format of the paper is the following. In Sec. II we

derive the equations of motion for an electron in the pres-

ence of two transverse electromagnetic waves using a
super-Hamiltonian formalism. In Sec. III we discuss the

particular situations for which the super-Hamiltonian be-

comes integrable. In Sec. IV we estimate analytically the
large-scale stochasticity threshold valid for the noninteg-

rable situations and for motion in a medium with a refrac-
tive index greater than unity, N &1. As particular cases

we derive the threshold for nonrelativistic motion and for
electrostatic waves. In Sec. V we estimate the threshold

for a relativistic plasma and for vacuum, N (1. A simpli-

fied version of this threshold is obtained in Sec. VI and

compared with the results of a direct numerical integra-

tion of the equations of motion. Our conclusions are
given in Sec. VII.

H(r, p, t)=Im c +[p+eA(r, t)] c ]' (2.2)

which is a constant of motion. Let us now define the

three four-vectors position r, momentum p, and potential

A by

r =(ct, r), p=(H(r)/c, p), A =(O, A(r)) . (2.3)

With the aid of these four-vectors we can define a super-

Harniltonian, which is formally analogous to the nonrela-

tivistic Hamiltonian:

H(r, p)= [g ~(p +eA )(p&+eA&)] .
2m

(2.4)

In this expression g ~ is the Minkowski metric tensor, p
and A are the covariant components of p and A. Taking

the square of (2.2) and rearranging terms it is easy to

prove that (2.4) is a constant of motion, equal to —mc /2.
The equations of motion can then be written in canonical

form as

dT

d~
aa

dpi'

aa
Bp

' d~ ()p~
' (2.5)

the time variable ~ is the electron proper time:
1/2

dtdt= —.=r1 dr dr
dt dt

(2.6)

Using (2.1) and assuming transverse polarization in the

plane Oyz, which means that A =(O, A) =(O, O, A e„,
A. e, ), we can write (2.4) in a more explicit form:

2
2

H(r, pti)= p, —po+pi+e g A(j) cosvj.2 Z 2

2m j=1

2

+2e g pi A(j) cosv~
j=l

(2.7)

where pz ——p2e~+p3e, is the transverse momentum and

The propagation of these two waves is taken along Ox in

order to reduce the problem to the simple case of a two-

dimensional Harniltonian. In more than two dimensions a

new phenomenon takes place, the Ar'nold diffusion,

which will not be discussed here.
The electron motion in the presence of the potential

(2.1) can be described by the following Hamiltonian:
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2
o ) ~ pyH(r, r,pp, p~ )=H(r, p&)

2m
(2.8)

In order to get more specific results we will restrict our

vj =kjr
' (—rpj. lc)r . We see from this expression that the

super-Hamiltonian is not a function of r and r, which
means that the transverse equations of motion reduce to
pz

——const. We can then use a reduced super-Hamiltonian
for the longitudinal motion:

x =«' —m'/2, y =kr =(ro/c)Nr (2.9)

where N is the refractive index, we can replace (2.8) by a
dimensionless super-Hamiltonian:

analysis to the particular but still important case of two
waves having the same frequency, c0, =cp2 ——rp, and propa-
gating in opposite directions, ki ———k2 ——k. With the use
of new space and time variables,

h(x,y, v, u)= —,(v —u }—a&cos 2 x —— —a2cos 2 x+— +P&sin x ——
N N N

+P2sin x+——y cos(2x) —cos 2y

N
(2.10)

eA (j)
2mc

2
epz A(j)

J 2 2

(2. 1 1)

The new parameters introduced in this expression are
I

tegrable. The orbit for which the phase in the oscillatory
terms of ho is stationary is called a resonance. We can see
from (2.10) that the position of the resonance of hp in
phase space is v =v& and u =NU&, where v& obeys the
equation

y = A(1) .A(2),
2m 2c2

2

hp —— (1 N) . —
2

(3.3)

and the variables u and v are given by

v=p u=p
mc

'
mc

(2.12)

as
The canonical equations of motion can now be written

dx dv Bh

dz
'

dz Bx

dy du Bh

dz
'

dz By

(2.13)

where the time variable is now z=kc~. In the usual
canonical equations for the Hamiltonian dynamics we
would have —u instead of u in the third equation (2.13).
The difference is due to the covariant formulation used
here, which implies that p = —po ——mcu.

