
PHYSICAL REVIEW A VOLUME 28, NUMBER 6 DECEMBER 1983

Effective Hamiltonians, two-level systems, and generalized Maxwell-Bloch equations
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A new method is proposed which involves a canonical transformation leading to the nonsecular
part of time-independent perturbation calculus. The method is used to derive expressions for effec-
tive Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of
non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equa-
tions. The rotating-wave approximation is written anew within the framework of our formalism.

I. INTRODUCTION

There are several ways in which an effective Hamiltoni-
an can be defined. Accordingly, at the outset we must
clearly state what meaning we shall be ascribing to the
word. Here are some examples of its various connota-
tions.

Consider a Hamiltonian in the form

H =Hp+H;„, ,

where

Ho +co;a; a——;,

Note that this Hamiltonian is characterized by the fact
that the interaction H;„, leads to transition within the en-
ergy shells of the free Hamiltonian Ho. This is ensured by
the condition (2).

Another case is that of generalization of the well-known
Dicke Hamiltonian in the rotating-wave approximation to
k-photon resonance:

H =Hp+H;„, ,

where (3)

Hp ——eS3+coa a, H;„,=A.'a S +A.a S+, @=ken .

Here also, interaction leads to transitions within the ener-

gy shells of the free (noninteractive) part only.
Hamiltonians of the forms (I) and (3) are attributed to

Shen and Walls' and are referred to as effective Hamil-
tonians. Notwithstanding that the authors who took
recourse to these Hamiltonians are truly innumerable, ow-
ing to the great advantages they present in practice, the
procedure of their derivation has hardly been given the at-
tention which it merits.

Formally similar "resonance" Hamiltonians have been
applied by Senitzky, albeit in the context of the interac-
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It is applied in quantum optics in the description of the n
modes of a field interacting under conditions of general-
ized resonance:

tion of a system of harmonic oscillators and the radiation
field. The relationship between his resonance and our "ef-
fective" Hamiltonians will be the subject of a separate pa-
per.

Consider a Hamiltonian, given as the sum of a free
(noninteractive) part A o and the interactive part A;„,:

P —A p+A i~t ~ (4)

In this paper we shall be using the words "effective Ham-
iltonian" to denote the Hamiltonian arising from P on
application of the canonical transformation, diagonalizing
A with respect to the energy shells of the free (nonin-
teractive) part 4 o. We show that Hamiltonians of the
types (I) and (3) are encompassed by the above definition
and can be derived from standard forms of Hamiltonians
describing mutually interacting matter and radiation by
applying a time-independent canonical transformation. In
the course of our proof we shall derive a form of perturba-
tion calculus particularly well adapted to problems in
which the spectrum of the initial operator presents a high
degree of degeneracy.

The structure of our paper is as follows. In Sec. II we
derive the necessary canonical transformation, equivalent
to diagonalization of the initial Hamiltonian with respect
to the energy shells of the free part, i.e., the canonical
transformation equivalent to the nonsecular part of per-
turbation calculus. In Sec. III we make more concrete the
physical assumptions regarding the systems under con-
sideration. The next step in the derivation, in Sec. IV,
consists in finding effective Hamiltonians for the inaterial
system interacting with the radiation field. Finally, in
Sec. V, these Hamiltonians are given in the two-level ap-
proximation of the material system; in particular, for
cases of multiphoton resonances. They are then applied to
a discussion of the generalized Dicke super-radiant state.
Section VI gives generalized Maxwell-Bloch equations as
well as a discussion of the realization of the rotating-wave
approximation within the framework of the formalism ap-
plied by us.

The method we propose for deriving the effective Ham-
iltonians has some rather loose connections with the work
of other authors. The idea itself is similar to that of
Heitler, who uses the interaction picture, in his form of
perturbation calculus. There are, as well, certain connec-
tions with the ideas put forward by Michels and Suttorp
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in a number of papers concerning degenerate perturbation
calculus, where stress is laid on the use of field-theory
methods; since they deal with time-dependent perturbation
calculus, they too apply the interaction picture.

