
PHYSICAL REVIEW A VOLUME 28, NUMBER 6

Applications of the generalized Trotter formula

DECEMBER 1983

Hans De Raedt and Bart De Raedt
Physics Department, University ofAntwerp, Universiteitsplein 1, B 26-10 Wilrij k, Belgium

(Received 30 December 1982; revised manuscript received 14 June 1983)

We study the properties of Suzuki's systematic approximations to the exponential operator
exp( —PH) by calculating the thermodynamic functions of three simple quantum models. We

demonstrate that the path-integral representation of the partition function obtained from these ap-

proximations can be simplified and made more accurate by constructing Hermitian versions of
Suzuki's expressions.

I. INTRODUCTION

The Trotter formula'

e
—P(A +B) li (

—PA Im 13Blm )m—

is a convenient starting point for deriving path-integral
representations of the partition function

Z =—Tre (1.2)

Z =Tr(e tt~r~e ttttr~)~ (1.3)

of a quantum (lattice) model defined by the Hamiltonian
H=A+B. In those cases where it is difficult to write
down the classical Lagrangian, the Trotter formula can
still be used to construct several equivalent but distinct
path-integral representations of the partition function. In
particular Suzuki showed that the partition function of a
d-dimensional Heisenberg spin- —, model is equivalent to
the partition function of a (d+ 1)-dimensional Ising model
with complicated four-spin interactions. Formally this Is-
ing model partition function is one of the path-integral
representations of the Heisenberg model. Using a slightly
modified version of Suzuki's approach, Barma and Shas-
try derived path-integral representations for fermion lat-
tice models and also showed that the eight-vertex model
is one of the path-integral representations of the spin- —,

chain. In addition it has been demonstrated recently
that by using these path-integral representations it is pos-
sible to calculate the thermodynamic properties of spin
and fermion lattice models. The complexity of the path-
integral representation mostly but not always requires a
Monte Carlo simulation technique to calculate estimators
of the energy, specific heat, and correlation functions.
The basic idea of this computational technique is to calcu-
late the properties of the approximate model defined by

f (A B) e
—rAe rB— (1.4)

f2(A, B):—e '"e ' e
r C

(1.5)

model one has to choose a particular representation for
the wave functions. The second problem concerns the rate
of convergence of the approximant (1.3) as a function of
the number of time slices m. This is equally important
for practical applications because the computation time of
the simulation is at least a linear function of m. Moreover
up to now only the simplest form of the Trotter formula
has been used in numerical calculations. Therefore, it is
worthwhile to examine the possibility of using more com-
plicated forms of the Trotter formula in order to improve
the accuracy of the small-m approximants and the rate of
convergence.

The aim of the present paper is to study the properties
of the generalized Trotter formula derived by Suzuki. '

To demonstrate that it is possible to go beyond the sim-
plest form (1.1) we have chosen two simple exactly solv-
able quantum models for which numerical results can be
obtained without the use of a Monte Carlo method. In
this way we do not encounter one of the fundamental
problems discussed previously. We show that with a mod-
est amount of extra analytic work, considerable improve-
ment can be achieved by modifying Suzuki's generalized
approxim ants.

The basic step in the construction of approximants to
the exponential operator exp[ —r(A+B)] is to find a prod-
uct of exponential operators which is correct up to a cer-
tain power of r:P/m Stra—ightfor. ward algebra yields the
results

e ~"+ '=ft(A, B)+O(r )=fi(A, B)+O(r )

=f3(A, B)+O(r ),

and to study the convergence of the results as a function
of m. The number of products m plays the role of the
number of (imaginary) time slices that appears in the path
integral. ' '" In practical applications two different fun-
damental problems arise. The first one is the numerical
problem of subtracting two large numbers' (if P/m is
small) and reflects the quantum nature of the problem. It
is due to the fact that in order to simulate the quantum

where

and

C2=[B,A]/2,

C, =[[B,A],A+2B]/6 .

f (A B)——r& —r& &e 3 (1.6)
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We use the expressions (1.4)—(1.6) to define the systematic
approximants to the partition function

Z~ '—:Tr[[f~(A,B)] ], a=1,2, 3 . (1.9)

Suzuki' shows that Z~+" converges faster to Z than
Z . However, the approximants (1.4)—(1.7) are not very

