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The cholesteric blue phases (BP I and BP II) can be modeled as cubic lattices of disclinations in a
cholesteric matrix. In an earlier paper we presented results of free-energy calculations for three

models with 0 (F4232), 0 (I432), and 0 (I4&32) space-group symmetry. In the present paper
calculations for a fourth model, also of 0 symmetry, are presented (we differentiate these models

as 0 '+' and 0 ' ', respectively). For a number of cholesterol derivatives we assign the 0 ' ' struc-

ture to the BP I, and the 0 structure to BP II, on the following evidence: For the case of equal

elastic constants the calculations show a crossover of the free energy, the 0 structure being lowest

at the higher temperatures, and 0 ' ' at lower temperatures. (However, the crossover may disap-

pear for other values of the elastic constants. ) The assignment is consistent with the observed BP I
and BP II lattice constants in terms of cholesteric pitch. There is excellent agreement between cal-

culated and observed intensities of the Bragg reAections. Some details of the observed Bragg-
diffraction spectra are also discussed.

I. INTRODUCTION

Thc cholcstcr1c blue phases afc stable 1n a narrow tem-
perature range, of the order of 1'C, immediately below the
clearing point of cholesteric liquid crystals. There has re-

cently been a renewed interest in these phases, from the
theoretical as well as the experimental aspects. (These
references will serve as a key to earlier work. ) The present
paper is a continuation of an earlier one, in which we
modeled the blue phases as a cubic lattice of disclinations.
In this model the material between the cores of the dis-
clinations is treated as uniaxial and characterized by the
Oseen-Frank elasticity equations, and the reduction in free
cncfgy stab111zlng thc blue phases 1s ascr1bcd to thc estab-
lishment of double cholestcric twist. For a detai1ed dis-
cussion of the model we refer to the earlier paper. In that
paper we also presented results of computer calculations9
of the free energy for three specific models, with 0
(P4232), 0 (I432), and 0 (I4i32) cubic symmetries. In
what follows we shall make frequent references to these
results, as well as to those in an earlier paper reporting
cxpcnmcntal fcsults. Bccausc 1t 1s imprRct1cal to fcplo-
duce here the many figures and graphs we shall refer to, a
reader with morc than a cursory interest should obtain
copies of Refs. 7 and 8. For short, we shall refer to them
as MS and MSB, respectively.

In the present paper we report free-energy computations
for a new model with 0 symmetry. In order to differen-
tiate, it from the earlier model of the same symmetry, we
shall, for reasons which will become apparent below,
designate it by 0 ' ', while the original, treated in MSB
will be referred to as 0 '+'. We then discuss evidence for
ass1gning spccif1c symI ctrics to the experimentally ob-
served blue phase I (BP I) and blue phase II (BP II) (blue
phase III, or "blue fog," does not exhibit a periodic struc-
ture and will not be discussed here). The experimental re-
sults used in the assignment are those given in MS and ap-
ply to cholesteryl nonanoate and to mixtures of cholesteryl

nonanoate and cholesteryl chloride. Though wc believe
these assignments may apply to many othex' systems
which behave in a similar manner, we have no proof that
this is indeed so.

Important evidence for specific assignments can come
from a comparison of observed and calculated intensities
of Bragg reflections. Optical structure factors for chiral
cubic space groups have been derived by Hornreich and
Shtrikman but they do not give quantitative intensities.
The latter have been calculated by Bcrx'eman" for our 0,
0, 0 '+', and 0 ' ' models, using computer solutions of
Maxwell's equations. We shall compare his results for the
various models with observed intensities in cholesteryl es-
ters. We conclude that, at least for the cholesterol deriva-
tives referred to above, the blue phase I is body-centered
cubic (bcc) with the 0 ' ' structure, while the blue phase
II is simple cubic (sc), with the 0 symmetry.

