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Anomalies in the degree of dissociation near a critical point of a ternary mixture are analyzed for
a reaction of the type A=>B + C. The concentration-temperature curve has, at the critical point, an

infinite slope (T — T, )y—(6-1/8

, where 8 is the critical index. An isobutyric acid and water mixture,

which consists of four components, has the same singularity in the charge density near a critical
point. In any of the anomalies in the electrical conductivity in this mixture, or in similar systems,
the singularity in the charge density must be considered.

The mixture isobutyric acid and water has an upper
consolute point located at atmospheric pressure and room
temperature (7T, ~26.23°C and 38% weight fraction of
acid). The chemical reaction H4 + H,0=4~ 4+ (H;0)"
produces charges that show anomaly in electroconductivi-
ty near the critical point. Stein and Allen found® that the
singular part of the resistance has an energy-density-type
anomaly approaching the critical point. Theoretical ex-
planations for this anomaly have been based on different
models for scattering of charges by strongly enhanced
concentration fluctuations.”? However, Jasnow, Goldburg,
and Semura, at the end of their 1973 article,? referred to
an unpublished remark by Griffiths, who noted that the
ion density itself may have a singularity near the critical
point due to the chemical reaction. As will be shown, this
Griffiths supposition is correct. Therefore, an analysis of
the electroconductivity near the critical point must include
the singularity in the ion density together with (or instead
of) possible anomalies of scattering processes.

Recently* we have discussed anomalies in the chemical
equilibria near critical points for simple reactions of the
type B,=22B. In this paper, we extend the results of Ref.
4 to (a) a two-phase system, and (b) a wide range of dif-
ferent reactions. This should stimulate experimental veri-
fication.

Let us start with a ternary mixture (components 1, 2,
and 3) existing in two phases, which we will label a and 3.
The chemical reaction allowed is of the form 12 + 3.
We are interested in the singularities (if any) of the num-
ber densities near the critical point of a considered system.
Our model describes, for example, a one-component sys-
tem (say, HI) near its liquid-gas critical point (~150 K
for HI) dissociated into two species (2HI==H, + I,). The
question is, how will the concentrations of the reagents
vary near the critical points of a three-component system?
In the case of a small equilibrium constant of reaction,
these critical points are slightly shifted from the critical
point of a one-component system.

Denoting by u¢ and u? the chemical potentials of the
ith component in each phase, we can write for an equili-
brium state

p=pf, us=ub, p§=pf. (1)
The condition of chemical equilibrium (the law of mass

action) has the following form for reactions considered
here:

pf—p§—pg=0. @

We omit the chemical equilibrium condition for a reaction
taking place in the second phase ,u? —,uzﬂ —,ué’ =0 because
the latter is a linear combination of Egs. (1) and (2) and,
therefore, does not result in any additional restrictions.

We choose as independent variables the mole fractions
of the first and second components in each phase x{, x¥,
x'?, and x5, as well as the temperature T and the pressure
P, which are the same in both phases. For these six vari-
ables we have the four equations of Egs. (1) and (2); i.e.,
the system had two degrees of freedom, in accordance
with the Gibbs phase rule (f =c + 2—p —r; in our case,
c=3,p=2,and r=1).

We are interested here in equilibrium properties. There-
fore, the thermodynamic path we choose is a displacement
along an equilibrium line. Moreover, we consider an
equilibrium process under constant pressure, in accor-
dance with the usual experimental procedure where the
temperature is changed (isothermal changes of pressure
can be considered analogously).

Equations (1) and (2) have to be satisfied along the
equilibrium line; hence,

d (S —pf)=d (p§—pd)=d (p§—ub)
=d(uf—ps—ps)=0. (3)

Using x%, x4, x8, x5, and T as independent variables, and
adopting the notations

P =u%P
ax Jf”B P,T,x;x; v
a,B
ou; Eyq’ﬁ
oT P,xj ir >

we can rewrite Egs. (3) in the following form:
uidx§ +uhdx§ —phdxf —ptdxf =Wy —pir)dT ,

B

p5dx§ +psdx —pbidx? —pbdx 8= b —pusr)dT

2
(4)
p$idx§ +usdx§ —pfidxf —phhdxf = —usr)dT ,
(11 —p5 —p5)dx T +(pfh—psH—p%)dx s
= —(ur —pSr —pS7)dT .
Dividing both sides of Egs. (4) by dT we can solve the

358 ©1983 The American Physical Society



28 SINGULARITY IN THE DEGREE OF DISSOCIATION NEAR A . ..

inhomogeneous system of equations for dx,f”ﬁ/dT and
find

dx®8
dT

where EL is the equilibrium line, A is the determinant of
Egs. (4), and A®# is the same determinant where one of
the four rows (namely, that containing dx/?) is replaced
by the row of coefficients from the right-hand side of Egs.
(4). Solutions for different dx?/dT and dxf/dT are quali-
tatively similar and, therefore, we omit superscript and
subscript indices in our following discussion.