(a)

well suited to calculate the properties of physical systems
because they lead to non-Hermitian approximations to the
Hermitian operator exp( —rH). We avoid this problem by
introducing the Hermitian approximants

e ""+ '=g2(A, B)+O(r )=g4(A, B)+O(r ),
(A B) e rA/2—e rBe —rA—/2 (1.10)

(A B)—e rA /2~ —rB/2 —3 e rB/2 —rA /2—
e4 ~ =e e e e e

Z' '= Tr[ [g4(A, B)] j . (1.12)

Comparing g2 with fi and g4 with f3 we see that re-

quiring the product of exponential operators to be Hermi-
tian automatically leads to more accurate approximations.
Obviously, the artition function obtained by using g2 is
identical to Z" because of the cyclic permutation proper-
ty of the trace. This leads to the conclusion that although

fi is correct up to order r, Z"' is correct up to order r
The operator C2 is anti-Hermitian (C2 ———C2) and there-
fore the Hermitian equivalent of f2 is identical to g2. For
the same reason C2 does not appear in g4. It can be
shown that with or without factors containing C2, g4 is al-

ways correct up to fourth order in r. The use of Hermi-
tian approximants is important for practical applications.
The main advantage is most easily seen by comparing f&
and g4. Although the expression for g4 is simpler than
that of f3, it is more accurate. We use g4 to define a
fourth approximant to the partition function

Although it is possible to derive higher-order approxima-
tions in a systematic manner, the four different approxi-
mate partition functions introduced above are sufficient to
illustrate the salient features of the approach.

II. SPIN-2 MODEL

We consider a simple spin- —, model with Hamiltonian

H=A+8,
3 = —ho',
8= —ao",

(2.1a)

(2.1b)

(2.1c)

where tr (a=x,y,z) are the usual Pauli matrices. This
Hamiltonian is easily diagonalized and the thermodynam-
ic quantities may be calculated rigorously from the parti-
tion function Z=2cosh[P(h +a )'/]. From Eqs. (1.7)
and (1.8) we find

C2 ———

omaha",

C3 ———,
' ah(2atr' —ho ") .

(2.2)

(2.3)

—r C3/4 Hah 2~~~2 P2hn ~/3 Hah 2

e =e e e (2.4)

because this simplifies the calculation and the result for g4
without affecting its correctness up to fourth order in r
The results for the different approximants of the partition

function may be summarized as follows:

We may represent the exponential factors appearing in the
expressions for f and g as 2X2 matrices, because the
usual spin states "up" and "down" form a complete set.
The approximants of the partition function Z' ',

a=1, . . . , 4 are evaluated by diagonalizing the matrices

f~ and g . Here we should mention that for the calcula-
tion of g4 we factorized

TABLE I. The free energy of the spin-2 model H= —ho'' —ao" obtained from (2.5) using (2.7)

(F"'), (2.8) (F' '), (2.9) (F"'), and (2.10) (F' ') as a function of the number of time slices m. The free en-

ergy F ' ' is obtained by interchanging A and B The inver.se temperature P=1, h=1, and a=2.

1

2
3
4
5

6
7
8

9
10
12
14
16
24
32
64

128

F(l )

—2.4519
—2.3136
—2.2784
—2.2652
—2.2589
—2.2554
—2.2533
—2.2520
—2.2510
—2.2503
—2.2494
—2.2489
—2.2486
—2.2479
—2.2477
—2.2475
—2.2474

F(2)
m

—1.0714
—2.4211
—2.3538
—2.3130
—2.2911
—2.2784
—2.2704
—2.2652
—2.2615
—2.2589
—2.2554
—2.2533
—2.2520
—2.2494
—2.2486
—2.2477
—2.2475

F(3)
m

0.0000
—1.9327
—2.1616
—2.2180
—2.2350
—2.2413
—2.2441
—2.2455
—2.2462
—2.2466
—2.2470
—2.2472
—2.2473
—2.2474
—2.2474
—2.2474
—2.2474

F(4)
m

—3.3477
—2.3060
—2.2581
—2.2507
—2.2487
—2.2481
—2.2478
—2.2476
—2.2475
—2.2475
—2.2475
—2.2474
—2.2474
—2.2474
—2.2474
—2.2474
—2.2474

F (4)
m

—3.0049
—2.2878
—2.2550
—2.2498
—2.2484
—2.2479
—2.2477
—2.2476
—2.2475
—2.2475
—2.2475
—2.2474
—2.2474
—2.2474
—2.2474
—2.2474
—2.2474

—2.2474 —2.2474 —2.2474 —2.2474 —2.2474
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TABLE II. The energies E'",E' ' and the specific heats C'",C' ',C' ' of the spin-2 model

H= —ho' —ao" as a function of the number of time slices m. The inverse temperature P= 1, h=1,
and a=2.