II. THE 0 ' ' STRUCTURE

A cubic structure with 0 symmetry was first proposed
by Hornreich and Shtrikman. ' As described in MSB, wc
set lip a dlrectoi iiiodel by fli'st coiisti'uctlng a teiisoi'

model of the required symmetry. Following Alexander'3
and Grebel, Hornreich, and Shtrikman this model is ob-
tained by superposing a suitable set of order parameter
waves, as follows:

where the q„are a set of reciprocal-lattice vectors, and
the Q~~ are determined by the symmetry group of the lat-
tice being studied. Expressions for the Q ii(r) for the
various lattice symmetries can be found in Rcfs. 3, 9, or
11. The director, n(r), is obtained by diagonalizing

Q~p(r) and choosing n(r ) to be the eigenfunction giving
the maximum positive (prolate) eigenvalue. This pro-
cedure is well defined, except on lines where there are two
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FIG. 3. Free-energy curves for the 0 ' ' structure for the case K&, ——2Eqq ——E33 Other details as for Fig. 2.
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FIG. 4. Calculated minimum free energy for the various
structures as function of temperature (T) relative to the clearing
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free energy of the ordinary (helical) cholesteric. The graphs are
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TABLE I. Comparison of calculated and observed relative intensities of Bragg reflections.

Reflection
number

sc
02

Miller indices
bcc

05 08
Observed

BP I BP II

Relative intensities'
Calculated'

05 08(+ ) 08(—)

100
110
111
200

110
200
211
220

(1)
0.54
0.20

& 0.05

(1)
0.29

& 0.05
& 0.05

(1)
0.30
0
0

(1)
0
0
0.05

(1)
0.01
0.13
0

(1)
0.53
0.22
0

'Intensities are normalized to give unity for the first reflection. Zeros for the calculated intensities indi-

cate values smaller than 0.001.
Observed intensities apply to cholesterol derivatives, and were obtained from the magnitudes of the

steps in the spectra of Fig. 4 of MS (Ref. 7) and a number of similar spectra, including some of longer

pitch material (cholesteryl nonanoate with up to 30%%uo chloride). Some details of the procedure are given

in Ref. 18.
'From Ref. 11.

values within the precision given. A comparison of the
calculated intensities with the observed ones will be dis-

cussed in the next section.

III. SYMMETRY ASSIGNMENTS

In this section we shall present evidence for the assign-
ment of specific symmetries to the BP I and BP II phase.

A. Theoretical predictions

The results of the computer calculations for the various
models are summarized in Fig. 4 for the case

+22 —K33 and in Fig. 5 for the case

E)) ——2E22 —E33. The curves give the calculated free en-

ergy as function of the temperature and were obtained
from Figs. 2 and 3 for the 0 ' ' model, and from Figs.
5—10 of MSB for the 0, 0, and 0 '+' models. We sim-

ply plotted the free energy at the minima of the curves in
the right-hand part of these figures, as function of the
T —T, (i.e., the temperature relative to the clearing point).
In a few cases the minima are just outside the plotted
range, and were obtained by extrapolation. Note that on

the energy scale used the helical cholesteric has zero free
energy.

Referring to Fig. 4 for the case E» ——E22 ——E33 it is
seen that the curves for 0 and 0 ' ' cross, the former
being the stable structure at the higher temperatures, and
the latter at the lower temperatures (at still lower tempera-
tures the helical cholesteric becomes stable). It is there-

fore suggestive to identify the BP I with the 0 ' ' struc-
ture. However, for the case E» ——2@22——E33p given in

Fig. 5, the 0 ' ' has the lowest free energy up to the
clearing point, and no BP I to BP II transition is predict-
ed. Note that for our simple model (and neglecting sur-

face terms) the relative stability of the various symmetries
(that is the relative vertical position of the curves in Figs.
4 and 5), depends only on the ratios of the elastic con-
stants. As discussed in some detail in MSB, changes in

the cholesteric pitch, in the absolute values of the elastic
constants (while leaving their ratios constant), and in the
enthalpy of transition introduce scale factors for the free
energy, for the unit cell dimension, and for the tempera-
ture, but otherwise leave the curves unaltered. We have
found no experimental values for the elastic constants for
cholesterol derivatives in the literature, no doubt because
their helicity makes measurements difficult. In nematics,

TABLE II. Comparison of calculated and observed wavelengths of the lowest-order Bragg reflection.
The wavelengths are given relative to that of the helical cholesteric, taken as unity.

