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Structural properties of macromolecular solutions have been investigated with a wide variety of
techniques, among which light scattering is one of the most powerful. In the present paper we re-

port the results of both elastic and quasielastic light scattering in a DNA solution at small angles.

It is shown that in solution the macromolecules arrange themselves in an ordered structure that ex-

tends over semimacroscopic distances. The comparison between the static and dynamic response al-

lows a better understanding of the physical meaning to be attributed to the structure, in terms of a

k-dependent characteristic time for the regression of fluctuations.

I. INTRODUCTION

In the last several years macromolecular solutions have

been investigated from the structural point of view using

many different techniques, such as viscosity measure-

ments, ' light scattering, neutron scattering, acoustic
absorption, etc. The obtained results show unarnbiguous-

ly that the macromolecules tend to form a quite stable,
solidlike lattice composed of interacting clusters.

The structure is of the kind called "thixotropic" because
it is stable against sufficiently small disturbances but can
be easily destroyed, e.g. , by mechanically shaking the sam-

ple. As a rule the structure builds up in a time that ranges
from some tens of minutes to many hours, depending on
the kind of macromolecule. As the structure builds up,
the physical response of the system changes accordingly.

At present the following macromulecules have been in-

vestigated: lysozyme, bovine serum albumine (see Refs.
I—6), and hemoglobin. ' A comparison of results seems to
indicate common behavior, although the characteristic di-

mension implied in the structure (i.e., the size of the clus-

ter and the intercluster spacing) change from one macro-
molecular solution to another. As a rule it seems that the
characteristic dimension roughly scales as the dimension
of the single macromolecule.

The results obtained in the experiment reported in the

present work contribute positively to such a point of view.

In fact it is shown that the solution of DNA exhibits the

same kind of structural behavior found in other macro-
rnolecular solutions on a larger scale due to the larger di-

mension of the DNA molecule.
In the present paper we report results obtained both

with elastic and quasielastic light scattering. In the first

case the so-called static structure factor S(k) can be mea-

sured, while in the second kind of experiments the dynam-
ical properties, in the hydrodynamical realm, can be in-

ferred. However, as we shall see, the two kinds of mea-

surements are strictly correlated.
As far as the quasielastic scattering is concerned, we

measure the autocorrelation function f(r) of the light in-

tensity scattered at fixed value of the exchange wave vec-

tor k. In a system dominated by a purely diffusive

Brownian motion, f(r) behaves exponentially, the time

constant being simply related to the diffusion coefficient
I =Dk . However, in the large majority of physical sys-

tems the situation is more or less complicated among oth-

er things. In such a case the simple scheme sketched

above is no longer valid. The autocorrelation function be-

comes more complicated than a simple exponential decay,

and its behavior turns out to be strongly k dependent.

The concept of a diffusion coefficient becomes itself rath-

er questionable. The introduction of an "effective" dif-

fusion coefficient D,fr which depends on the structural

properties of the system was proposed: D,rf=DOIS(k).
An example of a situation of this kind is known as "de
Gennes narrowing" according to which the width of the

quasielastic central line is narrowed at the k values at

which the structure factor S(k) shows a maximum.
From the results obtained we will show, among other

things, that such a concept can be applied at least as a
first approximation. However, the behavior of the auto-

correlation functions turns out to be more complicated
than that predicted in the simple theory of Ref. 8. In par-

ticular, there is evidence for modes centered at frequencies
different from zero. In other words, the behavior of the

systems also shows, together with diffusive modes, propa-

gating modes sustained by the structure.
In a sense we believe that the concept is to be reversed.

The dynamical properties of the system determine, in a
statistical sense, the structural behavior. A structure in

the system can be thought of as originating from some
contributions of the (spatial) spectrum of fluctuations
whose characteristic regression time is larger than that of
other components and that behave like phonons.