III. INTEGRABILITY

If the electron is submitted to the action of a single
wave, A(1)&0 and A(2)=0, the equations of motion
(2.13) become

dU du

dz dz

du 2 . y Pi y=—a&sin 2 x —— + cos x ——
dz N N N N

(3.1)

Io ——v+Nu . (3.2)

These constants of motion are in involution and ho is in-

In this case we have two constants of motion. One is the
super-Hamiltonian itself, hp=h(a2=0 P2=0, y=O). The
other is the quantity Ip derived from (3.1):

Using (2.8) and (2.10) and recalling that H = —mc /2, we
get the position of the resonance:

1/21+(p~ /mc)
1 (3.4)

N —1
u& ——Nv& .

These values of U& and u
&

can be obtained in a different
way. The starting point is the physical idea of a reso-
nance: The velocity of a resonant electron, dr'/dt, must
be equal to the phase velocity of the wave, rp/k, that is,

dr' dr'
dt d7.

As I is given by

CO—= I cv&=
k

(3.5)

' 1/21+(pz/mc)

1 —(rp/kc)
(3.6)

we recover (3.4).
When a second wave is present in the medium, A(1)&0

and A(2)&0, hp must be replaced by the whole super-
Hamiltonian (2.10) and three new resonances are present.
Their position is defined by

U2 U] y u2 u &:Nv»

v3 ——0, u3 ——u&(1 —N )'i

U4 =lu3 ~ Q4 =0 .

(3.7)

In general, the super-Hamiltonian h is nonintegrable, as
can be shown by the numerical integration of the equa-
tions of motion (see below}. However, integrability of the
motion can be shown to exist if the two waves propagate
in vacuum, N = 1, with orthogonal polarization,
A(1).A(2) =@=0. Using the new variables
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FIG. 3. Poincare surface of section (x, v) for N =1, p&
——0, al ——0.35, and r =0.5, resulting from the numerical integration of

(2.13). Three orbits have initial conditions: x l
——1.5, vl ——0; x2 ——1.85, v2 ——0; x3 ——0.85, v3 ——2.182. Second orbit is stochastic.

s& =D&+D2 )1,
s2 =Di +2~y'& —,

s', =D,'+2v y'& —,
' .

(4.3)

Here, the new half-widths D
&

(i =1,2) are obtained replac-
ing in (4.1) the wave parameters a; and P; by a,' =N a; /4
and P,' =N P;l4. We have also used y'=N yl4. The
new criteria (4.3} are coincident with those obtained
directly from the nonrelativistic Hamiltonian and were
shown to be in good agreement with the numerical in-
tegration of the equations of motion. More sophisticated
criteria than those used here, in particular the criteria ob-

evolution of the threshold as a function of the transverse
momentum pz is particularly interesting, as shown in Fig.
2. We see that when pz grows the threshold is significant-
ly reduced and becomes of the order of (pi/mc) ' when

pi »mc. Another interesting feature of the criteria (4.2)
is that the threshold grows with N and becomes infinite
when N =1. This is not in agreement with the numerical
results, which show that stochasticity remains even for
vacuum or plasmas (N & 1) as will be discussed in Sec. V.
Nevertheless, Eq. (4.2) can be useful in the plasma case, if
we take the nonrelativistic limit (U, ~N ). The thresh-
old is no longer dependent on N and we get the new cri-
teria

tained from a renormalization theory, ' were also shown
to be in qualitative agreement with (4.3). If we make a
further simplification on (4.3) and take y'=0 we get a sin-
gle criterion s~ ~ 1, which is the usual overlap criterion
for the electron motion in the field of two electrostatic
waves, provided we conveniently replace the vector po-
tentials A(j) by scalar potentials.