Lattice constant (nm) Wavelength ratios
Calculated' Calculated Observed'

K]] —%22 —E33 E]] —2E22 —K33 E]f —E22 —E33 K]] —2E22 —%33 CH BP

Cholesteric
Q2
o'

08(+)
08(—)

BP I
BP II

125
147
213
213
238

125
154
238
213
222

(1)
1.18
1.20
1.20
1.35

(1)
1.23
1.35
1.20
1.26

1.27
1.10

1.40
1.24

(1) (1)

'Calculated values from Figs. 2 and 3 of the present paper, and from Figs. 5—10 of MSB. For the heli-
cal cholesteric the repeat distance is one-half of the pitch of 250 nm assumed in the calculations.
Ratios of the values in the first two columns, allowing for a factor of 1/V 2 for the bcc (0 and 0 )

(see text).
'Observed wavelength ratios of the lowest-order Bragg reflections for cholesterol derivatives (CH) and
for a mixture of biphenyl compounds (BP), from Refs. 7 and 14 and 15, respectively.



28 LA'i i'ICE SYMMETRY OF THE CHOLESTERIC BLUE PHA. SES 3557

E22 tends to be appreciably smaller than K» and E33.
This, however, may not apply to the cholesterol deriva-

tives, which are structurally very different from the

nematics. Obviously, the differences in calculated free en-

ergy of the various models are quite small, and sensitive to
changes in parameters. This, and the fact that our models

are hardly rigorous, makes it hard to argue that the above

assignment of BP I to 0 ' ' and BI II to 0 is more than

a coincidence. However, there is other evidence in support
of this assignment, and we shall proceed by comparing its

consequences with experiment.

B. Wavelengths of the Bragg reflections

1.2

1.0

0.8

I—
CO

0.6
I—
Z',

86.40

An important check on the theory is provided by a

comparison of the calculated lattice constants of the blue

phase for a specific cholesteric pitch with those observed

experimentally. As the lattice constants determine the

wavelengths of the Bragg reflections, we compare calcu-

lated and observed wavelengths of the lowest-order Bragg
reflections in the ordinary (helical) cholesteric and in the

BP I and BP II phases. In Table II are given ratios of the

wavelength of the lowest-order Bragg reflection in the

blue phases to the wavelength of the Bragg reflection in

helical cholesteric. (This ratio for the helical cholesteric is

thus unity by definition, as indicated in Table II.)
Some comments as to how Table II was arrived at are

in order. The calculated lattice constants for the various

models were obtained from Figs. 2 and 3 of the present

paper for the 0 ' ', and from Figs. 5—10 of MSB for the
other models. The construction for obtaining the lattice
constant from the figure is indicated in Fig. 7 of MSB.
We have assumed a temperature T —T, of —0.2'C, which

should be near the BP I to BP II transition. The repeat
distance for the Bragg reflection in the helical cholesteric
is one-half the pitch of 250 nm assumed in the calcula-
tions. The calculated wavelength ratios in Table II are

simply the ratios of the corresponding lattice constants,
except that a factor of 1/W2 must be introduced for the
bcc lattices (0 and 0 ). This is because the lowest-order

nonzero Bragg reflection in bcc is 110 rather than 100.
As a result of the scaling mentioned in the preceding sec-

tion, the wavelength ratios should be largely independent
of the actual values of the parameters, except for the ra-

tios of the elastic constants and for the scaling of the tern-

perature. In respect to the latter, it can be shown that its
effect on the ratios is minimal for any reasonable values of
the parameters.