1

2
3
4
5

6
7
8

9
10
12
14
16
24
32
64

128

E(I )

—2.6896
—2.3780
—2.2790
—2.2398
—2.2208
—2.2102
—2.2038
—2.1995
—2.1966
—2.1945
—2.1918
—2.1902
—2.1891
—2.1871
—2.1864
—2.1858
—2.1856

E(4)
m

—6.9972
—2.4191
—2.2072
—2.1837
—2.1805
—2.1806
—2.1813
—2.1820
—2.1826
—2.1830
—2.1837
—2.1842
—2.1845
—2.1851
—2.1853
—2.1855
—2.1855

( (1)

0.7026
0.5432
0.3952
0.3266
0.2914
0.2714
0.2590
0.2508
0.2451
0.2411
0.2357
0.2324
0.2303
0.2264
0.2251
0.2238
0.2234

( (4)
m

14.0756
1.3944
0.3768
0.2498
0.2241
0.2180
0.2169
0.2172
0.2178
0.2185
0.2196
0.2205
0.2211
0.2223
0.2227
0.2232
0.2233

~ (4)
m

—43.9606
—0.8520

0.1284
0.2315
0.2456
0.2450
0.2420
0.2389
0.2364
0.2343
0.2313
0.2294
0.2280
0.2255
0.2246
0.2236
0.2234

—2.1856 —2.1856 0.2233 0.2233 0.2233

Z(a) (g(a))m+ (g(a))m

g(a) X(a)+ [(X(a))2 I])/2

X "=cosh(rh)cosh(ra),

X '=cosh(rh )cosh(ra)cos(r ha)+sinh(rh )sinh(ra)sin(r ha ),

(2.5)

(2.6)

(2.7)

(2.8)

4r 2a~J' '=cosh rh 1—
3

cosh ra 1+ cos(r ha )

4r a+sinh rh 1—
3

2r h
sinh ra 1—

3
sin(7. ha ), (2.9)

3 2h
X =cosh(7 h )cosll

3

rh
cosh ra 1+

6
ra h—sinh(rh )sinh

3
(2.10)

From the above results for Z' ' the approximants
F' '= —(1/p)lnZ' for the free energy, E '= —(()/
()P)Z for the energy, and C—: P(r)/r)P)E' f—or the
specific heat may be obtained in a straightforward
manner.

Results for F' ', for P= 1, h = 1, and a =2 are displayed
in Table I. As might be expected from our discussion in
Sec. I, F' ' does not yield any improvement compared to
F"'. The results of the simplest approximation are even
slightly better. Going to higher approximants, the rate of
convergence rapidly increases and our results demonstrate
that it is possible to obtain good estimates of the free ener-

gy even for small m values. The approximant F corre-(4)

sponds to an F' ' where we have interchanged the role of
A and B. This choice for A and B yields better results and
this is generally true for a & h whereas for a & h our first
choice is better. This clearly demonstrates that the choice
of the representation and the way of partitioning the
Hamiltonian are related and a careful examination of the
different possibilities is necessary. In Table II we show

some results for the energy and specific heat approxi-
mants. Whereas C~ ' is obtained in the usual manner by
taking derivatives of Z' ', we calculated C' ' using the
identity C=P ((H ) —(H) ), which gives

~[4]
=p2[h +a (E 4

) ] (2.11)

As the specific heat is essentially a second derivative with
respect to p of the partition function it is understandable
that especially for this quantity the gain in accuracy when
using higher approximants is considerable. When m is
sufficiently large the energy and free-energy approximants
converge to the exact value from below. It is important to
note that for small m values the energy is smaller than the
free energy which is of course an unphysical result. This
indicates that in order to get meaningful results one
should go to higher m values. For most applications the
Trotter formula is used in combination with the Monte
Carlo simulation technique. The Monte Carlo techniques
used in recent work ' are not suited to calculate the
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TABLE III. The free energy F'", energy E ", and specific
heat C" ' of the harmonic oscillator as a function of the number
of time slices. The inverse temperature P=5 and the oscillator

frequency co=1. For small m the free energy is larger than the
thermal energy.

