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The Fermi-Pasta-Ulam model has been studied following the time evolution of the space Fourier

spectrum through the numerical integration of the equations of motion for a system of 128 non-

linearly coupled oscillators. One-mode and multimode excitations have been considered as initial

conditions; in the former case, an approximate analytic technique has been applied to describe the
"short-time" behavior of the system, which fits well the experiment. The main result in both cases

is the presence of different stationary states towards which the system is evolving: a 1/k' spectrum

(corresponding to the equipartition of energy) or an exponential spectrum can be reached, depending

on the value of some parameter, which takes into account the relative weight of the nonlinear to the

linear term of the equations of motion.

I. INTRODUCTION

In recent years there has been a considerable effort in

the study of nonlinear Hamiltonian systems. Only a gen-

eral analytical result is available: the Komolgorov-
Arnol'd-Moser (KAM) theorem, ' which states the regular-

ity of most phase trajectories of a Hamiltonian system
with a finite number of degrees of freedom when the non-

linear term is sufficiently weak.
A great number of studies have been devoted to these

problems using numerical techniques. Historically the
first attempt in this direction goes back to the famous
work by Fermi, Pasta, and Ulam (FPU); they integrated
with the aid of one of the first electronic computers the
equations of motion of a chain of oscillators nonlinearly
coupled by a derivative potential (for mathematical details
see Sec. II). Their result showed ".. . very little, if any,
tendency toward equipartition of energy among the de-
grees of freedom. " From then on several authors at-
tempted to investigate numerically the ergodic behavior of
nonlinear Hamiltonian systems, sometimes using analyti-
cal approximations.

It has been shown with great accuracy the presence of a
stochasticity threshold in systems with a few number N of

degrees of freedom (N =2—10). Usually the energy E is
the control parameter: If E is lower than some "critical"
value E„ the motion is ordered; on the contrary, if it is
higher than E„some phase-space regions show a "chaot-
ic" motion. However, if one considers the measure p(E)
of the regions of ordered motions in the phase space as a
function of the energy, one realizes that the threshold is
not very sharp and, moreover, chaotic regions are present
also below E, and disappear only in the limit E~O (see,
e.g., the study of the Henon-Heiles model ).

In the case of a system with a great number of degrees
of freedom (as the FPU model) even the presence of a sto-
chasticity threshold is still an open problem. E, can hard-

ly be determined by the usual techniques as, e.g., the study
of Poincare maps, which would lead to a huge number of
phase-space sections.

Some authors studied numerically the FPU model, the
case of a Lennard-Jones potential, and a A,P model. ' In
all these cases they claim to find some evidence that the
stochasticity threshold is still present in the limit N~ ao

and, moreover, that E, -co,„„where co,„, is the frequency
of the initially excited mode. On the other hand, Izrailev
and Chirikov, studying the FPU model by an analytic ap-
proach based on the Bogoliubov-Krylov resonance tech-
nique, obtain E,~O as N~oo, when high-frequency
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modes are excited. At present, numerical confirmation of
this result is not available. In a recent work involving
some authors of this paper, a discretized version of the

model (N =64 and 128) has been studied numerically.
An analytic approach has been also proposed, based on a
technique first introduced by Frisch and Morf. " It has
been shown that the system, at least for sufficiently high
values of the coupling constant A, and of the energy E, ap-
proaches the equilibrium with a characteristic long-time
scale which is a smooth function of the initial conditions.
As will be clearly shown in this paper, this conclusion can
be hardly extended to the range of small values of A. and E
for which the system reaches a stationary state which does
not correspond to the equipartition of energy.

Apart from the usual problem of choosing a good nu-
merical algorithm in the integration of the system of dif-
ferential equations, a much more relevant question is
present when one wishes to study the transition to chaotic
motion.

What is the quantity one has to compute to reveal
whether the system is in the "chaotic phase" and is relax-
ing to equilibrium? Galgani and collaborators suggest the
use of two kinds of "stochasticity parameters": (i)

respectively, the maximum and the minimum of the ener-

gy Ek of the group of initially excited modes and (ii) A.~,
the maximal Lyapounov exponent. '

The use of such parameters shows the chaotic transition
but hardly permits a direct intuition of the physical situa-
tion under analysis for systems with a great number of de-
grees of freedom. For instance, a large pk does not neces-
sarily imply that equipartition has set in: It may happen
that the initially excited modes give the neighboring
modes energy while the system is not globally involved in
the chaotic behavior. A similar argument is valid for A, ,~.
A,M &0 does not necessarily mean that all the degrees of
freedom have a chaotic behavior. For instance, A,M &0
does not necessarily imply ergodicity; it may happen that
the energy surface is divided into invariant components,
each with A, M &0 (see an example in Ref 9). It .may hap-
pen that a portion of the accessible phase space is "chaot-
ic" while the remaining part shows an ordered motion.