II. SAMPLE PREPARATION
AND EXPERIMENTAL PROCEDURE

Sodium salt "highly polymerized" calf thymus DNA
was purchased from Sigma Chemical Co. and used
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FIG. 1. Schematic view of experimental apparatus. L, 5 mW
He-Ne laser; T, thermostat; S, Sample; I, Fourier-transform lens;
n. and m.', local planes; P, pinhole; PM, photomultiplier; M, rni-

crometer; C~, counter for intensity measurement; C&, correlator.

without further purification. DNA was dissolved in phos-
phate buffers containing 7 mM NazHPO4, 2 niM
NaHzPO4, and 1 mllf NaqEDTA (pH=7. 2, ionic strength
=0.026), and filtered through a 1.2-pm pore-size Milli-
pore filter in order to elminate foreign particles. DNA
concentrations of 150 p, M (moles of phosphates) as deter-
mined by optical absorbance (molar extinction coefficient
at 260 nm=6412 M 'cm ', Ref. 9) were employed.

In order to check for the presence of denatured DNA,
the hyperchrornicity of the solution was checked by the
method of alkali-metal denaturation reported in Ref. (10):
DNA resulted free from denatured DNA.

Let us now discuss briefly the optical arrangement. Be-
cause of the relatively large size of DNA molecules as
compared with, e.g. , lysozyme or BSA, it is assumed that
the length iinplied in a possible structure (cluster size, in-
tercluster distances, etc. ) is also correspondingly scaled.
For example, such a scaling occurs in lysozyme and BSA
solution.

Preliminary measurements confirm such a point of
view. The intensity of light scattered by the DNA solu-
tion turns out to be strongly anisotropic and mainly
directed forward. Then the necessity arises of making
precise measurements at very low scattering angles.

For this reason we use a technique that makes use of
the optical Fourier transform. The scattering volume is in
the first focal plane of a converging lens so that in the
second focal plane the distribution of intensity corre-
sponds to the Fourier transform of the scattered field.
Here a small pinhole (50 pm in diameter) creates the re-
quired scattering angle. In our case a displacement of
1 mm in the second focal plane corresponds to a variation
of 1' in the scattering angle so that the pinhole creates an
angle with an uncertainty of 5&& 10 deg. The displace-
ment of the pinhole by a micrometer can be controlled
with a precision of the same order of magnitude. A
schematic view of the experimental apparatus is sketched
in Fig. 1.

As far as the quasielastic measurements are concerned
we use a light-beating technique in the homodine mode by
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FIG. 2. Scattered intensity as a function of exchanged wave
vector. (a), 15 min after the preparation of sample; (b), after 2h,
30 min', curve (c), after 30 h. Dashed lines are eye guides.

measuring the autocorrelation function of the photo-
current. We use a 5 rnW He-Ne laser and a homemade
clipped correlator of 120 channels together with a single-
photon counting photomultiplier.

Calling n; the number of photons detected in the ith
sampling time, n the number of clipped counts in the
same interval, and s the total number of sampling times,
the autocorrelation function ranges from the value

(n;n ) =(gn;n )ls at time zero, to the value

(n; )(n ) =(gn;)(gn )Is as the time goes to infinity.
The correct evaluation of the latter value [i.e., the direct
current (dc) term that is to be subtracted from experimen-
tal data] is of paramount importance. We control such a
value both from the formula sketched above and by the
use of four "delayed channels" whose position in time cor-
responds to 600 channels. The correspondence between
the two values ensures that the correlation function actu-
ally is almost entirely displayed in the 120 channels of our
correlator.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Elastic scattering

The experimental data obtained in the elastic light
scattering experiments are shown in Fig. 2. The various
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E(K)=f e' p(z)dz .

For the light intensity, one obtains

Jr(K)= f e' " *'p(z)p(z')dzdz'.

Calling g=z —z', one obtains

Jr (K)=f e' ~C (g)d g,
where

C(g) = fp(z)p(z+g)dz

(3)

(4)

is the spatial autocorrelation function of the "planar den-

curves reported here represent the time evolution of the
system. Actually we perform measurements of the scat-
tered intensity as a function of the scattering angle, at dif-
ferent delay times, starting from the preparation of the
sample.

The general features, as expected from considerations
sketched in Sec. I, can be easily shown. There is a strong
indication of the existence of a more-or-less ordered struc-
ture, and the evidence for a structural effect becomes
clearer and clearer as the delay time increases. Mechani-
cally shaking the sample, the initial conditions are re-
stored.

Measurements of the kind reported in Fig. 2 have been
repeated several times, in order to be sure of the reprodu-
cibility of the results. Also control measurements are
made using pure water in order to exclude hypothetical
spurious effects due to misalignment, diffraction, etc.