C2 ———iso (xp+px)/4,

C3 ——co (2p —co x )/6 .

(3.1)

(3.2)

The approximants Z' ' are calculated in the coordinate
representation, using the well-known relation

1

2
3
4
5

6
7
8

9
10
12
14
16
24
32
64

128

F(1)

0.3219
0.4160
0.4530
0.4703
0.4796
0.4850
0.4884
0.4907
0.4923
0.4935
0.4951
0.4960
0.4966
0.4977
0.4981
0.4985
0.4986

E(1)

0.2000
0.3220
0.3923
0.4316
0.4545
0.4687
0.4779
0.4842
0.4887
0.4920
0.4964
0.4991
0.5008
0.5041
0.5053
0.5064
0.5067

C(1)

1.0000
1.1338
0.9630
0.7692
0.6198
0.5134
0.4380
0.3838
0.3439
0.3139
0.2729
0.2470
0.2298
0.1975
0.1859
0.1746
0.1717

(x ~e
' ~x')=(27m ) (3.3)

Z"'= 2~r 1++
3 12 3

—m/2

m

X dXje (3.4a)

In contrast to the spin model, the non-Hermiticity of C2
now cornplicates the expressions in such a way that a cal-

culation of Z' ' and Z' ' seems to be out of the question.
Consequently the practical value of non-Hermitian ap-
proximants like those given by Eqs. (1.5) and (1.6) may be
rather doubtful. The evaluation of Z' ' however is
straightforward in principle, though tedious. We find

0.4986 0.5068 0.1707 where

free energy. ' This is probably the reason that this anom-

aly was not noted before. It shows however that using the

Trotter formula without studying the convergence as a
function of m may lead to erroneous and unphysical con-

clusions.

S(Ix, ])=2r ' + 1+
3

3

III. HARMONIC OSCILLATOR X Q(xj +xjxj+i),
j=1

(3.4b)

As a second model we consider a single harmonic oscil-

lator H=A+B with A=co x /2 and B=p /2. For C2

and C3 we obtain
where /=co r /2. The m-dimensional integral (3.4) can
be evaluated by performing a Fourier transformation with
respect to the imaginary-time variable j. The final result
reads

TABLE IV. The free energy F' ', energy E' ', and specific

heat C' ' of the harmonic oscillator as a function of the number

of time slices. The inverse temperature P= 5 and the oscillation

frequency co=1. The approximation (3.5) is only meaningful if
13co/rn & 1.

1 —cos
k=1

2~k

5

6
7
8
9

10
12
14
16
24
32
64

128

F(4)
m

0.4888
0.4940
0.4961
0.4972
0.4977
0.4981
0.4984
0.4985
0.4986
0.4986
0.4986
0.4986
0.4986

0.4986

E(4)
m

0.4571
0.4834
0.4943
0.4995
0.5023
0.5038
0.5054
0.5060
0.5063
0.5067
0.5068
0.5068
0.5068

0.5068

C(4)

1.2055
0.6473
0.4227
0.3168
0.2613
0.2299
0.1992
0.1860
0.1797
0.1725
0.1713
0.1708
0.1707

0.1707

6 36 18
—1/2

108
(3.5)

The expression for Z' ' is obtained by retaining in Eq.
(3.5) only the term linear in P. Some results are given in
Tables III and IV. Concerning convergence properties we
may draw the same conclusions as for the spin model.
For small m values we again observe that the energy ap-
proxirnants are lower than the free-energy approximants.
From Eq. (3.5) we see that the argument of the square
root can become negative for large values of tt, and there-
fore the lowest m values do not appear in Table IV. , Obvi-
ously this is no limitation whatsoever because useful re-
sults can only be expected for co~( 1.
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IV. ANHARMONIC OSCILLATOR (4.1c)