Another proposal, recently advanced by Benettin and
Tenenbaum, ' is to use time correlation functions of care-
fully chosen observables, for instance, the Ek(t) autocorre-
lation and cross correlation functions. Also this method
allows a precise determination of the chaotic transition,
but does not give a global information on the phase space.
The criticism addressed to microcanonical time correla-
tion functions' ' does not apply to this approach because
the authors of Ref. 13 consider time averages over single
trajectories.

Apart from such difficulties there is also another point:
The above-mentioned stochasticity parameters, excluding
the last one, have been introduced with the implicit as-
sumption of dynamical equilibrium, while the system may
be in a state of slow relaxation toward it (as shown in the
paper by Fucito et al. for the A,P theory). The choice of
a good parameter is consequently crucial to reach a physi-
cal understanding of the approach to equilibrium of the
system.

We are led from our analysis to the use of a parameter
which (i) does not suffer the limitation of being "local" in
the k space (as the pk and A,~), (ii) takes into account pos-
sible nonstationary situations, and (iii) is quite easy to
compute. As in Refs. 7 and 16 we have used a parameter
which directly measures the "degree of equipartition" of
energy and also its variation in time. It is the slope S(t)
of the power spectrum W of the field P(x, t) (see Sec. II),

W(k, t)-exp[ S(t—)k] as k~00 .

It is evident that the main limit of the use of S(t) is relat-
ed to the assumption that the spectrum is exponentially
shaped, but there are valid analytical evidences and also
numerical indications to consider such a shape universal,
at least when the first modes are excited (see Sec. III). In
Sec. II we shall introduce the model and present an ana-
lytic approximation of the short-time behavior of the sys-
tern. Section III will be devoted to the numerical results
and to the phenomenological analysis of the long-time
behavior and of different initial conditions.

II. DESCRIPTION OF THE MODEL
AND ANALYTICAL STUDY OF THE SHORT-TIME

BEHAVIOR

The model we consider in this paper is the celebrated
Fermi, Pasta, and Ulam P model (FPU) whose Hamiltoni-
an is'

'21, 0; —0+i 1 0; 0+i—
2 ' 2 a 4 a

4

(2)

which in the limit a ~0 (Ref. 18) gives
3

Our purpose is the investigation of the energy transfer
among the different wave numbers; consequently, we in-
troduce the space Fourier transform of the field P(x, t) on
the interval I =Na (N~ oo so that Na remains finite) as
follows:

P(k„,t) =(2m. )
'~ f dx exp( ik„x )P(x, t), — (4)

[I]
where k„=2m.nINa and where n E'Z. The equations for
the field P(k„,t) are of the form

representing a chain with spacing a of 1V nonlinearly cou-
pled oscillators. rr; is the moment conjugate to P; (i.e., in
this case rr; =P; ) and v is the velocity of sound in the limit
P~O. We choose periodic boundary conditions, P& ——Pz.
From the Hamiltonian (1) one obtains the equation of
motion

2

, (4+i+0 i 20 )—
a
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2

at2 P(k„,t)= —v k„P(k„,t)+3P g k„(k„—k„)(k„—k„)P(k„,t)$(k„—k„,t)P(k„—k„,t),
k„.k„.,

(5)

which shows that the effect of the nonlinear term is to
couple different wave numbers. The way in which the ex-
citation of the modes proceeds in time (t~t+e) once a
given set of modes is already excited is described by Eq.
(5). If the arguments of the cubic term on the rhs of Eq.
(5) are labeled by the index n of the wave number and
refer to the excited modes n,'„„n,'„'„n,"„'„one derives by
summing the arguments

n(t+e)=n,'„,(t)+n,'„',(t)+n,"„',(t) . (6)

From this relation it is easy to obtain that if a single mode
labeled by n is excited at t =0, the resulting excitation in-
volves the modes satisfying the relation

n~ =(2m +1)n, (7)

where m =1,2, . . . , . We shall refer to the excited modes
which satisfy the relations (6) and (7) as "resonant"
modes. As far as the analytical analysis is concerned we
shall restrict to initial conditions of the type

Po
——$(x,O) =A sin(k, „,x),

(8)

Po ———P(x, t) I, o 0.——
t

We are interested in the time evolution of

I

evaluation of the function S(t) which will be compared
with the numerical simulations of Eq. (2) in the following
section. We shall investigate the "short-time" evolution of
the system; the meaning of "short" will be clearer when
we discuss the numerical results.