In the sequel we discuss in detail the experimental re-
sults obtained after a very long delay time, i.e., in a sta-
tionary situtation in which the structure in the system is
fully developed [Fig. 2(c)]. The experimental data are tak-
en at different scattering angles starting from 1' up to 15'.
However, the data at very small angles (less than about 3')
cannot be used because of the stray contribution, due to
the incident beam, at 0'.

The experimental curve clearly indicates the presence of
a form factor together with a structure factor. The latter,
in particular, is well evidenced by the presence of peaks at
E =0.69X10, 1.38&(10, and 2.07)&10 cm

Let us sketch briefly the theoretical formalism that can
be used to discuss elastic scattering. We consider, in prin-
ciple, our system as a density distribution p(r ) of point
scatterers (single molecules or even segments of a mole-

cule), the scattered intensity of a volume element d r being
proportional to p(r)dr. Then the field scattered for a

given value K of the exchange wave vector will be given
by

E(K)=f e "p(r)dr,

the integral being made over the scattering volume.
Let us consider a frame of reference with the z axis, for

instance, parallel to K. Then the density can be integrated
with respect to x and y. We put

p(z) =fp(x,y, z)dx dy, (2)

so that

sity" p(z). Equation (5) shows that the scattered intensity

reproduces the spatial Fourier transform of the density

autocorrelation function, i.e., by the Wiener-Kintchine
theorem, the power spectrum of the density distribution.

It can also be shown that Jr(K) will be sizably different
from zero only if the autocorrelation C(g) is of finite

range, the latter being not too different from K
Now the appearance of periodical peaks in the experi-

mental values of Jr (K) indicate the occurrence of a
periodic structure for the autocorrelation C(g) and, there-

fore, for the p(z). The C(g) would be obtainable by

Fourier transforming the experimental curve W(K). Un-

fortunately such a procedure cannot be used with the re-

quired accuracy because of the discreteness of experimen-
tal data points, of the unavoidable statistical error, and

mainly because of the absence of data in the region @~0
(i.e. , for scattering angles less than about 3').

Therefore, we try to construct a model for the p(z) on
the basis of considerations sketched in Sec. I. We assume
that the function p(z) is of the kind

p(z) = g rect(a, z„),

where rect(a, z„) is the rectangle function of width a cen-

tered at the points z„. In turn

sin(Ka/2) +" i&z„
PK =a e

Ka /2

sin(Ka/2) ~,„xL i«„
Ka /2

where b,„=g,". oe; is again a stochastic variable.

The structure factor S(K) is the power spectrum of
p(z), i.e., the square modulus of p(K):

2

sin(Ka /2)S K =a
Ka /2

+ 00
I'K(n —n' jLe e

n, n'= —oo

(10)

Notice that the S(K) turns out to be the product of the
sine that represents the "form factor" of the cluster, times
the structure factor of the cluster ensemble. Equation (10)
represents the instantaneous behavior of the system.

Actually one has to perform a mean because of the fin-
ite time of observation. Therefore we calculate

(
iJC(d„—d„,)

) ( iKd„) (
iKd„)—

having made the hypothesis that the stochastic variables
are completely uncorrelated. Obviously such a hy-

pothesis is only a first approximation. We will see in Sec.
IIIB that there is evidence for a dynamic correlation be-

z„=nL + ge;
i=0

where eo ——0, zo ——0. Such a model simulates an array of
clusters of size a spaced by a fluctuating distance of mean
value L, e; being a stochastic variable.

The Fourier transform of p(z) turns out to be
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tween neighboring clusters. However, such a correlation,
if it exists, extends only over a short range. By such a hy-
pothesis we can write

(e ")=I e "p(b,„)db,„, (12)

where p(b, „) is the probability distribution function for
the stochastic variable 6„. We suppose that the fluctua-
tions e; are Gaussian, with rms cr Therefore, also, p(b„)

I

is a Gaussian distribution with rms crv n, and we obtain

0 oo

—nK cr /4=e (13)

—iKE„
The same results hold for (e " ).