V. THRESHOLD FOR RELATIVISTIC PLASMAS

Turning back to the relativistic motion, we see from
(4.2} that a further step must be done in the theory in or-
der to get analytical criteria which do not diverge. One
can be sure that stochasticity remains for N ( 1 by per-
forming a numerical integration of the equations of
motion (2.13). The results of such integration are illus-
trated by the numerically generated surface of section of
Fig. 3, for three different orbits and N =1. The two wave
potentials are assumed parallel to each other, A(1)//A(2).
The standard fourth-order Runge-Kutta method was used
in the integration. Stochasticity appears in the region be-
tween v =0 and v=1. The value of r=0.5 is the lowest
value for which stochasticity is clearly observed. This
gives then a numerical estimation of the threshold for
a )

——0.35.
Let us see how to construct the analytical threshold for
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N & 1. The resonances v& and vz are now imaginary and
our main attention turns to the third resonance v3 ——0.
The electron motion near this resonance is slightly per-
turbed by the other two and such perturbation is the
reason for the stochasticity to remain. In order to study
in more detail the structure of (2.10) around v3 ——0 we can
inake a canonical transformation into new variables

(Oi, Oq, Ii,Iz) using the generating function

where

, f dO, f d F(8„8,)

Opicos nO& —p
r

(5.8)

F(x,y,I„I,)
a~

2(Ii+I)/N) N

g„q ———
~ f dO, f d F(Oi, Oq)

r

Op
)&sin nO& —p

The resulting super-Hamiltonian is given by

h(Oi O~ Ii,I~)=ho+hi (5.2)

hi ———aq cos(2p)+I' cosy& —y cos(2x) —cos 2g

N

(5.4)
Here x and y are functions of O& and Oq, as well as
O=x y/N and —q&=x+y/N. The transformation gen-
erated by (5.1) destroys the resonance vi, which is absent
in the new super-Hamiltonian (5.2) if we neglect terms of
order (N 1)a, in t—he expression of ho. This is a valid
procedure because such resonance is infinitely far from
the actual electron orbits and only acts as a perturbation.

Let us consider the limiting but important case of an
underdense plasma, N=1. We then have

Oq Op
O=Oi —,q =Oi+ +(N'+1)f(Oi, Op),

N N

x =Oi+N'f(Oi, O~), y =Op+Nf(8] Op),

where

(5.5)

a) Oq
f(Oi, Oq)=(NIi+Iz) sin 2 Oi ——

2

where the unperturbed term associated to the first wave is

N —1
2

"0=—,(Ii —Iq)+ —,
z [aicos(28) —PisinO] 2

(NIi +Ip)
(5.3)

and the perturbed term due to the second wave is

d Oz
nO& —pdz

=0. (5.10)

Using the canonical equations of motion in the new coor-
dinates, valid to order (N 1)ai, we —see from (5.10) that
the location in phase space of the (n,p)th resonance obeys
the following relation:

(5.11)
n N

Using the unperturbed term (5.3) to calculate the value of
Iz at resonance,

2 '2
Ip pho(Ii I~)= —1
2 nN

pi
2 mc

(5.12)

we get the position of the (n, m)th resonance:
' 1/21+(pz/mc)

Ii(n, m)=
(Nn /p) —1

(5.13)

An estimation of the resonance half-width can be made in
the standard way and we get

and a„=(1+5„,)(1+5~,) are defined with the aid of
Kroenecker 5 symbols. The function F(Oi, Oz) is given by

F(O„Oz)= —az cos(2y)+Pz sing —y cos(2x), (5.9)

where q& and x are given by (5.5). The new super-
Hamiltonian shows the existence of a double infinity of
secondary resonances, corresponding to the condition of
stationary phase:

Op

+Pi cos Oi— (5.6) D„p ——2(R„~+Q„~)' (5.14)

As h (Oi, O&,Ii,Iz) is periodic in the angular variables Oi

and Oz, we can expand it in Fourier series in O& and Oz/N,
using (5.5) and (5.6): D„z+D„z &Ii(n,p) —Ii(n', p') . (5.15)

An overlap criterion for nearby resonances (n,p) and
(n', p') can then be constructed":

h (Oi, Op, Ii,Ip)

oo Oo Op
=ho(Ii, Iz)+ g g R„~ cos nOi —p

1l = —ooP= —oo
r

Op

+Q„~ sin nOi —p (5.7)