The singularities of the analytic continuation 4(z, t) of
the solution P(x, t) of Eq. (3) are certainly not poles, by
naive power counting. On the other hand, the correct
identification of the nature of the singularities is beyond
the aims of this paper, since we are interested in simple
spectral properties of the field. However, it is possible to
estimate the variable S(t) in Eq. (11) at short times, at
least for initial conditions given by Eq. (8), exploiting the
following idea.

We approximate Eq. (3) with an "effective" field equa-
tion whose singularities are poles and we study the motion
of these poles as in Ref. 7. It is clear that this procedure
can only work at short times and with this particular
choice of the initial conditions. If we rewrite Eq. (3) in
terms of the field P(x, t) = (dlBx)P(x, t), we obtain

a' = a'
g(x, t)= [v p(x, t)+pg (x, t)] . (12)

Bt2 Bx2

Once the initial condition (8) is inserted in the rhs of Eq.
(12), it reduces to

w(k, t)= IP(k, t)I' c,g(x, O) +egg (x,O), (13)
in the region k &)k,„,.

If the distribution were of Boltzinann type at long
times, we would have the following asymptotic value of
W(k, t) for large k:

where c, = k,„,(v 6p—k,„p ) —and cq —— 9pk, „,. If—we
assume that the form (13) still holds at t =0+, then the
equation of motion (12) becomes simpler,

( W(k, t) ) -k (10)
a2

P(x, t)=cia(x, t)+c2$ (x, t) .
at2

(14)

where the brackets stand for a smoothing in time.
A typical P(x, t) corresponding to the behavior of W in

Eq. (10) would be nondifferentiable in x. Now P(x, O) is
an analytic function of x and one can show that the solu-
tion P(x, t) will also remain analytic. Equation (10) can
only be valid for infinite time.

If at finite times the extension into the complex plane
4(z, t) of the field is analytic and we neglect a possible
prefactor such as (k) (where a depends on the nature of
the singularity), the k behavior will be given by

8'(k, t) -exp[ S(t)k], —
~(t) =2y, (t),

where y, is the imaginary part of the nearest singularity to
the real axis of the analytic continuation of the function
P(x, t) in the complex plane: for instance, if the singulari-
ty is a simple pole (or a branch point) y, is the imaginary
part of the pole (or branch point).

It is clear that this singularity can only be at y, = oo at
t =0 if the initial condition is the analytic continuation of
(8). We shall see that the singularities set in at finite y, as
time increases.

We shall present in this section an heuristic analytic

We shall deal with the modified problem (14) which is an
approximation of problem (12) at short times. An easy
way of extracting the spectrum of P(x, t) is to solve Eq.
(14) by an extension of the method due to Frisch and
Morf. " The method consists of the analytic continuation
of the field g(x, t) and then in solving the equations

a = 3
2

2

at2
+R cia R c2(+R 3+Rpr) ~

2
3 2

t2
+r =ci q'r +ca(q'r —3'PR Pr»

(15)

T(q'o) -—c2 '"
I Imago I

(16)

where 'P ='II+ +i +I. The force field associated with Eqs.
(15) shows the presence of a pair of unstable points locat-
ed on the imaginary axis at %r ——+(ci/cq)'r . This is the
origin of the development of the singularities of the field

Following the analysis developed for the P theory, we
may assume that these singularities are simple poles,
whose location in the complex plane can be determined by
computing the time T needed to reach infinity starting
from a given point on the imaginary axis Im%'0 corre-
sponding to the chosen initial condition
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when Im+p))(ci/cp)' . The initial condition (8) yields
in the complex plane

%p(x +iy) =Ak, „,[ cos(k,„,x)cosh(k, „~)

fast-Fourier-transform code.
To improve the statistics we perform a smoothing

operation of the spectrum W„(t) centered around the time

i —sin(k, „,x)sinh(k, „,y)] .

Therefore for large y one obtains

Im+p ~ Ak, „,exp(k, „, I y I
) .

