PHYSICAL REVIEW A

VOLUME 28, NUMBER 6

DECEMBER 1983

Topological derivation of nonlinear convection-diffusion equations
using network theory

Leonardo Peusner
P.O. Box 380, York, Maine 03909
(Received 15 March 1983)

Convection-diffusion equations and equations for concentration profiles are derived using a sim-
ple network-theory technique which shows the bifurcation of the solutions when J,=0.

I. INTRODUCTION

Magenold and Solf! derived an equation that gives the
coupling between solute and volume flows in a slab or
membrane. By starting with the (apparently) linear local
equation
Oc
ox ’
in which Py, is the local permeability and o the local re-
flection coefficient, a nonlinear global solution of the form

JS=C(x)(1——U)Ju+P(x) (1)

Co CL
Jy=

hJ, 2)

l—e 7
is obtained. This expression gives the steady-state flow of
solute, J; for a membrane of thickness L kept between
concentrations ¢, and ¢(;). The parameters 4 and A in
Eq. (2) are given by

h=(1—0)/wRT
and
A=hL /P(x) .

This equation has been used many times, including in
Teorell’s analysis of his own membrane oscillator.> Mi-
kulecky® points out that this equation is periodically
rediscovered, and reviews close to a dozen references of
cases in which it has appeared in different contexts. He
also shows that the point J,=0 is a bifurcation point, and
that it is smeared out by Kedem-Katchalsky’s lineariza-
tion,* thus leading to discrepancies in terms of reciprocity
assumptions. Moreover, he also gives an equation for the
concentration profiles,

1 euux
== (3)
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in which x is normalized in terms of a unitless quantity
and the total length of the membrane is 1.

The purpose here is to derive proper global equations
using the (linear) methods of network theory and simple
series one ports.>~° We shall show that (1) this method
exposes the bifurcation at J,=0 and (2) Eq. (2) actually
consists of fwo separate equations, one for J, >0, one for
J, <0.
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II. DISCRETE REPRESENTATION
OF THE CONVECTION-DIFFUSION PROBLEM

We begin the analysis by subdividing the slab or mem-
brane into N segments so that the local equations can be
represented by the difference equations

J_\-=Cthv+(C,'—C,'+ )PA ’ (4)

in which h =(1—0), P, is the local permeability of the
subregion, and we have assumed the volume flow orig-
inates at i and moves toward i (the plus-x direction).
Equation (4) cannot be represented by a simple linear
one-port resistor as it stands because—although it can be
geometrically represented by a line—it is not a linear
operator. The reason for this apparent paradox is that the
presence of the constant term J, introduces either a posi-
tive or negative bias at i—depending on the direction of
J,—which is modulated by the local concentration at i,
but not related to ¢; . However, Eq. (4) may be rear-

ranged to yield the expression
J,=PA(1+hJ,,/PA)[Ci—C,'+/(1+hJu/PA)] . (5)

Equation (5) can now be modeled by a linear one-port
resistance of value

1 1
Ry=|——F"+|—
= ' 1+hJ,/P, | P, (©)
placed between potentials of values ¢; and

c,-+/(1+hJ,,/PA ), as indicated in Fig. 1. Note that the

values of the resistance and the potentials vary both with
position and J, and that, moreover, the potentials are not
simple concentrations, but modulated quantities.

This process may be continued on the whole slab by
taking small resistive segments and matching the potential
at the end of one resistance with the next, thus ensuring
continuity of the process and allowing a single flow J; to
pass through all resistances in the steady state. We obtain,
in the steady state, a string of resistances given by the
series,

RY=[P(1+hJy /Py, ™
while the concentration fits the series described by the

typical term
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FIG. 1. Basic unit slab representing the convection-diffusion
equation when the bulk flow J, goes from left to right. The sys-
tem may be represented by a linear resistance with convective-
diffusional flow J, going through and end potentials given by
convection-modulated functions of the concentration. Notice
that when J, =0, the resistance simply reduces to an inverse per-
meability, R (=1/P), while the potential difference across the
resistance is simply given by the difference in concentration at
the end points of the slab.

Cor .- [ci/(1+hT, /P, ..., [en/(1+hJ,/POM],
(8)

as shown in Fig. 2. The total convection-diffusion resis-
tance may be found by adding individual series com-
ponents. If we define the term

S S
F - 1+hJ,/P, "’

the total resistance becomes

IS SR I
FtEt Ut

F ) 9)

R;otal=( I/PA )

a geometric progression which reduces to

R;Otal — 1 1 _ 1
hJ, (14-hJ, /PN

(10)

The potential difference (force, X) between the end
points is given, according to (8), by

X =[co—cy/(1+hJ, /PN,

so that the resultant steady convection-diffusion flow is

(11

R/ Rz Rn-/ Rn
% < G ¢ Cn-1 n
9
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FIG. 2. The complete, global solution when several unit slabs
are connected together is found by matching end potentials at
neighboring slabs and changing the values of the resistances ac-
cordingly. Any element in the concentration series is given by
¢;=c;/(1+hJ,/P,), in which ¢; is the potential at the given
node. Note this potential equals the concentration at that point
when the convective flow vanishes. The resistance between any
two potentials is given by R; =[P,(1+hJ,/P4)]7".
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Ji =(coFN—cy)hd, /(FN—1), (12)

= —R‘W
in which F =(1+4hJ,/P,).