C3=f+p g+gp

f=—„[V' I —2(V"') ],
(4. 1 a)

(4.1b)

As a nontrivial example we consider the one-
dimensional motion of a particle moving in an arbitrary
potential V(x). Choosing A = V(x) and B=p ~/2 we have

For the explicit evaluation of the matrix element

(x
I
g4(A, B) ly & we replace exp( —r C, /4) by 1 —r C, /4

in (1.11). The resulting modified form for g4 (A, B) is

correct up to the same order in 7 as the original result

(1.11) and thus a priori it is an equally good approximant.
Assuming that f=f(x) and g=g(x) straightforward ap-

plication of the identities

&x I' ""f ""ly&=(x le ""ly& 2

777

' 1/2
QO 2 x+y

dz f(z)exp ——z—
00 7 2

(4.2a)

""(p'g+gp')e "'"Iy&=— &x le ' "ge ' "ly&a
B7

(4.2b)

leads to an analytic expression for (x lg4(A, B) ly & in
terms of the coordinates x and y only, provided that the
integrations in (4.2) can be carried out analytically. Obvi-
ously this is the case for the most commonly used poten-
tials such as polynomials, exponentials, and trigonometric
functions of the position operator. The approximant Z' '

then reads

m/2

the statistical errors on the kinetic energy grow rapidly
when going to higher m values, because the kinetic energy
is obtained as 1/7 minus a quantity which is of the same
order of magnitude and which has a statistical error be-

cause it is gotten by Monte Carlo sampling. ' Thus the
fact that for the higher approximants smaller m values are
sufficient automatically leads to a reduction of the statisti-
cal errors.

z."'= 1

27T7 f gdx, e'
j=1 V. CONCLUSIONS

where

X g F(xj,x +t)
j=1

(4.3a) We have used the generalized Trotter formula to obtain
systematic approxirnants for the thermodynamic func-
tions of quantum systems and we studied their conver-

m

S ' = g (x) —x, ~ )) +r V(xj )
27

(4.3b)
—0.8

Obviously the form of F(xj ~~+&) depends on the choice
of V and we reobtain the simplest approximant Z' "by re-
placing F(xJ~J+, ) by l. In contrast to the examples
treated in the previous sections it is very difficult, if not
impossible to evaluate (4.3) analytically unless the poten-
tial is harmonic. However, we can calculate estimators
for the thermodynamic functions by using the standard
Monte Carlo method. ' To demonstrate that this is possi-
ble we have done some simulations for the case of a
double-well potential V(x)= —2x +x /2. In Fig. 1 we
compare the energy as obtained from the simple approxi-
mant fF(xj~j+~)=1] and (4.3) for P=5. We also calcu-
lated the (numerically) exact result for the energy,
E(P=5)= —0.7997, by using the exact eigenvalues of the
Hamiltonian. ' From Fig. 1 we conclude that E' ' con-
verges much faster than E"'. The additional CPU (cen-
tral processing unit) time needed to calculate the last fac-
tor in (4.3a) is onl a small fraction of the total CPU time
for simulating Z' ', and therefore use of the more compli-
cated form (4.3a) leads to an important reduction of the
CPU time. In the case of Monte Carlo simulations of
quantum systems the use of the higher approximants has
an even more interesting advantage. It is well known that

—0.9

CO 40 20 ITI

FIG. 1. Simple (E"') and improved (E' ') approximants to
the energy of a particle in a double-well potential as a function
of the inverse of the number of imaginary time slices (1/m). Ar-
row denotes the exact result for the energy at the inverse tem-

perature P= 5. Solid lines are guides to the eye only.
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gence. We found it especially fruitful to construct Hermi-
tian approximants because this simplifies calculations
without affecting the convergence rate. Also a good
choice of decomposing the Harniltonian and the choice of
the representation may affect the complexity of the calcu-
lations and the convergence. We demonstrated that the
use of the Trotter formula without a careful study of its
convergence as a function of m, may lead to unphysical
results. Whereas up to now, for the study of many-
particle systems the Trotter formula was only used in its

simplest form, our analysis shows that using better ap-

proxim ants can improve the results considerably, or
equivalently in the case of a Monte Carlo approach it may
reduce the number of "time slices" m and thus the
amount of computer time needed to get equally good re-

sults.
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