The observed wavelength ratios given in Table II for
comparison with the calculated ones are for cholesterol
derivatives (indicated by CH) and for a biphenyl mixture
(indicated by BP). The CH numbers are taken from Fig. 7

of MS, which applies to cholesteryl nonanoate, and from

Figs. 4 and 5 of MS, which apply to a mixture of 85/o
cholesteryl nonanoate and 15' cholesteryl chloride. The
observed wavelengths for the helical cholesteric, the BP I
and the BP II are, respectively, 360, 445, and 395 nm for
the nonanoate, and 445, 575, and 490 nm for the mixture.
(The wavelengths for the BP I and BP II are somewhat
temperature dependent, and were taken near the transition
between these two phases, i.e., about 0.2'C below the
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80.00
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WAVELENGTH (nrn)

FIG. 6. Transmission spectra of a mixture of 85% cholesteryl
nonanoate and 15% cholesteryl chloride (by weight). The sam-

ple cell had been cleaned by a plasma discharge in 02, producing
a powder spectrum. Traces were recorded in order of decreasing
temperature. Where not indicated in the figure, the tempera-
tures, from top to bottom, are (in 'C) 86.00, 85.90, 85.80, 85.60,
85.50, 85.00, 84.00, 83.00. From MS (Ref. 7).

C. Intensities of the Bragg reflections

The best evidence for specific symmetries for the blue
phases comes from a comparison of observed and calcu-

clearing point. ) The ratios of the above wavelengths are
1:1.24:1.10 and 1:1.29:1.10, respectively, for an average of
1:1.27:1.10. The BP numbers in Table II are taken from
Johnson et al. ' and Her et al. ,

' and apply to a 50-50
vol% mixture of CB15 and E9 biphenyls. ' Both papers
give essentially the same ratio of 1:1.40:1.24 given in
Table II. (The reality of the BP IIB phase discussed in the
papers is in doubt. '

)

What conclusions can be drawn from Table II? First,
the calculated wavelength ratios do not vary much from
model to model, and are of similar magnitude as the ob-
served ones. One can consider this as a semiquantitative
confirmation for the kind of model treated here. Howev-
er, because the variation of the ratios with model is slight,
and of the same magnitude as their variation with elastic
constants, it seems unwarranted to draw general con-
clusions as to specific symmetries. For the cholesterol
derivatives an assignment of 0 to BP II and 0 ' ' to BP
I gives the best fit of observed and calculated values for
the case of equal elastic constants, but not for the case of
unequal constants. The assignment, though suggestive, is
thus hardly convincing.
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lated intensities of the Bragg reflections. The relevant

data are given in Table I. The last four columns give the
intensities calculated by Berreman, " normalized to unity

for the lowest-order reflection. The observed relative in-

tensities apply to cholesterol derivatives, and were ob-

tained from the magnitudes of the steps in powder spectra
such as Fig. 4 of MS, which is reproduced here as Fig. 6.
(Spectra of oriented samples, like Fig. 6 of MS, are not

suited for this purpose, because the distribution of crystal-

lite orientations is unknown. In the powder spectra the
absence of any noticeable dips attests to an isotropic dis-

tribution. ) In order to convert step magnitudes into

scattering intensities, the establishment of a spectrum
baseline is necessary. Because only one circularly polar-

ized component is Bragg scattered, the baseline is at some

finite intensity value, rather than at the zero-intensity

axis. Details of the procedure adopted in establishing the
baseline are given in Ref. 18.

A perusal of Table I produces assignments of 0 ' ' to
the BP I, and of 0 to BP II. In fact, the agreement is al-

most embarrassingly good, and considering the uncertain-

ties in both calculations and observations, must to some

degree be ascribed to chance. However, even if some lati-

tude is allowed, any alternative assignment among the
models listed is clearly ruled out.

I ' I
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FIG. 7. Transmission spectrum of a mixture of 75%
cholesteryl nonanoate and 25% cholesteryl chloride (by weight).
The sample cell was 0.3 mm thick and the inside surface was
treated with polyimide and rubbed.
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D. Various spectrum features

