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Ordered phases of rigid cores having semiflexible tails.
II. Model for smectic-A and reentrant-nematic phases with hard repulsions
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The general partition function of the preceding paper is applied to the special cases of smectic-A

and nernatic liquid crystals and isotropic liquids in bulk phases. The relative stabilities of the isotro-

pic, nematic, smectic-A, and reentrant-nematic phases are studied as a function of temperature,

pressure, tail flexibility, and tail length. The following thermodynamic and molecular ordering

properties are studied in these phases and at the phase transitions: smectic-A order parameter, core

and tail intermolecular orientational order parameters, tail intramolecular orientational order pa-

rameter, density, and entropy. The role of the semiflexible tails in stabilizing the smectic-A and

reentrant-nematic phases is explicitly elucidated.

INTRODUCTION

The general partition function presented in the preced-
ing paper' for molecules composed of rigid cores with
semiflexible tails and interacting via site-site (segmental)
hard repulsions is applied in this paper to the special case
of the smectic-A liquid crystal, in which the molecules
have some positional ordering in one dimension of the sys-
tem and also have some orientational order. That is, the
long molecular axes of the molecules tend to align parallel
to a preferred axis of orientation in the system, and the
molecules tend to arrange themselves into layers, in which
the plane of each layer is perpendicular to the preferred
axis of orientation. There is liquidlike positional disorder
within each layer.

The smectic-A partition function of this paper can be

applied to systems of two dimensions (films) and of three
dimensions (bulk phases). This partition function can be
reduced to the partition function for the nematic liquid
crystal when the smectic-3 order parameter goes to zero
and can be reduced to the partition function for the isotro-

pic liquid when both the smectic-A order parameter and
the nematic (orientational) order parameter go to zero.

Other models ' that treat both srnectic-3 and nernatic
phases have been interesting and useful. However, these
models (which for the most part have been rather
phenomenological in approach) have not focused explicitly
on the flexibility of the tail chains of the molecules and
thus on the effect of the excluded volumes (packing) of
these semiflexible tail chains on the relative stabilities of
the isotropic, nernatic, smectic-A, and reentrant- (low-
temperature) nematic phases. (References 17—19 contain
some examples of some reentrant-nematic phases. ) The
lattice model of this paper is unique in that the geometry
of a molecule (i.e., the excluded volumes of both the rigid
and semiflexible portions of the molecule) can be treated
in a rather explicit manner.

Such an explicit treatment is needed to understand
better the behavior of real liquid crystals from the stand-
point of molecular structure. With very few excep-

tions, ' ' real molecules that form any kind of smectic
(i.e., layered, or positionally ordered) liquid crystalline
phase have one or two pendant semiflexible tail chains of
significant length; if the tail chain is shortened, the smec-
tic phases disappear. The model of this paper shows
that differences in packing between rigid cores and semi-
flexible tails can, in some ranges of temperature and pres-
sure, force the molecules in the system to form smectic-A
layers so that cores tend to pack with cores and tails tend
to pack with tails.

Furthermore, this model shows that as the tails become
more rigid (and rodlike) as the temperature decreases, the
segregated packing of the smectic-A phase is no longer ad-
vantageous and thus disappears, allowing the nematic
phase to reappear (reenter) at a temperature below that of
the smectic-A phase.

The nematic model to which the smectic-A model of
this paper can be reduced when the smectic-A order goes
to zero has been very successful in studying the effect of
the excluded volumes of the semiflexible tail chains on the
relative stabilities of the nematic and isotropic phases.
This observation provides a compelling rationale for the
development of the general model of the preceding paper'
and from it, the development of the special smectic-A
model in this paper.

This paper is the first in a series of future papers deal-
ing explicitly with the effect of the semiflexible tail chains
on the smectic-A and reentrant-nematic phases. Future
papers in this series deal with the added effects (1) of in-
termolecular site-site (segmental) attractions (arising from
London dispersion forces) and soft repulsions, (2) of dipo-
lar interactions (including dipole-dipole and dipole-
induced dipole), (3) of the number of tails per core, and (4)
(with systems of one-tail molecules) of the molecular tails
being parallel (monolayer-type structure) or opposed
(bilayer-type structure) in both lattice models and nonlat-
tice models.

In this paper the effects of temperature, pressure, tail-
chain flexibility, and tail-chain length on the relative sta-
bilities of the isotropic, nematic, smectic-A, and

28 3526 1983 The American Physical Society



ORDERED PHASES OF RIGID CORES. . . . II. MODEL FOR SMECTIC-A. . . 3527

reentrant-nematic phases are explored using a lattice
model for bulk phases of molecules having only hard
repulsions. Such a model is a base or reference model to
which the other molecular features mentioned in the
preceding paragraph have been added in later papers
this approach thus provides a method for determining on
an individual basis which of these molecular features are
sufficient and/or necessary for the existence of smectic-3
and reentrant-nematic phases and also the relative impor-
tance, one with respect to the other, of these features in
affecting the relative stabilities of the various phases.