In the case in which the convective flow goes from right
to left, the potentials must be redefined, starting from the
right-hand side. The overall force X across the slab is
then given by

X,=[C0/(1+hJ,,/PA )N]—CN
=(co/FN)—cy ,

while the total resistance still has the value (10). It then
follows that the convection-diffusion flow is

CO—F NCN
* Ry (1/WI)FN—1)
Note that Egs. (12) and (13) represent two distinct solu-
tions, thus showing the bifurcation at J,=0. This bifur-

cation disappears in the limit of the Magenold and Solf
approximation considered next.

J X (13)

III. LIMIT OF DOMINANT DIFFUSION RANGE
MAGENOLD AND SOLF EQUATIONS

We can introduce the approximations
(14x)¥=1+Nx +N(N —1)(x?/2!)
+N(N—=1(N=2)(x3/3)+ -+

for (x << 1) and

eM~14Nx +Nx2/21+N3x*/3!

4o

For large N and small x it follows that

eM~(14x)V,

so that in the approximation J, /P, << 1, when diffusion is
dominant,

(1+hJ, /PN e™ "4 (14)
By introducing the normalization condition®
P,/P,=L /N, Eq. (10) then simplifies to
1—e
Rioal __1—€¢ , 15
4 hJ, {13

while the force X is given by

v

-
X =co—cre ,

in which ¢; is the concentration at x =L (the right-hand
side of the slab). It then follows that the steady flow is
given by
(co—cLe _uv)th
(1—e ™y

and further rearrangement leads to the expression

I
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(4 c
Jo= | — =+ — W, .
l—e " 1l—e

(16)

When the volume flow is in the negative direction, the
potential difference becomes

[co/(1—hJ, /PN —cy=coe ™" —c; 17

while the resistance is still given by (10), with negative J,:

M,
Rtotal_ l—e ™

=T (18)

The convection-diffusion flow for negative J,, is
A

X coe ‘—ct
=—=—F(—hJ,),
Rd 1 M, ( ”)

v

Is
—e

which leads, after further rearrangement, to

Co CL
v, T AJ

v

Js=

— hJ, . (19)
1—e

While Egs. (16) and (19) give the same analytical ex-
pression for positive and negative J,, the network deriva-
tion shows, however, that they arise from different sets of
global equations having different boundary conditions (po-
tential differences). The two solutions are, in fact, distinct
and correspond to the bifurcations for J, <0 and J, >0, as
mentioned by Mikulecky.?

IV. CONCENTRATION PROFILES

The network can also be utilized to find the distribution
of concentration profiles. If we wish to find the concen-
tration at a point x (i in the network) relative to the left-
hand-side concentration ¢, for example, we first note that
node potentials are not concentrations, but are given in-
stead by

Ci —AJ x

v

i

i1

T (14hJ,/P,)

To find the potential at any point we use the voltage di-
vider relation
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$o—¢i R /R (1—e "%
¢0"'¢n ! total (1—-—8—””)
This leads to
A —a, (1—e M%)
(Co—C(x)e v )=(C0——CL9 u)—_k‘,— .
(1—e )

Rearranging and solving for ¢, this expression can be
written as

AMyx
Myx (e U —1) A,
cm=coe " ——55—(coe "—cp).
(e "—1)
Further rearrangement leads to
A,
(1—e™"%)
C(x)=Co—(Co—CL) [W;
(1—e™)

in agreement with previous results [Eq. (3)].

V. DISCUSSION

From the above analysis, it is clear that the network ap-
proach is consistent with analytical results and, in addi-
tion, it brings out topological information which is buried
or smeared in the analytical treatment.

Note that a key step in solving the convection-diffusion
equations was to match the potentials and flows at neigh-
boring regions, thus establishing a unique potential func-
tion at each point. Also, we should point out that the re-
sults obtained are consistent with the simple diffusion
problem when J, =0; in that limit the potentials become
concentrations and the resistances reduce to diffusion
resistances—i.e., Fick’s law. The presence of the biasing
flow J,, on the other hand, distorts the linearity of dif-
fusional space and changes the linear problem into a non-
linear problem. These properties of the diffusion-
convection interaction would be completely buried if we
attempted to analyze it by linearization techniques.

Clearly, numerical results could be obtained easily from
the network representations (12) and (13). The error in-
volved in the discretization is treated in standard texts.!
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