In this section we discuss a number of features in the

spectra of the blue phases which may give additional in-

formation about their structure. One small, but con-

sistent, feature appears in the powder spectra of the BP I.
It is seen in Fig. 6 as the small upward blip pointed at by
the arrow. Its position on the lower traces of the figure is

at about 535 nm, while the lowest-order Bragg step is at
615 nm. The ratio of these two numbers is, within accu-

racy, ( —,
' )'i . Though weak, the consistency of the feature

for different temperatures and for samples of different

pitch, and the fact that it always appears at the same

( —,
' )'i position, attest to its reality. We advance the fol-

lowing, somewhat tentative, interpretation, based on the
dynamical theory of x-ray scattering (which, suitably

adapted, should, of course, apply here). This theory
predicts a reduction of intensity of a Bragg reflection (and
thus an increase in transmission), whenever the crystal
orientation is such that the Bragg condition is simultane-

ously satisfied for two sets of crystal planes. This effect is
soinetimes referred to as the "brightening" effect
("Aufhellung"), and a detailed discussion is given by
Pinsker. ' In a bcc structure the longest wavelength for
which the Bragg condition can be satisfied simultaneously
for two sets of planes occurs for the (110) and (011) planes
(or equivalent pairs). For a simultaneous reflection to
occur the incident ray much bisect these two planes, and it
is easily shown that the smallest value of the sine factor
in the Bragg condition is ( —,

' )'i, in accordance with the

observed position. It should, however, be pointed out that
according to this simple argument simultaneous reflection
would occur for all incident beam directions contained
within the plane bisecting the crystallographic planes in-

volved (oblique incidence), and not only for that direction
coplanar with the normals to the planes (normal in-

cidence). Thus in a powder spectrum one would expect an

upward step in the spectrum, rather than the narrow up-
ward blip observed. However, the actual situation is more
complex, and it can, for instance, be argued that in the
present case one must decompose the incident beam into
circularly polarized components, which interact different-

ly with the two crystallographic planes when the incidence
is oblique (the geometries of the two reflections are mirror
images). Only for normal incidence are the two reflec-
tions truly equivalent. A rigorous treatment of dynamical
scattering for three waves applicable to the present case
will be very complex, and we have not attempted it.

In the case of simple cubic structures, the longest wave-

length for two simultaneous Bragg reflections is for the
I100I planes. These planes are orthogonal in pairs, and
thus the minimum angle of incidence for simultaneous re-

flection is 45' and the corresponding wavelength 1/v 2 of
that of the lowest-order reflection. As this position would
coincide with the much stronger (110) step, it could not be
observed. In fact, we have never observed the blip in the
BP I spectrum. Thus if our interpretation is correct, it is
strong evidence for bcc symmetry of the BP I.

A different feature appears in oriented samples (ob-
tained by treating the surfaces of the cell with surfactant).
It consists of additional dips that do not correspond to
steps in the powder spectra. Examples are given in Fig. 7
and in Figs. 2, 3, 6, and 7 of MS. It seems natural to as-

cribe these dips to crystallites preferentially oriented on
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the surface of the cell. Whether, and at what wavelengths,
dips appear depends on the surface preparation, which for
instance is different in the sample of Fig. 7 and those in
Figs. 2, 3, 6, and 7 of MS. Also, the additional dips tend
to weaken, and sometimes totally disappear, as the sample
ages over a few days, indicating a process of recrystalliza-
tion.

Some of the dips allow a simple interpretation. The one
at 660 nm in Fig. 7 is at a wavelength very nearly ( —, )'

times the wavelength of the lowest order dip (814 nm).
For a bcc structure this ratio applies to the 110 reflection
in crystallites oriented with their (111) planes parallel to
the cell wall ' (note that the 111 reflection is absent in bcc,
and thus no step is expected in the powder spectrum). For
a sc structure the same dip could correspond to a 100 re-
flection in (211) oriented crystallites. Dips with the same
relative position of (

—', )'~ also appear in Figs. 2, 3, 6, and

7 of MS. Note that the additional dips under discussion
are in general broader than the normal dips. This is as ex-
pected: the latter are caused by back reflection, and any
misalignment of the crystallites affects the Bragg reflec-
tion wavelength only to second order. The additional dips
involve reflection through a finite angle, and a misalign-
ment enters in first order.