(17)

(18)

1 t+ T/2
( W„(t})=—J dt'W„(t'),

T t —T/2
(24)

the slope S(t)=2
I y, (t)

I

at any time t is given by the fol-
lowing relation:

By combining Eqs. (16) and (18), according to the hy-
pothesis of the presence at finite times of only pole singu-
larities located at z, =x, +iy„we obtain

( W„(t) ) —exp[ k„S—(t)], k„= (25)

Iy, (t)
I

~ — ln(P' Ak,„,t) .
kexc

(19)

This behavior has also been found for the P and P
theories, suggesting that such a law is universal for bound-
ed polynomial or derivative potentials, whenever it is pos-
sible to perform the above-discussed approximations
which lead to "effective-pole" singularities. In the case of
a P theory these singularities (poles} have been located by
Pade approximant methods' and they move following the
predicted law in Ref. 7.

III. NUMERICAL RESULTS

The Fourier transform of the discretized field P; obey-
ing Eq. (2) is defined in our case as

N/2
27T71

QJ(t) =(2m. )
'~ g a„(t)cos (j —1)

n=1 N

The exponential tail of the spectrum is in very good agree-
ment with the results of the numerical experiments per-
formed with low modes initially excited; a typical example
is shown in Fig. 1. Several initial conditions have been
analyzed.

A. One-mode excitations

For an integration time t & 10 (b, t =10 =3&&10 ~ T
where T =n is the smallest period of the harmonic chain)
the law described by Eq. (19) is very well verified by the
numerical results at fixed k,„„asis shown in Fig. 2. As
far as the k,„, dependence is concerned we have verified
the prediction of Eq. (19) as it is reported in Fig. 3. As
the system further evolves in time (we have taken b, t =0.1

from now on) the law (19) modifies into some different
behaviors, depending on the values of P, A, and k,„,.

Roughly we observe at small PA ( &10) a decoupling
of the P dependence from the t dependence. The law

seems to be

+ b„(t)sin (j —1), (20)
27771 1/2

S-a1 ln
1

+a2ln (26)

where a„(t) and b„(t) are, respectively, the cosine and sine
Fourier integral of P;(t). The constant term is not present
because of the initial conditions we have chosen and of the
invariance of Eq. (3) with respect to parity x~ —x.

The spacing a is taken equal to 1, so that the length of
the chain is N.

The interesting quantity W„(t) is defined as S-ailn (PA ) 't '
a4

(27)

where ai, a2, ri, r are dimensional constants. This kind of
behavior is shown in Figs. 4(a) and 4(b).

A different situation appears for larger values of PA,
where the slope seems to behave as

(21)
as shown in Figs. 5(a) and 5(b). The departure from the

we have performed simulations for N =128. The integra-
tion of Eqs. (2) was made by means of the leap-frog algo-
rithm

P; (t + At) =2P; (t) P; (t —At)+ (b—t)'F, ( I P;(t) I ),

where the discretized force is given by

F(IN l)=(4+1+0 -i —20 )

(22)

(23)

lnWn 0—

-20—

-40—

-80—

-100—

In the limit b,t~0 Eq. (3) is recovered up to O(bt ). The
initial condition P; =0 is imposed by P;( —b, t) =P;(0}.
Equations (2) have been integrated numerically using a
VAX-750 and a CDC-CY76 computer in double precision
and the coefficients W„(t) have been evaluated with a

-1 20— ~ ~ ~ ~ ~ ~ ~ ~ ~
I I ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ooo

10 20 30 40 50 60
n

FIG. 1. Typical exponential spectrum at t =4000 for n,„,=1
[k,„,= (2n/N}n, „,];P=2 and A .= 1; the integration time step of
the equations of motion is ht =10
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the time dependence from lnt to (Int)'t . In general, one
can say that this intermediate-time region is no longer
characterized by the universal features which we have met
for the short-time regime that is dominated by the non-
linear term for large values of S, while for smaller values
of S a competition between the linear and nonlinear term

(a}

-3
I I

2 3
In (P *At)

FIG. 2. Short-time dependence of the slope S(t) of the ex-
ponential spectrum. The solid circles correspond to P= 1, A =5;
the open circles to P=1.5, A =5; and the triangles to P=2,
A =1. For all these points n,„,=l, At=10, and t is up to
—10.

time regime described by Eq. (19), where the evolution of
the slope scales with respect to the nonlinear characteristic
time 1NL=(P' Ak ) ', i.e., the nonlinear term dom-
inates, is due to the influence of the linear term of the dif-
ferential equation (3). In the case of strong nonlinearity
this effect amounts to a slight modification of the time
scale of Eq. (19), determining the new behavior given by
Eq. (27). Instead, for weak nonlinearities the situation is
more complicated resulting into a drastic modification of

"exc
'LX

x~

d

In (P A I I|exc )

FIG. 3. k,„, dependence of the slope at short times; P=0.5,
A =5 with n,„,= 1, . . . , 5 and ht =10 . The crosses refer to
t =0.5, the triangles to t = 1, and the open circles to t = 1.5.