Each molecule has a total of m segments, with each seg-
ment occupying one lattice site. The lattice may be either
simple cubic or square planar. The length of the edge of
one segment is ao. There can be unoccupied or empty lat-
tice sites ("holes" ) in the system. Each molecule has r rig-
id core segments, f semiflexible tail segments, (r —1) rigid
bonds, and f semiflexible tail bonds.

If

(la)

and

MODEL

General smectic-A model
kk ——0, k)1 (lb)

In this model we have an unbranched molecule with a then the general 0 in Eq. (34) of the preceding paper' be-
rigid core section and pendant semiflexible tail sections. comes

E =R,F
Mi —[(r —1)+qrA+ fa i i(1 —qA ))(N& l2) —gfak i(Nk/2)

k~1

d=2
1&d&j&1

[[Mi —(r —I+faqq)(Nq/2) faij(1 ——q~)(N /2) —fa d(NJ/2)] I

&&( I [Mi —m(N/2) —q(r —f)A(Ni/2)]! I(Mi!)' ")

[Note that the term faj~(NJ I2) in Eq. (2) is zero for the
square-planar lattice. ]

In Eq. (2) and later equations in the paper, the follow-
ing conventions' are used: If the subscript I is set equal to
R (referring to the R region), then q = + 1; if the subscript
I is set equal to F (referring to the F region), then q = —l.
All terms (including the ranges for sums and products)
not defined in this paper have been previously defined in
the preceding paper. '

Equation (2) with 0 (k ( 1 is proper to use for the spe-
cial case of the smectic-A liquid-crystal phase, where axis
1 is the preferred axis of orientation for the long axis of
the cores of the molecules. The A, is then a parameter for
orientated molecules that denotes the degree of segrega-
tion of the rigid segments of these molecules into the R re-

gion and also the degree of segregation of the semiflexible
segments of these molecules into the F region. Such a
segregation of rigid and semiflexible segments gives rise to
one smectic-A layer, in which the plane of the layer is per-
pendicular to the preferred axis of orientation. The plane
of the R region and the plane of the F region of one layer
are perpendicular to the preferred axis of orientation; the
stack of layers of a bulk smectic-A sample form a stack of
alternating R and F regions.

When A, = 1, the boundary planes between the layers (as
well as between the regions) are well defined. When
0& ~& 1, these boundary planes are less sharply defined,
as discussed earlier [see cominents following Eq. (16) of

pi= QNik
k

Mi N/(2Mi), I=——R,F . (3)

The density pI, or the fraction of occupied lattice sites in
the l region, is given by

pi=[m(N/2)+q(r —f)A(Ni/2)]IMi, I =R,F (4)

p=mlV/M,

Ref. 1].
A smectic-A phase exists for any value of 0 ~ A, ( 1; that

is, a smectic-A phase exists as soon as there is any degree
of segregation of rigid and semiflexible segments of
orientationally ordered molecules. That a smectic-A phase
can exist with small A, s is consistent with experiment@1 re-
sults, ' ' in which many smectic-A phases have only a
small amount of positional order (layer structure).

For mathematical tractability, we shall focus on the
segregation of rigid and semiflexible segments to form a
typical layer (i.e., the system here is one layer). We apply
periodic boundary conditions to the top and bottom of the
layer and ignore correlations between different smectic-A
layers, an approach consistent with experiment, which re-
veals little, if any, correlation between molecules in dif-
ferent smectic-A layers. '

With the use of Eq. (33), the number density pi in the I

region is defined by
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where M, the total number of lattice sites in the system, is

given by

M=MR+MP .

In a lattice model, each molecular segment —whether a
rigid core segment or a semiflexible tail segment —has the
same volume, i.e., the volume of one lattice site. In this

model [see discussions in Ref. 1 following Eqs. (1), (16),
and (26)], the segment face at which a molecule crosses
from the R region into the F region defines the local sur-

face between the two regions. Furthermore, each pl in

this model is, for reasons of mathematical tractability, an

average density for the l region. Therefore, in this model,

PR —PF —P .

If pit&pF, then there would be some molecules consisting
of tails without cores or cores without tails in the system.

In experimental systems observed thus far, the tail seg-

ments and core segments do not have exactly the same

volumes, and a density wave' has been observed along the
axis perpendicular to the srnectic-A layers. However, even

though the total pR is equal to the total pz in this model,
the rigid and semiflexible segments of a molecule do pack
differently in the different directions in the different re-

gions of the lattice in the smectic-A phase, as is clear from
an inspection of Eqs. (2) and (4) and as is seen in x-ray

studies.
If A&0, then Mti&MF and pti&pF. Physically, this

statement and Eq. (7) imply that as A, changes (and thus,

as the fractions, Xii and XF, of rigid to semiflexible seg-

ments in the R and F regions, respectively, change), the re-

gion boundaries shift (and the total number of lattice sites

in each region changes) to preserve the equality between

pR and pF.
Equations (4)—(7} yield

Mt=MI1+q[(N&IN)A(r —f)ltn]J/2, 1=R,F . (8)

A f~ure paper 3 starts with Eqs. (2)—(8) and deals with

the molecules of this model in two dimensions (i.e., in

films). In the next sections of this paper, the three-
dimensional (bulk) case is treated.