Some other characteristics of the spectra remain mys-
terious. We have been unable to find a plausible explana-
tion for the dip at 730 nm in the spectrum of Fig. 7. No
crystallite orientation with reasonably small Miller indices
will do, either for bcc or for sc. Similarly, the dip at
about 370 nm in Figs. 2 and 3 of MS remains a puzzle. It
cannot be the {211)back reflection in bcc, which would
be at this position, because the {110)reflection from the
same crystallites should be easily observable, and is not
evident. In sc the {100) reflection from (111) oriented
crystallites would appear at this position, but all other evi-
dence contradicts a sc structure for the BP I. (For in-

stance, in any sc structure the {111] reflection should be
absent, ' while it clearly appears in the powder spectra. )

We have not been able to elucidate these points. As the
BP I is reached by cooling from the BP II phase (heating
from the cholesteric does not produce well-aligned sam-

ples), one can speculate that the oddly oriented BP I crys-
tallites are remainders of the BP II to BP I transition.
Under the microscope one can indeed see that there is a
memory of the BP II pattern after transformation to BP I.
But this is an ad hoc explanation at best.

IV. DISCUSSION

From the foregoing we conclude that the BP I and BP
II have the 0 ' ' and 0 structures, respectively. It
should be stated that we believe this to apply to a range of
cholesterol derivatives we have studied, including bu-
tyrate, valerate, nonanoate, myristate, and a number of
mixtures of nonanoate and chloride. All these compounds

exhibit both BP I and BP II phases, and their spectra are
essentially identical, provided the wavelength is scaled in

proportion to the cholesteric pitch. We have not studied

other classes of cholesteric compounds ("chiral nemat-
ics"). Although data in the literature' ' ' indicate a
similar behavior for biphenyl mixtures, no powder spectra
(and thus no relative intensities for the Bragg reflections)
are available. It is therefore unclear whether the above as-
signments apply to these compounds too.

We now compare our results with relevant ones in the
literature. Marcus has concluded from morphological
evidence that BP II is sc, while BP I is probably bcc.
Onusseit and Stegeineyer similarly conclude that BP II
is sc, while BP I could be either sc or bcc. More specific
assignments have been given by Flack et al. , based on the
Bragg scattering selection rules derived by Hornreich and
Shtrikman' and their own observations of the presence or
absence of specific reflections. They assign 0 to BP I
and either 0 or 0 to BP II. On the other hand, Nicas-
tro and Keyes, using the same selection rules, assign an
0 structure to the BP I in the cholesteryl alkanoates with
chain lengths 5, 6, 7, and 9 (valerate, hexanoate, hep-
tanoate, and nonanoate). They observe these compounds
in back reflection, and find the second reflection (at I/V 2
of the longest wavelength one) to be absent. This observa-
tion is the principal basis for their 0 assignment. The
fact that a second reflection is seen in Figs. 6 and 7 of MS
is explained away by the above authors by ascribing it to
the {110]reflection from (100) oriented platelets. How-
ever, the second reflection is also observed as a step in
powder spectra, as in Fig. 4 of MS, and here must be due
to the {200j reflection (for the bcc case). We must add
that, though Fig. 4 of MS is for a mixture of cholesteryl
nonanoate and cholesteryl chloride, we observe the same
reflections (shifted to shorter wavelengths) in pure
nonanoate (unpublished spectra). In fact, we have ob-
served the corresponding reflections in all cholesteryl
derivatives we looked at, including butyrate, valerate,
nonanoate, and myristate. We must conclude that the 0
assignment is inconsistent with our data.

Summarizing, we believe that the experimental evidence
points to the assignment of the bcc 0 ' ' structure to the
BP I, and of the sc 0 structure to the BP II, at least in
the cholesterol derivatives we investigated, (cholesteryl
valerate, butyrate, nonanoate, myristate, and mixtures of
nonanoate and chloride). It is of course quite possible that
other compounds will exhibit different structures. Theory
indicates that such variability may be due to variations in
elastic constants.

Finally, there is the question whether, within the frame-
work of chiral cubic space groups, structures other than
the ones discussed (0, 0, 0 '+', and 0 ' ') are possible.
In particular, can two or more different structures exist
with the same space group symmetry, as exemplified by
the 0 '+' and 0 ' ' structures? We have as yet no
answer to this question.
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