For the calculation of the power spectrum, one obtains

2 2 2 2
e eiK(n —n')L —(n —n')K o /4 ~ n(iKL —K o /4)

Z, e
+ oo —n'(iKL +K2(y.2/4)e (14)

I
n, n = —oo

I
n = —oo

where as far as the Gaussian terms are concerned, n is to be considered always positive. Because of such evenness, only
the real part of each sum survives, and one can write

2

S(K)=4Reye"'x z~~ 'Reye „(~xl +Ice~~)4)a ~ sin(Ka/2)
Ka /2

(15}

The sums are geometrical series that are absolutely convergent, with the same real part
Repen�(iKL

Kn l4—)
iKL —K2~2/4

1

K 2O 2/4 —K2&2/2 ' 2
7

1 —2e ~ cos(KL)+e sin (KL)

so that one finally obtains (apart from a normalization
factor)

sin(Ka/2)
~

x2 2'
Ka /2

1 —2e ~ ~ cos(KL)+e

'2

(16)

Notice that (i) for large values of o., only the form factor
survives. One is concerned by the scattering of a single

cluster, randomly distributed, (ii) for KL =2nm. , the S (K)
shows peaks whose height, modulated by the form factor,
tends to infinity (5 functions) if cr~O. One is concerned
with the scattering of an infinite, perfect diffraction grat-
ing. In Fig. 3 we show the comparison between experi-
mental data and Eq. (16). The numerical data implied in

the fit are a =2 ((cm, L =9.5 (Mm, and cr =3 pm.
It can be seen that there is qualitative agreement, al-

though the details of experimental data are scarcely repro-
duced by the theoretical curve. In particular, the second

g cos(nKL) +A (17}
n=0

I

peak and the structures between the peaks are not shown

by Eq. (16). Obviously the strong rise in experimental
data that takes place at very small scattering angles is due
to the unavoidable contribution of the main beam, as men-
tioned above, and cannot be taken into account. Apart
from the uncertainty in the experimental data, it is possi-
ble that the model contained in Eq. (16), although qualita-
tively correct, is too rough. In particular, we recall that
we neglect any correlation between displacement of neigh-
boring clusters. In order to test the relevance of correla-
tions, it is possible to modify the model by looking at the
extreme opposite situation in which a perfect correlation
exists up to a given range. We obtain such a model by set-
ting e; =0 for i &s. In such a case in Eq. (14) only the
first s terms practically survive in the sum (with (T=O}.
The remaining part of the system is seen as a completely
disordered ensemble of clusters that gives contributions
only to the form factor.

From the physical point of view the latter model identi-
fies the system as an ensemble of diffraction gratings of
finite length equal to sL, the different gratings being com-
pletely uncorrelated clusters. In such a case the structure
factor becomes (apart from a normalization factor)

2 2
sin(Ka /2)

Ka /2

1.5
k( pm'}

2.5

FIG. 3. Fitting of experimental data with a model structure
without correlation (see text).

where A represents the contribution to the structure factor
of the uncorrelated clusters.

In Fig. 4 we report two fits of experimental data to Eq.
(17) with the values of s =2 and 3 (i.e., strong correlation
in arrays of 3 and 4 clusters, respectively). It can be seen
that a quite good agreement exists. In particular, the fits
also reproduce the details of experimental data consisting
in secondary peaks between the main peaks that occur as
KL =2n.

In the used solution, the DNA molecules have a molec-



28 LIGHT SCATTERING AND STRUCTURE IN A DNA SOLUTION 3585

1000 —,

e ee
e ~e ~e~ ee~e ~e ~e ~e~e e e

I

0.5
I I

1 15
k( rn ")

2.5

LL
100—

4

k

4

FIG. 4. Fitting of experimental data with a correlated model
structure (see text). (a) and (b) refer to two different ranges of
correlation.

10 I

10

2 (rn sec j

15

ular weight of about 10 and a radius that can be estimat-
ed to be 0.26 pm. At a concentration of about 100 pM (in

phosphate), one can calculate a mean distance of 0.7 pm.
On the contrary, our experimental results indicate the ex-
istence of "scatterers" of about 2 pm spaced 9 pm apart.
The fits with Eq. (17) clearly indicate the existence of
such an ordering over sizable distances, in comparison
with the more disordered situation implied in the fit with
Eq. (16).

