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The interaction of an electron with two electromagnetic waves propagating in an isotropic plasma
is studied with the use of a super-Hamiltonian formalism. Large-scale stochasticity thresholds are
analytically estimated. The results may be relevant to laser-plasma interaction.

I. INTRODUCTION

The transition from regular to stochastic behavior in
deterministic systems is a relevant problem in plasma
physics. A number of important effects such as the ap-
pearance of magnetic islands in toroidal configurations,’?
ion heating by lower-hybrid waves,>* wave instability
saturation via harmonic generation,5 or the formation of
suprathermal electron tails in laser-plasma interaction®
can be interpreted in terms of that transition.

In this work we study the electron motion in the field of
two electromagnetic waves propagating in the same direc-
tion in a relativistic plasma. We estimate analytically the
large-scale stochasticity threshold for the electron heating.
For wave amplitudes above the threshold the electron is
expected to explore a wide range of velocity space. The
electron motion is described by a nonintegrable Hamil-
tonian. We will use an autonomous super-Hamiltonian
form’ instead of the usual time-dependent relativistic
Hamiltonian. The role of the collisions is assumed to be
negligible because we are dealing with high-frequency
fields.

The format of the paper is the following. In Sec. IT we
derive the equations of motion for an electron in the pres-
ence of two transverse electromagnetic waves using a
super-Hamiltonian formalism. In Sec. III we discuss the
particular situations for which the super-Hamiltonian be-
comes integrable. In Sec. IV we estimate analytically the
large-scale stochasticity threshold valid for the noninteg-
rable situations and for motion in a medium with a refrac-
tive index greater than unity, N > 1. As particular cases
we derive the threshold for nonrelativistic motion® and for
electrostatic waves.® In Sec. V we estimate the threshold
for a relativistic plasma and for vacuum, N < 1. A simpli-
fied version of this threshold is obtained in Sec. VI and
compared with the results of a direct numerical integra-
tion of the equations of motion. Our conclusions are
given in Sec. VII.

II. SUPER-HAMILTONIAN OF THE MOTION

Let us consider two transverse electromagnetic waves
propagating in an isotropic medium. They can be
described by the vector potential:

— 2 — —
AF,n=3 A(j)cos (K; T—w;t) . @1
j=1

The propagation of these two waves is taken along Ox in
order to reduce the problem to the simple case of a two-
dimensional Hamiltonian. In more than two dimensions a
new phenomenon takes place, the Ar'nold diffusion,’
which will not be discussed here.

The electron motion in the presence of the potential
(2.1) can be described by the following Hamiltonian:

H(T,B,0)={m**+[P +eA(T,)]%?}'? (2.2)
which is a constant of motion. Let us now define the
three four-vectors position 7, momentum p, and potential

//fby

F=(ct,T), p=(H(F)/c ,p), A=(0,A(F). (23)

With the aid of these four-vectors we can define a super-
Hamiltonian,” which is formally analogous to the nonrela-
tivistic Hamiltonian:

I-?(?,ﬁ)z2—1’1—[g"3(pa+eAa)(pB+eAB)] : (2.4)
In this expression g% is the Minkowski metric tensor, p,
and A, are the covariant components of p and A Taking
the square of (2.2) and rearranging terms it is easy to
prove that (2.4) is a constant of motion, equal to —mc?/2.
The equations of motion can then be written in canonical
form as

a A\ d A
dr =B_H, ﬂ:_éﬂ, 2.5)

dr  9p, dr orf

the time variable 7 is the electron proper time:
172
1 dr dr dt

={l—-"——| dt=—. 2.6
dr=|1 ¢t dt dt ] r 2.6

Using (2.1) and assuming transverse polarization in the
plane Oyz, which means that 4 =(0,A)=(0,0,A€,,
A-€,), we can write (2.4) in a more explicit form:

2

At pg)=—
(r%pg) o

2 —
pl—pd+pi+e? kz A(j) cosv;
=1

2 —
—+—2e2 ﬁl'A(j)COS'Vj
j=1

, (2.7

where P, =p,€,+p3€, is the transverse momentum and

3592 ©1983 The American Physical Society



28

v; =kjr1—(mj /c)r’. We see from this expression that the
super-Hamiltonian is not a function of r? and r?, which
means that the transverse equations of motion reduce to
pi=const. We can then use a reduced super-Hamiltonian
for the longitudinal motion:

2

Pi

H(ro%r,po,p, )=ﬁ(r“,p,,)——m (2.8)