Such criterion can be used for real resonances, which obey
the condition N&p/n, as shown by (5.13). It remains
valid, of course, for N~1, as well as for N&1. But in the
first case it can only be used as a local criterion for small-
scale stochasticity, because the large-scale behavior is
governed by (4.2). In the second case (4.2) no longer holds
and (5.15) is the only result we have. Nevertheless, a
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large-scale stochasticity criterion can be foun
app y . 5) to the dominant second

nances.
secon ary reso-

tude limit a , «1. We can then write x =8,+0(a, ) and
replace 5.2)—(5.4) by the simpler expression

h (8i, 82 I,I =hi, 2, i, z ) =ho(I i,Iz ) —a2 cos(2y) —y cos(28 )

VI. APPROXIMATE THRESHOLD

The overlap criteria (5.15) is not easy to handle. A sim-
plified version can be obtai d

'
d ua i

~ ~ ~

aine, in order to make ua i
e res o d. Let us consider that the

e waves,e ectron is at rest in the absence of th
Pi ——P2 ——pz ——0, and let us assume th 11e sma wave ampli-

where
T

82 ai 1+N I 82— i N 2 (NI I 2""28i-
i+ ~} N

Makin a
'

g a courier expansion in 192 we get

(6.1)

(6.2)

h (8,, 82,Ii,I2)=ho(Ii, I2)—api, 2
—

z
2

„2(ri)cos n8i (n ——4) —ycos(28, ) . (6.3}

Here J (r )i) are the Bessel functions of f'
argument

o irst kind with

1+%r] ——a~
(NI i +I2)

(6.4)

From (6.3) we see hthat the main resonance v =0 is s
rounded by an infinity f d son
tions of the hth sec

'

y o secondar resond y sonances. The posi-
e t secondary resonances are given by

1/21+(pz/mc)

[Nn /(n —4) ] —1
(6.5)Ii(n)= 1 ——

n 1V

and their half-widths are

Dn =2[a2( 1 —5„0/2)J„2( )] (6.6)

From this infinite set of secondary resonan
h =0s o v =, which corresponds to n =3. A

using the overlap criterion f
n= . gain

erion or nearby resonances we have

2 1/a2J, (r, ) +2M y&I, (3) . (6.7)

This expression gives the threshold for lar e-
h f heregion o p ases acel in

n i replaces the third criterion (4.2) for
3

& 1 and Pi ——0. An expression re lacinp '"g
can e ound in the same way:

see from Fig. 3 that the width of the stoch
ofh o fho e istance between t e

used in (6.7): v &I,(3)=1/V8. In Fi
en the two resonances

represented fe, or comparison, the thir
n Fig. 4 we have also

terion (4.3). We
e hir nonrelativistic eri-

n . . e see that the results for the rela
are of the same ord

e re ativistic case
e or er o magnitude. This is

lt b th to h
weakly relativistic domain of h v 3

——

e stoc astic region lies rnainl
omain o phase space around v3 ——0.

VII. CONCLUSION

We have studied the electron motion in
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analytically the th h ld f
suits extend to the
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a e to determine
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'
o aine in a pre-

1 0

21/aiJi(r2)+2/y &Ii(3), (6.8) 0.5

where r =r &a ~i(ai~aq). It is important to n
quantities r; with =1 2
bit, because for %=1 the denomina

i i =, are nearly constant &

each orbit. The first orbits to becom
a ~ .

'
a . and (6.8) can be a li

iven an a2 is increased fr
]

i r;) attain its maximum value 0.58. We can then

os o t e orbits become
o
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vious work and are in qualitative agreement with the nu-

merical integration of the equations of motion. An im-

portant consequence of this work is the possibility of ex-

plaining the high-energy electron tails produced in laser-

plasma interaction experiments. In such a case, the first
wave is the incident laser beam and the second wave is the
reflected beam propagating in the underdense region of
the plasma pellet. Taking the root-mean-square momen-

turn to be of the order of mc, we can see that, in the con-

ditions of Fig. 3, the energy of the electron heated by the

two waves is about 200 keV. This is compatible with the
observed energies. ' However, more specific calculations

are needed to apply these results to the interpretation of a
given experiment and to estimate the influence of the col-
lective effects which are not present in our one-particle
model.
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