FIG. 5. Autocorrelation function at 5=90'. (a), Experimen-
tal data (dc term subtracted). (b) Difference between experimen-
tal data and long-time exponential behavior.

In Eq. (18} the dc contribution has been subtracted and

the time constant I is simply related to the diffusion coef-

ficient D:

I =DK (19)

B. Dynamical behavior

The dynamical behavior of our system is investigated
with the experimental observation of the spectrum of the
inelastically scattered light (Rayleigh line) performed with
the optical-beating technique through a correlator, as
described in Sec. II.

Let us recall briefly the kind of information given by
such a technique. There are two basic processes (obvious-
ly having a common origin) that give rise to a frequency
shift in the scattered light: harmonic motion of scatterers
that superimpose their own frequency on the scattered
light, and displacement of scatterers that gives rise to a
Doppler shift. In the first case the shift is independent
from the amplitude of oscillations, while in the second it
is proportional to the velocity. Actually the two processes
change continuously from one to the other, the transition
depending on the amplitude of oscillation. "

Now, in the case in which the scatterers obey a (general-
ized) Langevin equation, i.e., in the case of a purely dif-
fusive Brownian motion, it can be demonstrated that the
autocorrelation function of scattered intensity obeys an ex-
ponential law

F(r)= f K(t)K(t+r)dt =F,e (18)

K being, as before, the exchange wave vector.
However, such a simple result is jeopardized if the sys-

tem shows structural properties, interactions, etc. In par-
ticular, the dependence of F(r) from the exchange wave
vector K is no longer given by Eq. (19), and the meaning
of the diffusion coefficient itself becomes quite unclear.

In recent years some measurements of the diffusion
coefficient of DNA have been performed by using a corre-
lation spectroscopy technique. ' ' The data, however, are
taken for exchange wave vectors larger than those of in-
terest in the present work. As a consequence, the presence
of an ordered structure, as revealed in the present work, is
absent. In addition, the authors force the experimental
correlation function to be fit to a simple exponential decay
plus a constant

F(r) =Ce '+B,
where both I and B are considered as fit parameters.

For comparison we report in Fig. 5 a test measurement
performed at an angle of 90' (exchange wave vector
=3.36X10' cm ) in which the subtracted dc term has
been obtained, as sketched in Sec. II both from the indica-
tion of the delayed channels and from the calculation of
(n; )(n ). A nonexponential behavior is quite evident.
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FIG. 7. Autocorre1ation function at E =0.86&(10 cm
The dc term has been subtracted. Dashed line represents the
behavior of damped harmonic oscillators.

A "diffusion coefficient, " calculated from the faster de-
caying term, furnishes the value D =1.24)&10 cm~/sec
that is of the correct order of magnitude if compared with
data reported in the literature.

It has been shown ' that an "effective" diffusion coef-
ficient D,~~ can be defined for a model in which the
motion of the scatterers can be decomposed into a "slow"
and a "fast" component. The latter mainly refers to a
random motion around an equilibrium position deter-
rnined by nearest-neighbors interaction, while the former
takes into account the displacement of the equilibrium po-
sition. The effective diffusion coefficient turns out to be
inversely proportional to the static structure factor

Dp
D rr S(E) (20)

Dp being a constant. In turn, D,~~ can be obtained from
experimental data evaluating the derivative at the origin
of the (normalized) autocorrelation function

I dF(r)
F(0) dr 7=0

=DeffE (21)

In Fig. 6 we report a plot of (D,~~)
' as a function of the

exchange wave vector. A comparison with Fig. 2(c) shows
very good agreement. The characteristic behavior of the
structure factor is reproduced in almost all details. Such
an agreement gives noticeable support to the cqnsidera-
tions developed in Sec. III A, because the same results are
obtained in two entirely different kinds of measurements.

However, there is much more information contained in
the experimental data that can give useful indications
about the kind of dynamics experienced by the macro-
molecules. In Fig. 7 we report typical autocorrelation
function. It can be shown that neither a single exponen-

tial nor a sum of two exponentials can fit the curve. Ob-
viously a sum of a large enough number of exponentials
could fit the curve, although such a procedure does not
have a clear physical meaning. Because of the existence of
a thixotropic structure, the hypothesis that harmonic
motion can occur seems quite reasonable. We suppose,
therefore, that the scatterers can move as damped har-
monic oscillators. In such a case the autocorrelation func-
tion can be calculated and turns out to be

F(r) =Ce ' cos(Qr)——Ir nr
sin(Qr)2I'+0' (22)

where I is the damping constant and 0 the angular fre-
quency of the oscillator.