21=((3cos 9, —1))/2=1 —3s, (10)

r = ( ( 3 cos 0, —1)) /2 = 1 —3t = 2)v, (12}

where 8, is the angle between a semiflexible bond and the

preferred axis of core orientation, and v is given by Eq. (6)
of Ref. l. (In the isotropic phase, s=t= —,'. In the

smectic-A and the nematic liquid-crystal phases, s & —, and

t( —, )

The total configurational Helmholtz free energy A, for
the system is given by

—A, /(NkT) =(lnQ, )/N =(lnQ)/N

[( Ql 11n Ql 1 +2Ql 21nQl 2

1=R,F

—Cl ilnCt i )/(2pl )] —C2, (13)

where

Q» ——1 —pl [(1—2s)[(r —1)+qA C4]+ (1—2t)fI, (14)

where 0, is the angle between the core long axis and the

preferred axis of orientation. Clearly, the exact relation-

ships between s, g, and the Nk s in the simple-cubic lattice

will be somewhat different from those in the square-

planar lattice.
The coupling of the core orientational order parameter

ri, the smectic-A order parameter A, , and the density p of
the system arises naturally here from the physical descrip-

tion of the microscopic molecular behavior in the smectic-
A phase. This coupling becomes readily apparent from a
consideration of Eqs. (4), (7}, (9b), and (10).

The fraction t of semiflexible bonds parallel to one of
the nonpreferred axes of orientation for the cores is given

by

t =u (1 —2s)+(1 —2u)s+us =s+u (1—3s),

where u is given by Eq. (2) of Ref. 1. The fraction of sem-

iflexible bonds parallel to the preferred axis of orientation
for the cores is then (1—2t). The average intermolecular
order parameter r for the semiflexible bonds in this model

is given by

Simple-cubic lattice model for smectic-A,
nematic, and isotropic phases

Q„=1 —p", [s (r —1)+tf q(1 —2s)XC, ]-,
Cl& ——1 pl [m+q(1 ——2s)A(r —f)],

(15)

(16)

In this paper, we want to consider a simple-cubic (sc)
lattice system with only infinitely hard repulsions between
molecular segments. The distribution of rigid cores about
axis 1, the preferred axis of orientation for the cores, is as-
sumed to be symmetric. Let

C4 r (1—2u)f, —— —
and

(18)

C2 ——(1—2s)ln(1 —2s)+2s lns+ g [(lnpl )/2], (17)
1=R,F

s =N2/N =N3/N (9a) Cg uf . —— (19)

be the fraction of molecules with core long axes parallel to
one of the two nonpreferred axes of orientation of the sys-
tem, and let

(1—2s) =N& IN (9b)

be the fraction of molecules with core long axes parallel to
the preferred axis. The average orientational order param-
eter g for a core bond in this sc lattice model is given by

When A, ~O, pit ~pF', and (lnQ)/N in Eq. (13) reduces

to Eq. (II.25) of Ref. 2 appropriate for nematic and isotro-

pic phases.
The thermodynamically stable states of the system at

constant T and pressure P (or at constant T and corre-

sponding volume V of the system) correspond to minima

in the configurational Gibbs free energy G, as a function
of s and A.:
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B[G,(NkT)]

Bs P, T, A,

8[A, (NkT)]
Bs pii, pr, T, i.

g [—(C 3+qkC4)l ng i~+(C 3+2qAC~)l ng i2+qA(r —f)lnCii] +21n[s/(1 —2s)]=0,
I =R,F

where

C3 r ———1+(1—3u)f .

Note that

V=MUO ——Ma o,
where vo is the volume of a lattice site [i.e., the "hard-repulsion" (steric) volume of one molecular segment]. Also,

(20)

(21)

(22)

B[G,/(NkT)]
aA, P, T,s

8[A, /(Nk T)]

pR 'pF, T,s
=(1—2s) g [qC41ngii —2qC5lngi& —q(r —f)in' i]

1=R,F (23)

The constraint 0 & A, & 1 is required to hold.
Using the relation P = —(BA, /i3 V)r, one obtains

Pv0 Bing,
kT BM

[(1 C &)i(l gni—&+21 gnz i—lnCii)/(2pi rri)] .
1=R,F

(24)

p
kT

Bing,
BN MT

1=R,F
I [(1—Qi~)lngi ~+2(1 —QI2)»gip

The configurational chemical potential p of the system is

I

brackets in the last line in Eq. (26) arises from the explicit
separation of degrees of freedom in the system between
internal and configurational. ' As an approximation, the
fraction 2u of bent bonds in the chains of the molecules in
these models is treated as an internal property (as a func-
tion of T at a given bond-bending energy Eb). However, u

also appears explicitly in the configurationa1 partition
function Q„ thus contributing the second term in brackets
in the last line in Eq. (26).