In order to get more specific results we will restrict our
J

h(x,p,0,u) =~ —u?) —a, cos |2 x—-JyV —a,cos
+ B, sin x+< —7v |cos(2x)— cos xi2
N N
The new parameters introduced in this expression are
2 R
ed (j) _ ep.-A()
T 2me » Bj=— m2?:
(2.11)
— ¢ _Am-AQ)
VS ame? ’
and the variables u and v are given by
1 0
v=L— y=L_ (2.12)
mc mc

The canonical equations of motion can now be written
as

dx_ dv__an
dz dz ax (2.13)
dy_, du__dh
dz ' dz ¥y’

where the time variable is now z=kc7r. In the usual
canonical equations for the Hamiltonian dynamics we
would have —u instead of u in the third equation (2.13).
The difference is due to the covariant formulation used
here, which implies that p®= —p,=mecu.

III. INTEGRABILITY

If the electron is submitted to the action of a single
wave, A(1)£0 and A(2)=0, the equations of motion
(2.13) become

dv du

—=_N—,

dz dz (3.1
LlIl-—ia sin [2 [x — £ —+—ﬁcos x-L

dz N N N N

In this case we have two constants of motion. One is the
super-Hamiltonian itself, ho=h (a;=0,8,=0,y =0). The
other is the quantity I, derived from (3.1):

Io=v+Nu . (3.2)

These constants of motion are in involution and k, is in-
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analysis to the particular but still important case of two
waves having the same frequency, ®;=w,=w, and propa-
gating in opposite directions, k; = —k,=k. With the use
of new space and time variables,
x=kr'—w/2, y=kr®=(w/c)Nr°, 2.9

where N is the refractive index, we can replace (2.8) by a
dimensionless super-Hamiltonian:

Y

2 |x+ + B sin

It 210

I

tegrable. The orbit for which the phase in the oscillatory
terms of A is stationary is called a resonance. We can see
from (2.10) that the position of the resonance of A, in
phase space is v =v; and u =Nv,;, where v, obeys the
equation

X —

2
SIS

vi
2
Using (2.8) and (2.10) and recalling that H=—mc?/2, we

get the position of the resonance:
172

ho (1—N?) .

(3.3)

1+(pl/mc)2
Ni—1

V= N U]=NU] . (34)

These values of v; and u; can be obtained in a different
way. The starting point is the physical idea of a reso-
nance: The velocity of a resonant electron, dr'/dt, must
be equal to the phase velocity of the wave, w /k, that is,

dr! dr!
di =TI dr =FCU1— k . (35)
As T is given by
1+ pu/me? | 56
| 1—(@/ke)? | ‘

we recover (3.4).

When a second wave is present in the medium, Al )#6
and A(2)0, ho must be replaced by the whole super-
Hamiltonian (2.10) and three new resonances are present.
Their position is defined by

Vy=—V;, Uy=u;=Nv,;,

v3=0, uz=u;(1-N—"2)172, (3.7)

U4=iu3 s U4=0 .

In general, the super-Hamiltonian 4 is nonintegrable, as
can be shown by the numerical integration of the equa-
tions of motion (see below). However, integrability of the
motion can be shown to exist if the two waves propagate
in vacuum, N =1, with orthogonal polarization,
Al )-A(2)=y=0. Using the new variables
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FIG. 1. Stochasticity thresholds for N =1.1 and p, =0, given
by the three overlap criteria (4.2). a, is the dimensionless ampli-
tude of the first wave and r =a,/a, is the ratio between the two
wave amplitudes. For each criterion, the motion is stochastic
above the corresponding curve.

X12=3(xFy), via=70WFu), (3.8)
we can reduce the equations of motion (2.13) to the separ-
able form (N =1,y =0):

dx,~ . 1 2

—_—=y;, =1,

dz (3.9)
dv; .

i —2a; sin(2x;)— f3; sinx; .

In this case the super-Hamiltonian A’'=h (N =1,y =0) be-
longs to the family of the integrable super-Hamiltonian:

H(x,p,0,u)=5Ww2—u?)+ f1(x —=y)+f2(x +) ,
(3.10)

where f, and f, are arbitrary analytical functions in
phase space.