The 4<4 determinant A can be simplified by an expan-
sion in its four line elements, two of which are zeros. In
doing this we wuse the Gibbs-Duhem relations’

;zl(n}”ﬁdy?'ﬁ-{—S“’BdT)zo, where n}"ﬁ are the num-
ber of moles of species j in the a or B phase. After some
tedious transformations, we obtain

n¢nf—nf)—n(nf—nb)—n%nf—nb)

n§nf

ARP
= , (5)
EL, P =const A

X [#71,“‘212‘(H‘fz)z][#?lﬂgz_(ﬂfz)z] . (6)

It can be seen from Eq. (6) that, apart from the case of
some special connection between the mole numbers, A
vanishes when each of the two last factors on the right-
hand side of Eq. (6) vanishes, [u%Pusf—(u%P)?1=o0.
However, the latter formulas are merely the boundary of
stability of a ternary mixture in a or B phases.® Equation
(6) can be rewritten in the equivalent form

ug?
2| =o. 7
~ 0 ™

aB aB_ ( aBy2__
BT 2 —(ui3h) = TP,

The line of the critical points is determined® by Eq. (7) and
by the vanishing of the next derivative of u$"® with respect
to x.

On the other hand, it is easy to check that the numera-
tor in Eq. (5) is not singular at the critical point. Thus, we
conclude from Egs. (5)—(7) that x-T curves have an infin-
ite slope at the critical point.

Let us now find the temperature dependence of the
derivative dx /dT as the critical point is approached,
which according to Eq. (5) will be determined completely
by that of A;i.e., by the limiting behavior of the derivative
entering Eq. (7). This equation describes, in fact, the criti-
cal behavior of a binary mixture at constant chemical po-
tential p,, reflecting the well-known “isomorphism princi-
ple”: The stability conditions for a ternary mixture are
identical to those of a binary mixture under an additional
constraint, namely, ;| =const.

Combining two asymptotic expressions for the suscepti-
bility when =0 and x=0, respectively, we write the fol-
lowing interpolation formula:

P

ax =apT+at’+axtI4 oo ®

T,P,[l.l

where a;, a,, and a3 are constants, ¥ and 8§ are the so-
called critical exponents, and p, ¢, and x are the dimension-
less pressure, temperature, and concentration, respectively,
which are measured from their critical values
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_P—P)
p= Pc(}t1) ’

The critical parameters now depend upon y;, and in or-
der to obtain experimentally observable quantities, we
have to pass, say, from T,(u;) to T,(x) according to the
following relation:

_T—Tu)
- Tc([l'])

_ R —xc(ul)
- xc(ul)

dT.
T (u)=T.(x)+ d—,u,:A'ul ’

taking into account that u,;=u,(P,T,x). By so doing, we
can obtain three different results®: (1) In the major por-
tion of the experimentally accessible region on the phase
diagram, critical indices remain unchanged; (2) inside the
“renormalization region,” these indices will be multiplied
by the factor 1/(1—a)~1.12; and (3) some cases, like
points of singularity of the function T, =T,(u), need spe-
cial consideration.

We restrict ourselves to the first case, which is the sim-
plest, and consider therefore the critical parameters ap-
pearing in Eq. (8) as p., T,, and x.. Note that the second
case could bring an increase of 10% of the critical indices.

The temperature dependence of the susceptibility in Eq.
(8) is determined by the thermodynamic path to the criti-
cal point. In our case, this path can be found from a
natural assumption that the chemical potential is a smooth
function of pressure. Integrating Eq. (8) with respect to x,
we  obtain  p~a;p¥x +ayt?x + (a3/8)x3+a,t +asp
+ -+ . Then, if p is a smooth function of p, the com-
parability of the other variables has to be t ~x%. Substi-
tuting the latter relation into Eq. (8) and keeping the ¢
term with the smallest power, we obtain for P =P,

I,

o ~t(5—1)/8 . 9)

T,P

Using now Egs. (9), (8), and (7), we obtain finally for the
change in composition in the vicinity of the critical point

T_1, |~6-8
T,

ax

aT (10)

EL, P=P,

The numerical value of the critical index & is 8~5, very
close to the critical point (within the so-called “Ginzburg
region”’), or =3 outside this region but still not too-far
from the critical point.

Returning now to the isobutyric acid and water mixture
we see that, as a result of the chemical reaction, this sys-
tem consists of four components: HA, H,0, 4~, and
(H;0)*. (We neglect all possible association of the water
molecules.) However, the electroneutrality condition re-
sults in an important constraint, namely, that the numbers
of moles of the positive and negative charges must be
equal in each phase n§=n§ and ng =n4ﬂ. These restric-
tions bring us back to the previously considered case of a
three-component mixture. It can easily be shown that the
boundary of stability of the four-component mixture with
the condition of electroneutrality, in fact, coincides with
that of a ternary mixture. On the other hand, the isobu-
tyric acid and water mixture can be described in each
phase by two mole fractions, say, x; and x,, while
x3=x4=(1—x,—x,)/2. Therefore, the equilibrium
equations will have the same form, Eq. (4), resulting in
Eq. (10). In summary, as the critical point is approached,
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the ion concentrations in the isobutyric acid and water
mixture and in similar systems increase in accordance
with formula (10); i.e., as [(T —T,.)/T,]'~®— 178 which
is [(T —T,)/T,1%%* within, and [(T —T.)/T.1%3* outside
the Ginzburg region.

Measurements of the charge concentrations would be
the most direct way to check our predictions. Note that
we have considered only the case of constant pressure. If
experiments are performed at constant volume, an addi-
tional renormalization must be made,® which will decrease
the singularity.

Comparisons

with electrical-conductivity —measure-

ments? are more problematic because near the critical-
point singularities of both the charge density and the mo-
bility must be considered. However, the predicted critical
indices do not appear to be inconsistent with the experi-
mental values given in Ref. 2.
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