By using effective Hamiltonians in the two-level ap-
proximation it is relatively easy to derive Maxwell-Bloch
equations, generalized for nonlinear processes. In the case
of the classical field, one can go over to Bloch equations
for multiphoton processes along the path opened by the
work of Grischkowsky, Loy, and Liao, and expanded by
Nayfeh and Nayfeh and by Friedmann and Wilson-
Gordon.

We should also mention the approach of Rosenberg,
which is an extension of scattering theory and which takes
recourse to the resolvent operator.

II. CANONICAL- TRANSFORMATION
FORMALISM

We consider a Hermitian operator of the form

(X[sE)r{a))[sE)+(X[nj Y[n, E) )[rt E)

(X[n,E) Y[s,E))[nj

(Xr[dj)[n, E) X[n,E)r[d)

(X[d jr}[ Ej X{ ) Y{~Ej

(X[rt Ejr}[dj+(Xr[n,E)){dj p

[m„x]{dj=p, [m, ,x]["'j=x["j.

(12)

(which is the same as the "dash operation" denoted by a
long overbar in previous work). Moreover, some readily

proved relations will be helpful later on. For arbitrary

operators X and Y the following formulas hold:

(xr)["j=(x["jr["j)['j+x["jr{'j
(Xr){nj (X(s) r[rtj )[nj+X(sjr(d)+X[dj Y[n)

(x{&Ej){dj (x{d)){~Ej —p

(Xt)[n,E) (X[sE))t

M(e)=A p+EA i+EX i+ ''' = g E
m=0

where e is the perturbation parameter (e&&1). Assume

p fo have a discrete (and, in general, degenerate} spec-
trum and the solution of its eigenvalue problem

shall be diagonal (only with respect to linear subspaces
(6) L ).

(5) The canonical transformation, diagonalizing the operator
A (e), is quite easy to perform, i.e., a unitary operator
4'(e) can be defined such that the operator

M(e)= k(e)A (e) kt(e) (13)

to be known. The coefficient a labels states belonging to
the subspace L;, corresponding to the eigenvalue Epi (if
A p denotes a Hamiltonian, L; is an energy shell}. The
states )i,a) form an orthonormal basis in the Hilbert

space in which the operators A act:

{i,a ~j,p) =5;,5 ii, g ~
i,a &(i,a [

=I .
i,a

M(e) =A"[dj(e} . (14)

The meaning of this procedure is obvious. We have here a
perturbation-calculus procedure conceived in the spirit of
the canonical transformation method proposed by Heitler
(cf. also Ref. 9}. To achieve this aim, it suffices to choose
4'(e) in the following form:

In other words, we have assumed the following spectral
distribution of the operator A p.

where

(15)

~p Q EpiPi (8)

where the projector operators P; are expressed by the for-
mulas

(„) a"x„ e" ix„ i a xi"(e}=e "e " e e (16)

P, =g [i a&&i a[ . (9) The operators X&,X2, . . . , X, . . . are anti-Hermitian:

Henceforth (unless specified otherwise) the term
(non)diagonality will be used in the meaning of
(non)diagonality with respect to the subspaces L;. We
shall be applying the following superscripts to denote the
operation of taking the diagonal and nondiagonal parts:

o['j —= g p, op, , o{"j =—g p, op, , (10)
j7J

respectively, where 0 is an arbitrary operator. The prime
on the summation symbol in the preceding formula stands
for summation over i&j. Also, we shall often be applying
an energy-weighted operation (of taking the nondiagonal
part) defined as follows:

j—:g' (E(); E() ) 'P;OP— (11)

(17)

Since we are interested in diagonalizing P (e}with respect
to the linear subspaces L; only, these operators can be as-
sumed to be nondiagonal without loss of generality:

X~'~=O. (18}

+(e)4' (e}= 4 (e)4 (e)=I, (19)

is satisfied automatically. Moreover, M(e), and likewise
4 (e), can be expressed in the form of a series:

M(e)= g e M (20}
n=0

Obviously, the condition of unitarity of the operator
+(e),
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We now proceed to determine the explicit form of the
operators 4 m. To this aim, it is useful to transform (13)
to the equivalent form:

~ 3A 2

M(E)+(E)= k(E)A (E) . (21)

On equating the term at identical powers of the perturba-
tion parameter e we obtain the formula

X (~ I +—I
—+I~m I)—=0 m =0, 1,2 . . . (22)

l=o

where the operators ki are defined as the expansion coef-
ficients of k(E) in powers of E,

k(E)= g E
m=0

and are given by the expressions

+p ——I,

(23)

m2 m&
X2 X1 1)1.
m2! m1!