Using a simplex function-minimization procedure, the
appropriate sets of equations from this model were solved
numerically by computer calculations to find the thermo-
dynamically stable states of the system under given condi-
tions of temperature and pressure. At the transition be-
tween two phases 1 and 2 at a given P and T, pI ——p2.

When A, = 1, the lower bound on the layer thickness L in
this model is equal to di, the length of a molecule, where

—(1—Ci&)lnCii]/(2pi ) I +C& . (25) dL ——[r+(1—2u)f]ao, (29)

S,
Nk

8[A, /(Nk)]

M, N

lng, B[(lng, )/N]'+T
BT M, N

Here,

and

lnQ + TIf g [&&in(gi&/gi2)] .
1=R,F

1 —3s)—q (1—2s)A, ,

(26)

(27)

Qu uEbI=
k T'(1+2A)

(28)

The configurational entropy S, of the system is given by
and where u is given by Eq. (2) of Ref. 1 and ao by Eq.
(22) of this paper.

When A, ~O, the layer boundaries become increasingly
diffuse [see discussions in the three paragraphs preceding
Eq. (17) of Ref. 1, and in the paragraphs following Eqs.
(26) and (31), Ref. 1], and thus the layer thickness goes to
infinity. However, a practical upper bound on the layer
thickness as A, ~O is L=2dL. [For practical purposes,
when a layer is so thick that there is room to form two
separate layers within it, one cannot tell whether one has
two layers or one, and thus the integrity of individual
layers has been lost. Obviously, this upper bound is only a
practical one since the location of the core or tail of one
molecule with respect to the cores or tails of other mole-
cules is random when A.~O in this model (see above-
mentioned discussions). ]

Using these bounds on L as k approaches its minimum
and maximum values, the following equation for L is de-
nved:

where u and A are given, respectively, by Eqs. (2) and (3)
of Ref. 1. As in earlier papers, ' the term in square L =dL(2 —I, ) . (30)
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TABLE I. Thermodynamic and molecular ordering properties for the system in which r =4, f=8,
Eq/k =250 K, and Pvo/k =43.25 K.

T
(K)

) 181.05
181.05

180.93

180.66
180.47
180.40

& 180.4

Stable
phase

I
I
N
N

S~

N

0.282 6
0.20000
0.10000
0.001 00

0.675 21
0.679 7
0.703 3
0.700 13
0.697 80
0.697 03

0.336 37
0.338 8

0.350 6
0.349 48
0.348 67
0.348 40

0.498 18
0.498 18
0.498 5

0.498 5

0.499 17
0.499 67
0.499 84

0.543 07
0.565 74
0.566 2
0.568 2
0.568 25
0.568 28
0.568 28

RESULTS AND DISCUSSION

The equations of the sc lattice model in the preceding
section were solved for smectic-A, nematic, and isotropic
phases under various conditions of temperature T, pres-
sure P, tail-chain bond-bending energy Eb, and number f
of tail-chain segments; the results from some representa-
tive calculations are presented and discussed here.

TABLE II. Transition properties for the system in which
r =4, f= 8, Eb Ik =250 K, aud PUOIk =43.25 K.

Transition

N-I
S~-N

Ng -Sg

T
(K)

181.05
180.93
180.4

~p /pm&&

(%)

4.0063
0.3487

0+—

AS, /(Nk)

0.681 94
0.044 87

0~
"'mop" indicates more ordered phase.

Nematic, smectic-A, and reentrant-nematic phases

In Tables I and II are presented calculated results for
thermodynamic and molecular ordering properties for one
system that shows the following sequence of stable phases
as a function of decreasing temperature: isotropic (I),
nematic (N), smectic-A (Sz ), and reentrant nematic (Ntt ).

In the system in Tables I and II, the number r of rigid
core segments is 4, f is 8, Eb/k is 250 K, and PU, /k is
43.25 K. The value r =4 is reasonable compared with
length-to-breadth ratios for cores in real liquid crys-
tals ' '; furthermore, a stable N phase is not observed
for rigid rods having an r less than about 3.6 in the sc lat-
tice model with only hard repulsions. Since the purpose
of the Sz model of this paper is to elucidate the role of the
semiflexible tail chains of liquid-crystal molecules in sta-
bilizing the Sz and N~ phases, we look first at molecules
with a significant number of semiflexible tail segments, in
particular here, at f=8 The value .of Eb/k=250 K is
the approximate lower limit, as estimated from experi-
mental data, for the energy to make a trans gauche ben-d

in a hydrocarbon chain. ' (The approximate upper limit
corresponds to Eb/k=400 K.) Though both are some-
what small in the particular system studied in Tables I

and II, the temperature range over which the higher-T N
phase is the most stable phase and that over which the Sz
phase is the most stable phase are both significant and
real.