IV. THRESHOLD CRITERIA

In the general nonintegrable situation (Ns£1,y540) the
orbits in the four-dimensional phase space do not neces-
sarily belong to a two-dimensional manifold. This means
that in a Poincaré surface of section (x,v) the sequence of
points representing a given orbit can be randomly dis-
tributed over a significant region. In this surface of sec-
tion, the resonances v =v; for i=1,2,3 define three
domains of attraction surrounded by chaotic separatrices.
The fourth resonance in (3.7) is imaginary and is disre-
garded. We say that large-scale stochasticity exists when
orbits starting in the domain of attraction of one given
resonance can fall in the domain of attraction of a dif-
ferent resonance. The threshold criterion for the onset of
large-scale stochasticity can be obtained analytically, com-
paring the resonance widths with the distance between res-
onances. The nonperturbed half-widths of the three reso-
nances v =v; are given by

(o)
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FIG. 2. Stochasticity thresholds for N =1.1 and a,=a, (or
r =1), given by the three criteria (4.2). a, is the dimensionless
wave amplitude and (p, /mc) is the normalized electron momen-
tum perpendicular to the direction of wave propagation.

2a;+B;/20; , Bi<4a}
D;=2Vy

D; 4.1)

for i =1,2. Using (3.4), (3.7), and (4.1) we can construct
three resonance overlap criteria® of the form

SIED1+D2>2.U] ,

SzED1+21/;>Ul N (4.2)

S3 ED2+21/;>U1 .

For a given value of the dimensionless wave amplitude
a;=2v'a; we can deduce from (4.2) the threshold value
of the ratio between the two wave amplitudes
r=a,/a;=Vv a,/a; above which large-scale stochasticity
exists. If the second wave is due to the reflection of the
first wave somewhere in the plasma, the parameter r has
the meaning of a reflection coefficient. The results are
plotted in Fig. 1 for p; =0 and in Fig. 2 for r =1, when
N =1.1. The first criterion in (4.2), given by the curve S,
is somewhat meaningless because it involves two reso-
nances which are not nearby ones. It can only be retained
when the resonance width D; is much smaller than the
other two and the resonance v;=0 can be assumed as a
secondary one. It then gives the threshold for the stochas-
ticity in the whole region of the surface of section between
v; and v,=—v;. The other two criteria in (4.2),
represented by the curves S, and S, are of the same order
of magnitude and give the threshold for the stochasticity
in the two different regions of the surface of section be-
tween v; and v3;=0 and v;=0 and v,, respectively. The
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FIG. 3. Poincaré surface of section (x,v) for N =1, p,=0, a,=0.35, and r =0.5, resulting from the numerical integration of
(2.13). Three orbits have initial conditions: x,=1.5, v;=0; x,=1.85, v,=0; x;=0.85, v;=2.182. Second orbit is stochastic.

evolution of the threshold as a function of the transverse
momentum p, is particularly interesting, as shown in Fig.
2. We see that when p, grows the threshold is significant-
ly reduced and becomes of the order of (p,/mc)~! when
P >>mc. Another interesting feature of the criteria (4.2)
is that the threshold grows with N and becomes infinite
when N =1. This is not in agreement with the numerical
results, which show that stochasticity remains even for
vacuum or plasmas (N < 1) as will be discussed in Sec. V.
Nevertheless, Eq. (4.2) can be useful in the plasma case, if
we take the nonrelativistic limit (v; —N ~!). The thresh-
old is no longer dependent on N and we get the new cri-
teria

si=Di1+D;>1,

sy =Dj +2\/7’>% s 4.3)

s3=Dy+2Vy's 1.

Here, the new half-widths D (i = 1,2) are obtained replac-
ing in (4.1) the wave parameters a; and B; by a; =N?a; /4
and B; =N’B;/4. We have also used y'=N2y/4. The
new criteria (4.3) are coincident with those obtained
directly from the nonrelativistic Hamiltonian and were
shown to be in good agreement with the numerical in-
tegration of the equations of motion.® More sophisticated
criteria than those used here, in particular the criteria ob-

tained from a renormalization theory,'® were also shown
to be in qualitative agreement with (4.3).° If we make a
further simplification on (4.3) and take ¥’ =0 we get a sin-
gle criterion s} > 1, which is the usual overlap criterion
for the electron motion in the field of two electrostatic
waves,® provided we conveniently replace the vector po-
tentials A( J) by scalar potentials.

V. THRESHOLD FOR RELATIVISTIC PLASMAS

Turning back to the relativistic motion, we see from
(4.2) that a further step must be done in the theory in or-
der to get analytical criteria which do not diverge. One
can be sure that stochasticity remains for N <1 by per-
forming a numerical integration of the equations of
motion (2.13). The results of such integration are illus-
trated by the numerically generated surface of section of
Fig. 3, for three different orbits and N =1. The two wave
potentials are assumed parallel to each other, A(1)//A(2).
The standard fourth-order Runge-Kutta method was used
in the integration. Stochasticity appears in the region be-
tween v =0 and v~1. The value of r=0.5 is the lowest
value for which stochasticity is clearly observed. This
gives then a numerical estimation of the threshold for
a; =0.35.