'

I ~ I —1

I I —1

~1'm2 - . ~I)o mI mI! !
I

kmk = I
k=1

(24)
The summation is taken over all sets of l non-negative in-
tegers m I,m2, m3, . . . , mi, fulfilling the condition

I
I

I

I

I

I

I
I
I

I

I
I

I
It---
I
I

I
I
I
I

I

I

I

I

I

Eq. (27]

Eq. [30]

c'r'2

cubi

FIG. 1. Iterational scheme for the calculation of operators
and U .

I

g kmk =mi+2m2+3m3+ . . +Imi =I .
k=1

(25)
m —1

+fnj g [(+{nj~ )fn, Ej+~fdj~f E)n

I=1
The successive operators +~ can be obtained by apply-

ing a simple recurrence relation. Let & denote the opera-
tion of ordering the products of operators X by writing
them from left to right in the order of decreasing indices

@fn, Ej]+~{n,Ej
m —I m

(29)

m:
1 —1

XI+ g (m/1)&——(X (26)
m=1

A proof of this equality and of the formulas for kI at
I (5 is given in the Appendix.

Let us now return to Eq. (22). For m=0, it simply
gives Mp=A p. Hence, for m ) 1 we have

We still have to determine the diagonal part of the opera-
tor km. To this aim, it suffices to invert the relations
(26), i.e., to write the Xm 's as functions of

k 3 ~ ~ ~ k m and to apply the operation of tak-
ing the diagonal part, keeping in mind the assumption
X" j =0 [Eq. (18)]. We thus obtain expressions for the di-
agonal part of the operators k in the following form:

m —1

+[A p k ]= g ( kiA I
—M I4'I)+A

(27)

The procedure applied by us is visualized graphically in
Fig. 1. Let us assume M1,A 2, . . . , M 1 and

1 as known. By assumption, M is
diagonal. On taking the diagonal parts of both terms of
Eq. (27) and applying the relations (12), we determine the
operator A from the following formula:

~Id) 0

@fdj 1 (@2)fdj

@fdj (@ ~ )fdj+ & (@2){dj &(@ ~2){dj

——,'(~2I~2) fd j+-,'(~', ){'j, (30)~ = g [(+f"j~,)fdj++ fdj~f"

~fd j,~ fd j ]+~fd j (28)
and so forth. For higher and higher orders of the expan-
sions of PC(E) and k(E), we have

Next, taking the energy-weighted nondiagonal part of the
right- and left-hand sides of Eq. (27), we calculate the
nondiagonal part of +m:

(31a)
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(3lc)

(31d)

@(n) (~{n,E}~)[n, E} ~{dj(~{n,E}){n,E}+~{n,E} (31b)
2 1 2

~ {d} & (~{n,E}~{n,E}){d)
2 2 1 1

p(~{nE}~){nE}~](dj+ & (~{nE}~{nE}){d}~{dj+& ~{dj(~{nE}~{nj){dj3=L
1 1 1 2 1 1 2 1 1 1

+(~{n,E)~ )(d}+(~{n,E}~){d)+~(d j

t
[(~{n,E}~)[nE}~ ]{nEj~

I
{dj

p(~{n,E}~){n,E}~{n,E}]{d}~{dj~{dj[~{n,E}(~~{n,E}){n,E}]{d)+g 1 1 1

i i~{nE}~{n,E}~{nE}){d}~{d}+& ~{d}(~{n,E}~{n,E}~{n,E}){dj
1 3 1 1 1 1

'i (~{n,E}~){dj(~{n,E}~{n,E}){dj & (~{n,E}~{n,E}){dj(~~{ nE}),(d)+ 2 1

~{d}[~{nE}(~{nE})(n E) ]{d j~{d}+[(~jnE}~ ){n,E}~]{dj +[(~{nE}~){n,E}~][d }

z(~{n,E}~){n Ej~ ]{d)+ 1 ~{dj(~{n,E}~{n,E}){dji & (~{nE}~{nEj){d}~{d}
+g 1 1 2 2 2 1 1