I

2 5
&ln )

KS
X

10 ~
(b)

5—

~x

X

Xy
X

1

I

-2
I

2
In (PA )

FIG. 4. (a) S as a function of lnt in the intermediate-time re-
gime for PA2& 10: n,„,=l, P=2, A =1, b, t=10 '. (b) 5 as a
function of ln(PA ') in the intermediate-time regime for
PA &10: n,„,= 1, b, t =10 '; the crosses correspond to t =100
and the triangles to t =300.
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(a)

52

—3

and among different singularities leads to a less clear
behavior.

It should be evident at this point that a crucial role is

played by the relative weight of the nonlinear to the linear
term of the equation of motion. This relation can be ex-

pressed by the introduction of some sort of "Reynolds"
number:

1.5—
(28)

where the angular brackets stand for an average over
space. The time dependence of R must not be surprising,
since we are studying the evolution toward equilibrium.
A qualitative estimate of R in the case of one-mode exci-
tations [see Eq. (8)] is

0.5-

P AR=
U L

(29)

I

In t

(b)

where L is the typical length scale of variation of P and L
is a function of time (at t =0, L = 2' lk,„,).

The study of the long-time behavior of the spectrum
W(k, t) is sharply dependent on the value of R, i.e., on the
value of the coupling constant P and on the intensity of
the initial excitation A. We have found that for P and A

sufficiently large (PA & 10):
(i) The shape of the spectrum is exponential up to a cer-

tain time t, which strongly depends on the value of PA,
e.g. , t = 300 for k,„,= 2m IN and 13A = 100.

(ii) The equipartition of energy, i.e., W(k)-k (large
k) is reached after the exponential regime of the spectrum
in a time which decreases as PA increases. We are led by
these "experimental" results to parametrize the spectrum
as

W(k, t)- exp[ S(t)k] as k—~m .1

k
(30)

As t~ 0D, S (t)~0 for the values of PA under considera-
tion.

The asymptotic power law for the spectrum is shown in

Fig. 6. A completely different situation is found for
values of PA in therangePA (10.

I

7
ln PA

FIG. 5. (a) S vs lnt in the intermediate-time regime for
PA & 10 (solid circles) with P= 50, A = 1, n,„,= 1, and

ht =10 '. Also the dependence S -1nt has been shown to rule
out this behavior (open circles). (b) S vs 1nPA 2 in the
intermediate-time regime for PA & 10 with n,„,= 1, t =200,
~t =10—'.

(i) The shape of the spectrum is always exponential for
long periods of time, e.g. , t =70000 for k,„,=2~/N and
PA =0.1.

(ii) The slope S(t) has a peculiar behavior, shown in

Fig. 7 for k,„,=4m/N, PA =2.5X. 10 . A similar curve
is observed also for other k,„,. It is evident that the slope
damps to a nonvanishing value S( oo ), which we consider
as an asymptotic value since the oscillations with respect
to it sharply decrease.

k,„,S( oo ) ——y, lnR +y2, (31)

Our conclusion is that the system tends to a stationary
equilibrium state which has a spectrum different from the
Boltzmann spectrum.

If one plots k,„,S( 0c ) as a function of R cc PA, an im-
pressive logarithmic law is obtained,
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ln w„

1

s

l

l

5.7
I

-10

5.5—

-15—

I

In n

FIG. 6. Logarithm of the spectrum as a function of the serial
number of modes n at t =250, p=150, A =1, bt =10 '. The
experimental points are compared with the power law W„=1/n
(straight line).

5.3—

ln t.

I

10

as shown in Fig. 8. The value of S(cc) extrapolates to
zero for pA —10. It should be observed that the law (31)
is a direct consequence of laws (26) and (27) if the time
dependence dies out through some damping factor in the
coefficients, which is, on the other hand, evident in Fig. 7.

The numerical results that we have described in the
present section yield to the interesting conclusion that a
threshold value of R exists, below which the equipartition
of energy is never reached. We want to stress that the pa-
rameter R takes into account not only the strength of the
initial excitation 3, whose value determines the total ener-

gy of the system when P and k,„, are small
(E-U k,„,A +pk, „, A ), but directly also the coupling
constant, which would play a negligible infiuence if one
considers the total energy as the control parameter for the
transition to stochastic motion.