As seen in Table I, the intramolecular tail orientational
order parameter v increases as T decreases, reflecting the
fact that the tails become less flexible and more aligned
with the cores to which they are attached, as T decreases.
Also, as expected, the density p increases as T decreases.
In the N phase, the core orientational order parameter g
and the intermolecular tail orientational order parameter ~
increase as T decreases, as expected.

In contrast, g and ~ decrease as T and A, decrease in the
Sz phase. [As noted after Eq. (10), iI is coupled with A, ;
recall from Eq. (12) that r is also coupled with i) and v.]
As A, decreases, there is less segregated packing in the Sq
phase and thus more opportunities for the semiflexible
tails to disrupt the orientational order of the cores, thereby
decreasing rl. The semiflexible tails bend and twist well
around each other, but tend to disrupt the alignment of
the rigid cores. In some T range, one expects A. to de-
crease in the Sz phase as T decreases (and thus as the
transition to the Nz phase is approached).

As seen in Table II, the N-I and Sz-N transitions are
weakly first-order transitions, with the relative density
change bp/p, ~ and the relative entropy change
AS, /(Nk) about an order of magnitude smaller at the
Sz-N transition than at the N-I transition. Experimental-
ly, N-I transitions have always been observed to be weakly
first order; Sz-N transitions have in many cases been
clearly observed to be weakly first order, while in some
cases they have been thought to be essentially second or-

16,22, 32, 33
Lk ~

The Nz-Sz transition in Table II appears to be second
order; the Sz phase is the stable phase down to at least
A, =0.001, which is the smallest value of A. to which the
Sz phase could be pursued with the present computer cal-
culations. As seen in Fig. 1, there is a change in the slope
of the plot of p vs T as A, ~O, consistent with a second-
order transition. The Nz p in Fig. 1 appears to extrapo-
late smoothly from the p of the higher-T N phase.

As seen in Table I and Fig. 1, the Sz phase is denser
than the N phase at the same T. The partial segregation
of different parts of oriented molecules in the Sz phase al-
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0.5700

0.5695

0.5690

0.5685

0.5680

+b ++ +

0.5675

0.5670

0.5665

0.5660

0.5655
180.2 180.4 180.6 180.8 181.0 181.2

FIG. 1. Density vs temperature in the smectic-A phase (plus
symbols) and the nematic phases (diamond symbols) in the sys-
tem in which r =4, f= 8, Eb/k =250 K, and Puo /k =43.25 K.

lows these different parts to pack more efficiently. That
is, rigid cores can pack better with other rigid cores, and
semiflexible tails can pack better with other semiflexible
tails in the ranges of temperature (and pressure) in which
the Sz phase is the most stable phase.

At high temperatures, the system density is small
enough that the rnolecules have room to pack isotropically
(i.e., with no preferred axis for orientation) and maximize
the entropy of the system; hence, the stable I phase. As T
decreases, p increases, and the molecules must align orien-
tationally at least partially with each other to be able to
fit—with the lowest configurational Gibbs free energy
6,—into the available volume V of the system; hence, the
stable N phase. In some ranges of temperature, as T de-
creases further the orientationally-aligned rnolecules must
form at least partially layered structures in order to be

able to fit—with lowest G,—the different parts (shapes) of
each molecule into the available volume; hence, the stable
Sz phase. As T decreases further, each tail chain becomes
increasingly rigid and thus in shape resembles more close-
ly a linear extension of the rigid core to which it is at-
tached; there is then no longer sufficient advantage to the
segregated packing of the Sz phase; hence, the stable N~
phase.

As seen by the values of v in Table I, the tails are cer-
tainly not completely rigid, even at the Nz-Sz transition,
in this system. The relatively small changes in v and p in
each phase between the Sz-N transition and the N~-Sz
transition imply that the relative stabilities of the N and
Sz phases are controlled by small changes in the density
of the system and the flexibility of the tail chains; these
factors are in turn controlled by small changes in the tem-
perature and the pressure (as will be seen later) of the sys-
tem, as well as by changes (as will also be seen later) in the
number of tail segments in a molecule and the tail bond-
bending energy Eb. Furthermore, the configurational
Gibbs free energies of the Sz and N phases at constant T
and P in Table I are actually very similar in magnitude,
consistent with the experimental observation that differ-
ences between the Sz and N phases are small and that the
Sq order can be considered to have a somewhat "fragile"
existence. ' '

The I solution always exists in this model, although the
I phase may be metastable with respect to the N and/or
Sz solutions at a given T and P. There are ranges of T
and P in which both the N solutions and the Sz solutions
exist.