{n Ej ){dj~{d} ~{dj(~{nE}~{nE}){d)+(~{nE}~)[d}+(~{n }~)(dj+ 1 1 2 2 2

+(~{n,E}~{n,E}){dj+~{dj
1 3 4

where Eqs. (31a), (31b), (31c), and (31d) refer to orders 1, 2, 3, and 4, respectively. Obviously, our chief aim is to obtain

expressions for the ~ 's. The + 's are but supplementary. However, for the sake of clarity we preferred to give the

expressions for the k ~'s as well, for m (2.
From the practical viewpoint, the most common case is when M(E) is a linear function of E:

A (E)=PPp+EW,

i.e., A
&

——W, 4 i——4 i ——. . ——0. The following formulas now ho d:

y I&I

( ~{n,E) ~){dj

[(y {n,E}y ){n,E}y ](d)+ i (~{nE}y {nE))(d)y {d)+ i ~{dj(~{nE}~{nE})(d)

(32)

(33a)

(33b)

(33c)

(33d)

[[(~{nE}y){n E}y ]{nE}~I {dj+[(~{nEjp ){ E}np {n Ej]{dj~{dj ~{dj[~{nEj(~p {n E) ){n E}][dj

+ & y [d}(y {n E) ~{nEj ~{nE})(d) i (y {n Ej y {n E}y [n Ej ){d)~{d}+i
( ~{nE}~){d}(~{En} ~{nE}){dj

3 3 2

& (y {nE}y {n Ej){d}(~~{nE}){d}+y {dj[~{nEj(~{nEj ){ E}]n{d}y

etc. This case, with the additional assumption of
&I"I =0, has been described by Heitler with accuracy up
to terms of order 4 and applying the interaction picture.

Having derived the formula of the canonical transfor-
mation we no longer need to write e explicitly. We just
assume E as included into the A, M, and
respectively. This is equivalent to the current procedure
of inserting a perturbation parameter equal to unity.

The advantage of the method proposed above resides in
its far-reaching algebraic manipulation and simplification
compared to standard perturbation calculus and, more-
over, in its applicability in cases of high degeneracy of the
spectrum of the initial unperturbed operator A p. Its
range of applicability is, in fact, much wider than it might
appear at first sight. Its extension to the case of a con-
tinuous spectrum of A p reduces to modifying the defini-
tion of the operations of taking the diagonal part and of
taking the energy-weighted nondiagonal part. In brief, di-
agonalization will take place with accuracy up to some in-
terval and, instead of sums, integrals or their principal
values will appear. The use of the Heisenberg picture is

E; = g E,'"', E,'"'= (i
i
M„ i

i ) = (M„);; .
n=0

In particular, by (31) we immediately get

(p)E; =Epg,
(1)E; =(A i);;,

(34)

(35a)

(35b)

(35c)

by no means required; just as well, recourse can be taken
to, e.g., the interaction picture. Again, the form of Eq.
(31) remains unchanged; only the definition of the opera-
tion of taking the energy-weighted nondiagonal part un-
dergoes a modification (an integral over time will appear
therein).

In the absence of degeneracy, Eq. (31) leads directly to
the usual formulas of nondegenerate perturbation calculus
for the successive corrections to the energy eigenvalues.
We have
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(3), ( 1)j( 1)jk(~l )kl

j k (Epl Epj )(E0' Epk )

, (~))~j(~))J, (A 2)~j(A ));
(Ep; —Epj) . Ep; E—pj

III. MODEL

Basically, we shall be dealing with a system of electrons
at interaction with a radiation field described in terms of a

vector potential A. The Hamiltonian of the system can be
assumed in the form

, (~));,(A 2)P+ g' " " +(4;).. . (35d)
P = g A q+oYC g+P'~nd .

q

(45)

A o=es3, 7 =A(s++S ), (36)

etc. The primes denote omission of the index i in the
sums.