The dashed line in Fig. 7 represents a fit of experimen-
tal data with Eq. (22). The results show that an equation,
like Eq. (22), can actually represent with very good accu-
racy the experimental results.

It is to be noted that, according to the considerations in
Sec. III A, the entire structure contributes to the intensity
scattered at a given angle because of its spatial correlation.
The circumstance that in such a condition an oscillating
behavior can be clearly shown, implies that there are also
temporal correlations in the motion of the macro-
molecules. In other words, the dynamics of the thixo-
tropic structure show a collective behavior that can be
described in terms of phonons.

The fitting performed in Fig. 7 can be repeated for dif-
ferent exchange wave vector so that a "dispersion law"
0=0(K) can be obtained. It is, however, to be noted that
if in Eq. (22) the value of I turns out to be larger than say
twice the value of 0, the fit becomes quite insensitive to
the value of A. For such a reason we can perform the fits
only up to K =1.56&&10 cm '. The results are shown in
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Fig. 8.
A dispersion law of the kind reported in Fig. 8 has been

predicted theoretically' ' and shown in some experimen-
tal results on neutron scattering. ' It is interesting to note
that such kinds of results arise in pure liquids only
for large enough wave vectors (in the range of some A '),
while in our case the implied values of wave vectors are
much smaller. Correspondingly, the values of energy are
also suitably scaled. Such a circumstance is a trivial
consequence of both the largest scale of the spatial struc-
ture and the weakness of the interactions responsible for
the building of the thixotropic structure.

From a theoretical point of view the first minimum in
the dispersion law would correspond to the reaching of the
boundary of the first Brillouin zone (i.e., the first peak in
the structure factor). The presence, in our case, of succes-
sive minima is, again, to be related to the successive peaks
in the structure factor, i.e., the long-range order showed in
our systems.

IV. CONCLUDING REMARKS

The solution of DNA shows peculiar structural proper-
ties consisting of an ordered arrangement of macro-
molecules in a solidlike thixotropic structure. Such
behavior seems to be a quite general property of macro-
molecular solutions being found in aqueous solutions of
lysozyrne, BSA, and hemoglobin.

In the case of DNA, due to the large scattering efficien-
cy of the macromolecule, the elastic scattering of light
gives results that allow a more careful analysis. In partic-
ular, the characteristic distance implied in the structure
( -9 pm) allows the detection of at least three peaks in the
structure factor, so that the experimental results can be
reasonably compared with a precise model. In addition,
the dynamical results obtained in the quasielastic light

'0
I I

5 10
(d(rad. sec ")

15

FIG. 9. Longitudinal-current autocorrelation function. The
presence of peaks corresponds to different modes of the system
for E =2.764 pm

scattering experiments give satisfactory agreement with
the model, allowing an independent evaluation of the
structure factor.

It is also shown that the dynamical behavior of the sys-
tem could be described in terms of collective modes (pho-
nons), supported by the thixotropic structure. Such modes
are quite evident at low values of exchange wave vector,
although the increasing value of the damping constant
prevent a clear evaluation of the frequency at larger values
of the exchanged wave vector.

We would also note that there are strong indications of
the existence of modes at higher frequency. Actually one
can perform a Fourier transform of the autocorrelation
function. Then a plot of such a Fourier-transform time
co would correspond to the power spectrum of the corre-
lation of longitudinal currents in the system. ' Each peak
in such a curve can be related to a mode of the system. In
Fig. 9 we report an example of such a procedure. Howev-
er, a careful analysis of this kind requires an extremely
high precision in the experimental data because the nu-
merical Fourier transform is strongly sensitive to even
very srrall disturbances in the data. For this reason we do
not perform such an analysis here. A refined experimen-
tal procedure is at present in progress in order to obtain
data of good enough quality. We would only emphasize
that higher-frequency modes could be related to the in-
tramolecular dynamics of the DNA chain, and, therefore,
their investigation could be of great interest.
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