In addition to the Sz solutions in Tables I and II, there
is also another range of temperatures in which Sz solu-
tions exist. For the system in which r =4, f=8, and
Eblk=250 K, this range is around T=75 K. (These
low-T Sz solutions have been observed in this system at
PUo/k values ranging from about 10 to 50 K and may
very well exist at other PUO/k values. ) In this low Tre--
gion, k increases with decreasing T in the Sz phase, which
is metastable with respect to the X phase. Furthermore,
the differences in G, between the Sz and N phases at con-
stant T and P are appreciable, especially for larger A, .

TABLE III. Effect of pressure on the thermodynamic and molecular ordering properties for the system in which r =4, f=8, and
Eblk =250 K.

Pup/k
(K)

43.00

T
(K)

& 180.72
180.72

& 180.72

Stable
phase

I
I
N
N

0.675 44 0.337 05
0.499 01
0.499 01

0.542 20
0.564 92

43.50 & 181.39
181.39

180.89
180.69
180.63

& 180.6

I
I
Sg

Sg
N

0.338 27
0.20000
0.10000
0.001 00

0.708 78
0.702 83
0.70049
0.699 71

0.352 49
0.35042
0.349 60
0.349 34

0.49732
0.497 32
0.498 59
0.499 09
0.499 26

0.543 93
0.569 37
0.569 42
0.569 45
0.569 46
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TABLE IV. Effect of pressure on the transition properties
for the system in which r =4, f=8, and Eb Ik =250 K.

Pvo/k
(K)

43.00

Transition

N-I

T
(K)

180.72

~p/pmop
(%)

4.0221

AS, /(Nk )

0.682 66

43.50 181.39
180.6

4.4692
0+—

0.745 01

Effect ofpressure

Tables I—IV illustrate some of the effects of the pres-
sure on the stabilities of the Sz, N, and I phases. Decreas-
ing P favors the N phase, while increasing P favors the Sz
phase over the high-T N phase for the range of pressures
treated in this paper. As expected, T for a given transition
increases as P increases, a trend seen experimentally (see,
for example, Refs. 2, 17, 34, and 35). Higher P leads to
larger p which favors the more ordered phases at higher
T. This increased molecular order at higher T is reflected
in the values of A, , ri, and r in Tables I and III.

As seen in Tables II and IV, decreasing P increases the
relative density and relative entropy changes at the N-I
transition, as expected. These changes at the Sq-I transi-
tion in Table IV are the same order of magnitude as the
changes at the N-I transition and are about an order of
magnitude larger than those at the Sz-N transition in
Table II, results consistent with some experimental
data 2232

Effect of tail chain flexibili-ty

Tables I, II, V, and VI illustrate some of the effects of
tail-chain flexibility (as determined by the tail bond-
bending energy Eb) on the relative stabilities of the Sz, N,
and I phases. Decreasing Eb ik makes the tails more flex-
ible and thus makes the packing characteristics of the tails

increasingly different from those of the rigid core, thereby
favoring the segregated packing of the Sq phase over the
unsegregated packing of the N phase. (These changes in

Eb/k can be seen in the changes in the intramolecular tail
orientational-order parameter v in the tables. )

Decreasing Eb jk also decreases the lower limit of the
temperature range over which the I phase is the stable
phase; making the tails more flexible makes it more diffi-
cult to orientationally order the cores, either in an Sz
phase or in an N phase. For an orientationally-ordered
phase to be the stable phase in some temperature ranges,
the ordered phase must be the Sz phase with A, =1, as seen
in Table V. With A. =1, the segregated packing is at a
maximum, thus minimizing the opportunities of the rath-
er flexible tails to disrupt the orientational order of the
cores.

For Eb Ik = 100 K in Table V, the core orientational or-
der parameter g in the Sz phase first increases with de-

creasing T (as might be expected), goes through a max-
imum, and then decreases somewhat slowly with decreas-
ing T; this maximum in g would appear to occur at some
T around that at which A,~1 as T increases. At a constant
value of k (here A, = 1), ri can be expected to increase as T
decreases. Then, as I, decreases, g can be expected to de-
crease, since ri and A, are coupled. The behavior of the in
termolecular tail orientational order parameter ~ in the Sq
phase in Table V mimics that of ri. However, due to the
cotnpeting effect of q and v, the maximum in r appears to
occur at a lower T than that for the maximum in ri.

The density p in the Sz phase for Eblk=100 K in
Table V increases as q increases and decreases as q de-
creases; the molecules can pack more densely if their cores
are more orientationally ordered.

Effect of tail length

Tables I, II, VII, and VIII illustrate some of the effects
of the tail-chain length (as measured by the number f of

TABLE V. Effect of tail bond-bending energy on the thermodynamic and molecular ordering prop-
erties for the system in which r =4, f=8, and Puo/k =43.25 K.