Finally, as an example, we shall consider nondegenerate
perturbation calculus as applied to a Hamiltonian of the
orm

Its components have the following meaning:

[pq —eA(xq)] +eq)(xq)
2m

(46)

is the nonrelativistic Hamiltonian of the qth electron mov-

ing in an external radiation field and a scalar potential q).

~c,~ refers to the electrostatic interaction of electrons
and takes the form

where S3,S-+ are spin operators, fulfilling the usual com-

mutation rules
g' e (4ireo

~
xq —xq

~

)

q&, q&

(47)

[s+,s-]=2s, , [s„s'-]=+s'-.
By applying the unitary operator defined as

k =exp[ —,
' q2(S+ —S )],

(37)

(38)

where the parameter y is expressed in conformity with the
relations

2~
coQp =

(++4g2)1/2
' (e2+ 4g2)1/2sing = (39)

we diagonalize 4 [(Ref. 36)] with respect to the energy

shells of the operator 4 p strictly:

A = +A"k'=(e2+4A2))/2S, .. (40)

%'e now proceed to apply the canonical transformation

proposed by us. Taking recourse to

where the prime means that summation is carried over all

q), q2, with q)&q2. From the point of view of our present

aims, A c,„& is a redundant complication and we shall be
omitting it throughout. In fact, in many cases of practical
significance the assumption that the electrons interact by
way of the radiation field and the omission of direct
Coulomb interaction is fully justified. It should be stated
that this simplification involves no restriction on the gen-

erality of the method but is aimed at enhancing the clarity
of our presentation. Finally, Pi „d is the Hamiltonian of
the source-free field of radiation;

A „d———, f d x(E.D+B.H), (48)

where the fields E and B are given in terms of potential as
follows:

[(S+)m(s —)n](d} g (S+)m(s —
)m (41) B=V&&A, E=-

at
(49)

[(S+)m(s —
) ](nn, E}

(S+ )m(s —)n

(m n)e—
whence

'2

0 for m=n
for m&n (42) ~ ' f de e +&

—)(~XA)2 (50)

we obtain

We now write A in a form more adequate to our fur-

ther considerations:

3 —A 5 — —0

2A' 2X4
Mp=eS3 M2= S3 A 4= — S3

g3

etc., i.e.,

(43)
A —A p+4 ]+4 2,

where the "unperturbed part" A p has form of the sum

~0 ~el+~red ~e) g P q+eq'( "q )
2m

(5 I)

2X' 2X4
e+ +.

E'

This result is in complete agreement with the strict result
(40) since the expression in parentheses is a series expan-
sion of (e +4k, )' . In the following sections we show
how the results obtained above can be used to derive the
so-called effective Hamiltonians, which are widely applied
in quantum optics.

g [pqA(xq)+A(xq)pq],
2m

2

A 2 —— gA (xq) .
2m

(53)

(54)

(52)

The terms A
&

and A 2 are expressions, respectively, of the
first and second order in the electron charge e:
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The above model is of rather high generality. By an ap-
propriate choice of the potential y it can be fitted to the
description of various real physical systems, such as the
solid (when qr is the spatially periodic crystal lattice poten-
tial; the lattice vibrations can be included into the descrip-
tion quite easily). The Hamiltonian of the electrons of an
atom, written in a coordinate system attached to the nu-
cleus, is of the same form. Sometimes, one considers
quantum structures moving —without colliding —as a
whole according to the rules of classical mechanics. Then
one only needs to add to xz a given vector function of the
time e& ——Bq(t). The Doppler effect, which has various
essential implications, i.a., for inhomogeneous line
broadening, may be included by putting e&(t)=r&+vqt,
with rq the positions and vq the velocities at the initial
moment of time t=0. The atoms are also assumed to
move uniformly, rectilinearly and without colliding. Set-
ting v&

——0, one hence obtains a Hamiltonian for the case
of stationary atoms well adapted to the description of ad-
mixtures in solids.