FIG. 7. Long time behavior of the slope S vs lnt for
pA

' « 10: n,„,=2, A =0.5, p = 10 ', ht = 10—'.

gime about which no simple phenomenological law is ob-
tainable, but which is certainly shorter than in the case of
Sec. IIIA, one reaches equipartition of energy for values
in p and A sufficiently large or a frozen exponentially-
shaped spectrum for lower values of P and A. In this case
important collective phenomena among the excited modes
become sizable. As an illustration of these phenomena see
Fig. 9, which shows that a transfer of energy toward the
higher modes is more efficient when a greater number of
initial modes is excited at fixed energy. Another example
is the response of the chain when two nonresonant modes

B. Multimode excitations

At variance with what happens in the case of one-mode
excitations, the typical spectra of many modes excitations
are much more complicated. First of all, even in the case
of the excitation of the first modes, the spectrum is no
longer a simple exponential one, although the amplitudes

still fit into an exponential scale and consequently
it is reasonable to define a sort of averaged slope S. In
principle it is possible to repeat the analysis of Sec. III A
using S, but the phenomenology which appears in this
case is richer. The short-time behavior of S still reveals a
logarithmic dependence on t and after an intermediate re-

10 1 0-4 10 10 10 10
p A

FIG. 8. Asymptotic behavior of k,„„Svs 1npA: n,„,=1
(stars), n,„,=2 (open circles), n,„,=3 (triangles).
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5-
y44

~ ~ ~ '~
—5—

ln Wn

-15—
a

4 QD b
~ ~

-25— ~ ~

-35—

-45—

~ ~

~ ~ ~

-55—
~ ~

~ ~ ~ ~ ~

~ ~ ~

-75—

-85
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are excited. If they are far away from each other, the
spectrum is practically the superposition of the two corre-
sponding one-mode excitation spectra, but if the wave-
lengths are closer, one notes also the excitation of modes
which are not resonances of the two separate spectra.

A sensible way of showing up this cooperative effect in
the case in which the spectrum freezes is to plot the S( ac )

as a function of the energy E, at fixed g increasing the
number of excited modes. The result is in Fig. 10, where
one verifies that S(ao) still scales quite well with respect
to logE. Now one can properly speak of a critical energy
E, which the experiment shows to slightly decrease as the
number of initially excited modes is increased.

Also in the case of these "more physical" excitations
two different equilibrium spectra are found separated by a

threshold value of the same parameter R defined in Eq.
(28) but for which the simple expression (29) does not hold
any longer. Below this threshold [i.e., P and b„(0) suit-
ably small] we have verified, even by very long runs
(-700000 integration steps with Et=0.1), that the spec-
trum really remains frozen and exponentially shaped.

The excitation of a wave packet in the intermediate re-
gion of the spectrum produces a much more complicated
but very peculiar situation. A typical spectrum is shown
in Fig. 11 where the modes In,„,)

= I9, 10, 11j are excited.
The spectrum can no longer be characterized by a single

S; it shows bumps corresponding to the resonances of the
central excited wavelengths at n =30, 50 which still have
an exponential shape on their sides.

Moreover, the spectrum still freezes quite soon if P and
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FIG. 11. Logarithm of the spectrum vs the serial number of
modes n for n,„,=9,10, 11 at t =400, p=0. 1, A =0.1, and
Lt =10-'.
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b„(0) are sufficiently small, while it is driven toward
equipartition for higher values of these parameters. At
present the lack of a proper stochasticity parameter does
not allow a more careful investigation of this behavior.

modes. The latter initial condition is expected to give a
better insight in the thermodynamic limit, but implies the
definition of more refined parameters than the average
slope of the spectrum.

IV. CONCLUSIONS

We have proposed an analytic approach to study the
short-time behavior of the FPU model. The resulting
time dependence of the slope of the exponential spectrum
appears to be universal for a large class of polynomial and
derivative potentials, but is probably not discriminating
between integrable and nonintegrable models.

The most interesting results concern the long-time
behavior of the spectrum. We have found, without ambi-

guity, the presence of a stochasticity threshold as the con-
trol parameter R, defined in Eq. (28), crosses a "critical"
value R, . R, may depend, in general, on the number of
the initially excited modes and on the number 1V of oscil-
lators of the chain. It is therefore crucial to study how R,
varies as N is increased. This can be done at a fixed num-

ber of initially excited modes to get a comparison with the
results of Ref. 4, or at a fixed density of initially excited
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