Eb /k
(K)

T
(K)

) 112.16
112.16

100.00
86.00'
83.09
82.11
81.83
81.80

& 81.80

Stable
phase

I
I

Sg
S~
S~
S~

Sg
Ng

1.00000
1.00000
1.00000
0.60000
0.30000
0.10000
0.001 00

0.722 93
0.904 80
0.967 09
0.941 57
0.929 62
0.925 98
0.925 53

0.234 35
0.329 50
0.409 01
0.411 77
0.411 27
0.41097
0.410 93

0.324 16
0.324 16
0.364 18
0.422 93
0.437 33
0.442 40
0.443 82
0.443 99

0.65000
0.672 70
0.71663
0.760 64
0.757 58
0.756 92
0.756 77
0.756 75

)249.58
249.58

& 249.58

I
I
N
N

0.69642 0.396 52
0.569 37
0.569 37

0.474 26
0.501 75

'As T increases, A, ~1 at T=86.00 K.
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TABLE VI. Effect of tail bond-bending energy on the transi-
tion properties for the system in which r =4, f=8, and
&p/k =43.25 K.

Eb /k
(K) Transition

T
(K)

~p/pmop
(%) hS, /(Nk)

Sg-I
NR-Sg

112.16
81.80

3.3741 0.420 67
0~

249.58 5.4792 0.739 68

semiflexible segments) on the relative stabilities of the Sz,
N, and I phases. As f increases, the N Itran-sition tem-

perature T& I increases for larger Eb/k (as seen in Tables
I and VII) and decreases for smaller Eblk He. re, for
Eblk =250 K at Pvc/k =43.25 K, the semiflexible tails
have sufficient rigidity that the effect of increasing the
tail length is to enhance the orientational ability of the
cores by increasing the overall length-to-breadth ratio of
the molecule, thus making the cores orient at increasingly
higher T, either in the N or the S~ phase. As f increases,
the S„solutions exist at higher T. In fact, the S„solu-
tions for f=9 in Table VII are found at T greater than

T&I, and A.~O at a T just higher than T& I. However,
the Sz solutions for f=9 are metastable with respect to
the I phase. These results can be understood by consider-
ing the following.

As f increases, the segregated packing of the Sz phase
becomes increasingly important, at increasingly higher T,
in minimizing the opportunities of the semiflexible tails to
disrupt the orientational order of the cores. The tails are
sufficiently rigid to shift the T ranges of both the Sz solu-
tions and the N solutions to higher T as f increases, but
the tails are still flexible enough to shift the T range of the
Sz solutions to higher T more rapidly than the T range of
the N phase; hence, for f=9 in the S~ phase, A, ~O at a T
just greater than T& I. The Sz solutions are metastable
with respect to the I phase because at the higher T at

which the Sz solutions now exist, the densities are suffi-

ciently small that the molecules do not need to orient at
all in order to achieve the state of lowest 6, .

No S„solutions were found for f&4 with r=4 and

with varying values of Eb/k and Pup/k. Preliminary cal-
culations for the system in which r =4, f=4, Eb lk =250
K, and Pvo/k=43. 25 K indicate that there may be a
stable S~ phase at very low T (around 30 K); at higher T,
no Sq solutions appear to exist. That the existence of Sz
solutions appears to require an f greater than some

minimum value agrees with experiment.
In Tables I and VII, the size of the T range over which

the Sz phase is stable for a given range of k (where A, & 1)

decreases as f decreases. Also, for A, & 1, the size of the T
range over which Sz solutions exist—whether or not these
solutions correspond to the most stable state of the system
at a given P and T—decreases as f decreases. These re-

sults are consistent with experiment. Because the chains
are so short, in order for an Sz phase to exist at all in
some T ranges for shorter f, there must be perfect Sz or-
der (i.e., A, = 1).

In Tables V and VII, the regions in which A, =1 as T in-

creases have not yet been seen experimentally. Later in
this series of papers on the Sz phase, both attractive and
soft repulsive segmental (site-site) intermolecular interac-
tions are also included in the models; then, if an Nz phase
exists at all, X goes through a maximum at values signifi-
cantly smaller than unity as T decreases. With these more
realistic intermolecular potentials, the molecules interact
with each other at distances larger than the "hard-
repulsion" (steric) separation distance between segment
centers; thus, the densities of the systems are smaller than
those in the present model with only hard repulsions, and
the Sz phase is less favored over the N phase. With the
more realistic intermolecular potentials, the size of the T
range over which the S& phase is the stable phase in-

creases as f increases.
In Table VII the maxima in g, ~, and p in the Sz phase

for f=7 and Eb /k =250 K are similar to those in Table

TABLE VII. Effect of tail-chain length on the thermodynamic and molecular ordering properties for
the system in which r =4, Eb/k =250 K, and PUO/k =43.25 K.