Our further considerations will be based on the second
quantization formalism. The vector potential of the fields
is given as follows:

Let
I p & be the pth eigenstate of the one-electron Ham-

iltonian:

2m
p'+eq(x} Iv&=Ei Iv& (61)

[b„,b„]+=5„„, [b„,b„]+=[b„,b„]~=0 . (62}

The Hamiltonian of mutually noninteracting electrons
now takes the form

A, )
——g E„b„b„. (63)

with p denoting collectively the set of quantum numbers
characterizing the electron. When dealing with a system
of atoms p will always be meant to include the number q,
labeling the atom (each atom is understood to have but
one electron}. In some cases we shall separate q from p,
thus leaving p to describe the remaining quantum num-
bers only; then, we shall write pq in place of the single p.

Let b„,b„denote creation and annihilation operators of
an electron in its pth state. They fulfill the usual an-
ticommutation rules

A(x)= g(2epco„) ' [u(x)a„+u'(x)a„] . (55)
Hence,

P p= g cia++»+ g EtIb~bp (64)

farad= g tp»a»a» (58)

(the field energy is counted starting from the vacuum
value). For the sake of convenience, we shall sometimes
be using an index a equal to "+ " or "—"and the nota-
tion

The a„,a„are the usual boson operators of creation and
annihilation of a mode, denoted by a., comprising the com-
plete set of mode indices:

[a„,a„]=5„„,[a„,a„]=[a„,a„]=0. (56)

As usual, the functions u„(x) form an orthonormal set of
mode functions chosen in accordance with the volume V
in which the field is to be quantized:

d x u '„(x ) u „(x ) =5„„. (57)
V

Since we apply the Coulomb gauge, it is obvious that
divu„(x) =0. The Hamiltonian of the free radiation field
now becomes

As for the terms P i and A q of the Hamiltonian, they be-
come

a„b„b„,
CX)K P, V

CK )K )ApKp al a2

P'P 1 2
a„a„b~b„.

(65)

(66)

CXK =——'(2~~.) '"&s
I

p'u
m

(67)

a&K&apKp

(68)

The constants occurring in the preceding formulas have
the explicit form

aK, a=+K&

aK, a=— ~S9ai

When writing their products we shall be omitting the ma-
trix brackets and separating the indices by commas.

The eigenstates of the operator A o are tensor products
of eigenstates of the operators A „d and A, ~

and are writ-
ten as follows:

u *„(x), a=+u„(x)=.
u„(x), a= —.

(59b)

With this notation, e.g., the vector potential (55) assumes
the form

g tp„n„+ QE„m„. (70)

(69)

where n„ is the number of photons of the mode K and m&
the number of electrons in the pth state. The eigenvalue
corresponding to this function is equal to

A( x )= g (2epco„) '~ u „(x )a„.
CX, K

(60)
For a system of N one-electron atoms the eigenstates are
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of the form

where

Ip&q ——I. . . ,m~q=1, . . . &

The respective eigenvalue is

g cong+ g E~qm~g .
lC ve

(71)

(72)

(73)

(74)

Hence, one notes that the spectrum of the "free" Hamil-
tonian P 0 is, in general, highly degenerate. Thus, e.g., if,
for two electron states p and v, the condition of photon
resonance

if A(W) =0
0 if A,(M)~0 . (79)

The other (energy-weighted) operation is also easy to per-
form. One notes that

0 if A,(W) =0
'(M)M if A,(M)&0 . (80)

to the situation as generalized resonance of rth order. We
identify the order of the resonance with the number of
photon frequencies occurring in A(W). In this meaning,
e.g., the Raman effect, for which a relation of the form
co„—co„+co&„——0 is fulfilled, is a generalized resonance of

1 2

order 2.
The operator W given by formula (76) is diagonal if

and only if A,(W) =0. Hence, the result of the operation
of extracting the diagonal part takes the simple form

T

E~q —E~——pro„ (75)

is fulfilled, the states of the system as a whole with quan-
turn numbers n„+p,m„=0, m„=1 and n„,m„=1, mv=0
correspond to the same eigenvalue (70). Similarly, for a
system of atoms, if the condition

Thus, e.g.,

(a a b b )("'")=.
K) Jcp p v

0 if co„—co„+co&„——0

a„a„b~b„
COg —CO~ +CO~v

is fulfilled, the states n„+p,m~ =0, m~ =1 and
n„,m =1, m =0 correspond to the same energy (73).
Considering that the equality (75} can hold for a very
great number of atoms and even (as it is in the case of
homogeneous line broadening) for all the atoms, one readi-
ly imagines the order of degeneracy involved. Hence, in-
stead of standard perturbation calculus, it is better to have
recourse to the canonical-transformation method proposed
in Sec. II.