Let us see how to construct the analytical threshold for
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N < 1. The resonances v; and v, are now imaginary and
our main attention turns to the third resonance v;=0.
The electron motion near this resonance is slightly per-
turbed by the other two and such perturbation is the
reason for the stochasticity to remain. In order to study
in more detail the structure of (2.10) around v; =0 we can
make a canonical transformation into new variables
(6,,6,,1,,I,) using the generating function

F(x,y’II’IZ)
d! . Yy
- — 7 sinl2lx—
T 2PN 27 Rl Bl ™ ] ]
By Y
Lt S _ 5.1)
YL/ TN (

The resulting super-Hamiltonian is given by

h(0,,604,11,1y)=ho+h, , (5.2)

where the unperturbed term associated to the first wave is

NZ—1
ho=~5I}—1I3)+3————[a, cos(20) — B, sind]?
0— 21 2 2(N11+12)2[ 1 Bl ]

(5.3)
and the perturbed term due to the second wave is
2y

hy=—a,cos(2¢)+ B, cosp—y cos(2x)—cos1—v—

(5.4)
Here x and y are functions of 6, and 0,, as well as
0=x —y/N and ¢=x +y/N. The transformation gen-
erated by (5.1) destroys the resonance v,, which is absent
in the new super-Hamiltonian (5.2) if we neglect terms of
order (N2—1)a? in the expression of hy. This is a valid
procedure because such resonance is infinitely far from
the actual electron orbits and only acts as a perturbation.
Let us consider the limiting but important case of an
underdense plasma, N~1. We then have

62 02 2
9=61_W’ ¢=91+W+(N +1)£(6,,6,) ,

(5.5)

x=0,+N2f(6,,6,), y=0,+Nf(6,,6,),

where

-2 ap . 02

£(61,6)=(NI +1,)7*1 =" sin |2 |6, — —
6,2 (5.6)
+ B cos = . .

As h(0,,0,,1,,1,) is periodic in the angular variables 6,
and 0,, we can expand it in Fourier series in 6, and 6,/N,
using (5.5) and (5.6):

h (01702111112)

6,
_ho(Il,Iz + 2 2 RanOS nBl—p
n=—cwp=—ow N
: 02
+Qpp sin n91~p7 (5.7
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where
lanm
R, = 4(27,2f_” 6. d|=> |F6,6,)
6, p2
Xcos |n l—pN ’
1 o (5.8)
0=y [ a0 [ d |5 [Fonen
i e 0,
Xsin |n l—pN »

and @, =(1438,0)(148,0) are defined with the aid of
Kroenecker 6 symbols. The function F(6,,0,) is given by

F(6,,0,)= —a,cos(2¢)+B,sinp—y cos(2x) ,  (5.9)

where @ and x are given by (5.5). The new super-
Hamiltonian shows the existence of a double infinity of
secondary resonances, corresponding to the condition of
stationary phase:

=0. (5.10)

Using the canonical equations of motion in the new coor-
dinates, valid to order (N 2——1)(11, we see from (5.10) that
the location in phase space of the (n,p)th resonance obeys
the following relation:

I,
=221
1nN

Using the unperturbed term (5.3) to calculate the value of
I, at resonance,

I3

(5.11)

2
holI,Iy)==2| |2 | —1
2
SO I P (5.12)
2 mc
we get the position of the (n,m)th resonance:
12
14(p, /mc)?
Linm)= | 2207 (5.13)
(Nn/p)—1

An estimation of the resonance half-width can be made in
the standard way and we get

D,y =2RE +Q2)"*.

An overlap criterion for nearby resonances (n,p) and
(n’,p’) can then be constructed!!:

(5.14)

Dyy+Dyp>11(np)—I,(n',p’) . (5.15)

Such criterion can be used for real resonances, which obey
the condition N >p/n, as shown by (5.13). It remains
valid, of course, for N > 1, as well as for N < 1. But in the
first case it can only be used as a local criterion for small-
scale stochasticity, because the large-scale behavior is
governed by (4.2). In the second case (4.2) no longer holds
and (5.15) is the only result we have. Nevertheless, a
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large-scale stochasticity criterion can be found in this
case, if we apply (5.15) to the dominant secondary reso-
nances.