T
(K)

) 179.93
179.93

174.00
168.29'
165.50
164.45
164.15
164.11

& 164.1

Stable
phase

I
I

S~

S~
Sg
N

1.00000
1.00000
1.00000
0.60000
0.30000
0.10000
0.001 00

0.794 78
0.861 19
0.90005
0.865 25
0.850 36
0.845 96
0.845 41

0.398 23
0.444 96
0.479 28
0.467 71
0.462 27
0.460 62
0.46041

0.501 05
0.501 05
0.516 69
0.532 50
0.540 55
0.543 62
0.54449
0.544 60

0.539 93
0.578 01
0.595 27
0.61009
0.605 45
0.603 95
0.603 56
0.603 51

) 188.57
188.57

& 188.57

I
I
N
N

0.665 26 0.31907
0.479 61
0.479 61

0.538 06
0.558 64

'As T increases, A.~1 at T=168.29 K.
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TABLE VIII. Effect of tail-chain length on the transition
properties for the system in which r=4, Eb/k=250 K, and
PU, /k =43.25 K.

Transition

Ng-Sg

T
(K)

179.93
164.1

~p/pmop
(%)

6.5890
Q+—

AS, /(Nk)

0.745 99

N-I 188.57 3.6829 0.681 06

V for f=8 and Eb/k= 100 K and are generated by the
same conditions in A, .

General concluding remarks

The present model for smectic-A and reentrant-nematic
phases is unique in that the molecules are composed of
rigid cores with semiflexible tail chains and have only
site-site (segmental) hard repulsive intermolecular interac-
tions. This latter feature of the model allows us to con-
centrate exclusively on differences between the steric
(hard-repulsion) packing of the rigid cores and of the
semi-flexible tail chains.

The results for the smectic-A and reentrant-nematic
phases show, for the first time, that these packing differ-
ences (and changes in these differences) are sufficient to
produce and stabilize both of these phases in different
ranges of temperature and pressure. This observation ex-
plains why the necessary condition, with very few excep-
tions, for rnolecules to form smectic-A liquid crystals in
real systems is the presence of seiniflexible tail chains of
significant length and why the smectic-A phase (in fact,
any smectic phase) disappears as the length of the tail
chain is shortened.

As with the ordinary (high-temperature) nematic
phase, dipolar interactions are not necessary in this steric
packing model to produce smectic-A and reentrant-
nematic phases, but (as will be seen in future papers of
this series) do affect the ranges of temperature and pres-
sure for which such phases are stable.

As in any model with only hard repulsive interactions,
pressures larger than atmospheric are required to produce
condensed phases. Hence, the important aspect of the nu-
merical results here is the reproduction, qualitatively and
semiquantitatively, of experimental trends. The ternpera-
tures in this paper tend to be low compared with experi-
ment, ' ' ' ' but the important feature in this model is
not so much the absolute magnitude of the temperature,
but rather the ratio of the tail bond-bending energy Eb to
the temperature; the values used here for this ratio agree
well with experiment.

The idea that the packing differences (and changes in
these differences) between rigid parts and semiflexible
parts of molecules give rise to smectic-A and reentrant-
nematic phases can also be used to explain these phases in

disklike liquid crystals, in which the rigid rodlike core of
a molecule has been replaced by a rigid disk.

Observing the way the packing differences give rise to
the srnectic-A phase in a pure component, we can make
some comments about how solute molecules of different
shapes will pack when introduced into a smectic-A solvent
and thus affect the stability of the smectic-A phase of the
solvent.

In particular, the more flexible solutes would be expect-
ed to concentrate with the semiflexible tail chains of the
solvent molecules in the smectic-A phase, and the more
rigid, rodlike solutes would be expected to concentrate
with the solvent rigid cores. The more globular, quasi-
spherical solutes would be expected to pack with the sol-
vent tail chains in the smectic-A phase in order to mini-
mize the disruption of the orientational ordering of the
cores.

On a volume-fraction basis, quasispherical solutes are
more effective than semiflexible chain solutes in disrupt-
ing the orientational order of a nematic solvent, because
the chains tend to align somewhat with the solvent cores
and tails. In the smectic-A phase, one might expect the
same relative disrupting abilities of the quasispherical
solutes and the chain solutes, with both solutes tending to
concentrate with the solvent tail chains. However, if the
solute chain is long enough, it could overlap into the re-
gions where the solvent rigid cores are concentrated and
thus could be more effective, on a volume-fraction basis,
than a quasispherical solute in disrupting the orientational
order of the solvent cores of the smectic-A phase as well as
the smectic-A order (i.e., the segregation of cores with
cores and tails with tails).

The model of this paper is presently being extended to
treat binary mixtures of solutes of various shapes in
srnectic-A solvents in order to test directly the above ob-
servations, which do seem to be consistent with experi-
mental data for binary mixtures of solutes of various
shapes in smectic-A solvents.

These observations also suggest that when solutes are
used as probes ' of the orientational order in a smectic-
A phase, the structure of a solute molecule will determine
with which parts of the solvent molecules the solute mole-
cule will tend to pack and thus for which part of a solvent
molecule the order is actually being probed.
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