As a result of the explicit form of A i and 4 i we shall
deal only with operators of the form

' ga, W, (')=pa, W(')=pa(')W, ,
l l l

'
(n, roj ~ ~(n, a)) ~ (n, a))~—~ CX. l

(81)

(82)

where the new coefficients of the linear combinations are
defined by the equalities

lf tip„ci)„+c—il&~0 .

If a given operator is a linear combination of operators
M;, i EI, each of which is of the form (76), we have

(76)

For each operator of the preceding form, we define a
number

and

a; if A(W )=0
~f~l—

0 if )(.(M;)~0 (83)

A,(M}—:aico„, +azco„,+ . . +a,co„

p 1 vl p2v2 p,s vs (77)
0 if A,(M;)=0

( s, ru)

'(M;)a; if A, (M;)&0 . (84)

copv—=Ep —Ev (78)

If the equality A(W) =0 is fulfilled we shall be referring

I

which defines the balance of frequencies, related with the
operators occurring in W. We have made use of the nota-
tion

This is a very simple and, at the same time, very impor-
tant result. Application of the operations represented by
superscripts [d J and (n, co ] to operators of the form (76)
reduces to transformations of the coefficients at these
operators. For simplicity, we use the same symbols to
denote both transformations. For example, we have

'
fn, co)

(X )K ) (X2K2CX3K3

P2V2

1 1 2K2CX3K3

P ]V]~P2V2

A~COe +CO@ v

0 otherwise

a~+ +~~ +0 and +~~ +o2+ +~@v~++p
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and

'
fn, a)I fn, coI

CKK

0 if aco„+co„„=0

In this way, we have prepared the terrain for deriving the
effective Hamiltonians. This will be the subject of Sec.
IV.

p
2

otherwise .
(ato„+o)q„)

5KK, if a& ——— and a2 ——+(a„')'(a„')' = .

0 otherwise
(85)

a, a 5& &
if ai= — and a2 ——+

(b 1)~

(b 2) ~ Pi@2

0 otherwise, (86)

to denote contractions. If there is but one electron in the
system,

As we shall often require Wick's theorem in the course
of the later sections of this paper, we introduce the set of
double dots "::"to denote the operation of normal order-
ing as well as pairs of superscript dots, double dots, etc. ,

IV. EFFECTIVE HAMILTONIANS

Here, we shall derive effective Hamiltonians for a
variety of situations —including one and many
electrons —omitting as well as taking into account the
term in A in the interaction Hamiltonian. The results
are applicable, e.g., to the description of the one-electron
atom, a system of stationary atoms, and electrons in a
solid. In accordance with a statement in Sec. III, the ex-

tension to atoms in motion is straightforward. We start
from the simplest case.

One electron; A type-interaction omitted Sinc. e there is
but one electron, the equality (88) holds. We perform the
canonical transformation. Omitting the A -type interac-
tion, we are justified in applying formulas (33). We obtain

(90)

g b„b„=1, (87) m=0

Wick's theorem leads immediately to the equality where

(91)

Hence, in the case of many (one-electron) atoms we have,
for arbitrary q, the following relation:

a&,a2, . . . , am p, v

K])K2). . . ) K~

1 2 m

KiK2 ' K~,pv

. . bp qbv q

1 2 tll

(92)

With regard to formulas (33) we have

alE„„„=
CX )K)

(93a)

f n, coIa ~K&
'

a2K2
(93b)

a ]a2'a 3
KiK2K3, Pv

A, p
pk Ap pV

fn, a)I fn, coI fdIa &K&
'

a2K2
'

a3K3

1+—
2

' fnuI ' fncoI fd) fd
&~K~ A2K2 CX3K3

pA, gp

fnru) ' ' fnco) fd)a &K& a2K2 3K3

PA, P PV
(93c)
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Ea]a&a3a4
K]K2K3K4,pV

a&K&
'

a2K2
'

a3K3 a4K4
'

fn, col fn, o)I fn, coj fdI fd)a]K]
'

a2K2
'

a3K3 a4K4

A, &p& 7F
pA,

a)K)