V1. APPROXIMATE THRESHOLD

The overlap criteria (5.15) is not easy to handle. A sim-
plified version can be obtained, in order to make qualita-
tive estimations of the threshold. Let us consider that the
electron is at rest in the absence of the waves,
Bi=B,=p,; =0, and let us assume the small wave ampli-

]

2—8,,

B (00,11 L)kl 1)~y 3

n=—ow

Here J, _,(r;) are the Bessel functions of first kind with
argument

r=a—t (6.4)

From (6.3) we see that the main resonance v; =0 is sur-
rounded by an infinity of secondary resonances. The posi-
tions of the Ath secondary resonances are given by

172
1 2
+(p,/me) l 63

[Nn/(n —4)]*—1

Iz(n) _
N =

I,(n)=

and their half-widths are

D, =2[a)(1—8,0/2), _,(r))]'/ . (6.6)

From this infinite set of secondary resonances we choose
the nearest to v =0, which corresponds to n =3. Again
using the overlap criterion for nearby resonances we have

2V (r))+2Vy >1,(3). 6.7)

This expression gives the threshold for large-scale stochas-
ticity in the region of phase space lying between I, ~v;=0
and I,=1,(3) and it replaces the third criterion (4.2) for
N <1 and B;=0. An expression replacing the second cri-
terion (4.2) can be found in the same way:

2Va J (r)+2Vy >1,(3),

where r;=r;(a;—a,). It is important to note that the
quantities ; with i =1,2 are nearly constant for each or-
bit, because for N~1 the denominator in (6.4) is nearly
equal to IO, which is a constant of motion in the limit
a;—0. This means that (6.7) and (6.8) can be applied to
each orbit. The first orbits to become stochastic when «,
is given and a, is increased from zero are those for which
J(r;) attain its maximum value 0.58. We can then obtain
the threshold curves S, and S; of Fig. 4. The condition
for which most of the orbits become stochastic corre-
sponds to J,(r;)=0 and is represented by the curve S,, of
Fig. 4 for both (6.7) and (6.8). Comparing these curves
with the numerical calculation of Fig. 3 we see that there
is a good agreement between the analytical estimate and
the numerical observation of stochasticity. We can also

(6.8)

J _a(ry)cos
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tude limit, ay <<1. We can then write x =6,4 0 (a,) and
replace (5.2)—(5.4) by the simpler expression

h (01,92,11,12)=h0(I|,12)—a2 COS(2¢7)—'}’ COS(201) ,
(6.1
where
0, a 14N2 6,
6 ———sin (2 [6,—— || .
p= ]+N+ 2 (NIl 12)2 sin 1 N
(6.2)
Making a Fourier expansion in 6, we get
6,
n@,—(n —4)F —vy cos(26;) . (6.3)

see from Fig. 3 that the width of the stochastic region Av
is of the order of the dlstance between the two resonances
used in (6.7): Av>1,(3)=1/V'8. In Fig. 4 we have also
represented, for comparison, the third nonrelativistic cri-
terion (4.3). We see that the results for the relativistic case
are of the same order of magnitude. This is an acceptable
result, because the stochastic region lies mainly on the
weakly relativistic domain of phase space around v; =0.

VII. CONCLUSION

We have studied the electron motion in the field of two
electromagnetic waves, using a super-Hamiltonian
description in space-time, and were able to determine
analytically the threshold for the electron heating. The re-
sults extend to the relativistic case those obtained in a pre-

FIG. 4. Stochasticity thresholds for N;=1 and p21=0. S, is
the criterion (6.7) for J,(r;)=0.58 and S; in the criterion (6.8)
for Jy(r;)=0.58. Sp corresponds to either (6.7) or (6.8) for
J1=0. Cj; is the nonrelativistic criterion of Ref. 6. B defines
the parameters of Fig. 3.
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vious work® and are in qualitative agreement with the nu-
merical integration of the equations of motion. An im-
portant consequence of this work is the possibility of ex-
plaining the high-energy electron tails produced in laser-
plasma interaction experiments. In such a case, the first
wave is the incident laser beam and the second wave is the
reflected beam propagating in the underdense region of
the plasma pellet. Taking the root-mean-square momen-
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tum to be of the order of mc, we can see that, in the con-
ditions of Fig. 3, the energy of the electron heated by the
two waves is about 200 keV. This is compatible with the
observed energies.!> However, more specific calculations
are needed to apply these results to the interpretation of a
given experiment and to estimate the influence of the col-
lective effects which are not present in our one-particle
model.
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