Ap p ir 7rv

fn, col fn, coI f n, coI fd)a2K2
'

a3K3 a4K4

Ap per
1+—
3

A,p

a)K)

pA,

P7T

fn, A&I t
'

fn, a)I '
fn, co) fd)

a2K2
'

a3K3 a4K4

p77

1

2

Ap P7T

'
fn, coI

'
fn, a)I fdI '

fn, coj fdja )K] a2K2 a3K3 a4K4

Ap P7T

GATV
'

fn, a)I '
fn coI

' '
fn, a)I fdI fd)a ~K& a2K2 a3K3 a4K4

1+—
2

fn~I fd) . . fn~j . . fn~) fdja1 1 2 2 3K3 a4K4

p IT

fd j
'

fncgI
a)K) a2K2

pk Ap

fncoI fncoI fdI fdI '

a3K3 a4K4

POT
(93d)

and so forth. These formulas make apparent the advan-
tages to be drawn from the method proposed in this work.

am
The expressions for the numerical coefficients EC„.. . „
result, as it were, automatically from the general formulas

~ ~ ~

(33). Moreover, K„'.. . „„„&0only if the generalized

resonance condition

a~co„,+ . . +a cg„+~„„=o (94)

is fulfilled. Hence, on transformation, the Hamiltonian
contains only such terms as to fulfill the energy conserva-
tion principle (meaning that they admit only of transitions
between states belonging to the same energy shell). In a
way, the result resembles that obtained when applying the
rotating-wave approximation, albeit with the significant
advantage of being strict. Approximations appear only
when some of the terms of the series (90) are omitted.

We wish to draw attention to the following fact. Each
contains one term, describing transitions through vir-

tual electronic levels,

~

(. . . [[(y ){»,s) /]{n,rd) y ]
{n,s). . . y }{n,s)

~

{d)

in which m F operators appear in order of decreasing
level of nesting within braces, brackets, etc., and terms
describing compositions of generalized resonances, i.e.,
transitions through at least one real level. They are terms
having the form of a product of two or more diagonal

] moperators. The coefficients E„,. . .„&„contain, summed

together, the contributions from the two types of transi-
tions.

The form (90) of the transformed Hamiltonian is still
not satisfactory. Identical effects are described by dif-
ferent terms; besides, the physical interpretation of the
latter is insufficiently clear. It is desirable to have a selec-
tion of the terms of 4 in conformity with the effects for
which they account. The difficulties vanish on perform-
ing normal ordering of the field operators (the electron
operators are already normally ordered). Through Wick's
theorem we have

m

I&J
l (J

a] a-
~ aI ~ ~[a„.. (a„') . (a„') . (a„) . . . (a„)

i,j,k, l
i (j(k &l

am
~ ~ e Q "m

~ a] a,. a. aI ~ a+ a . (a ')' . (a ')'' . . (a )'' . (a )'. . . aK] K ~ K ~ Kk "I Km
'

ak ~+:a„' . (a„')' . (a„')'' (a„„")' . (a„, ) ' a, :]+ ' ' '
K] J

(95}

Moreover, the following formulas hold:

a]& ~ ~ ~ & a
K]& ~ ~ ~ & K

a ~ ~ am ] m
a a

K] ' 'K,PZ +K QK

m
1

~ ~ ~

a] a -a a
n n+]

. a„
m

(96)
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The symbol P„(xi, . . . , a. ) stands for summation over all permutations of pairs of indices a„R, of the form

] ]~ s n n~ n+[ n+]» m m

+K]y ~ ~ ~ p +Kn y
—Kn+ )~ . . . ) —Km

Similar expressions are obtained for field-operator products involving 1, 2, 3, and more contractions. Products of the m

field operators appear in the expressions of order m +2k on performing k-fold contraction. We redefine the coupling

constants so that they shall comprise the higher-order contributions.

We introduce the following notation:

&E„=g &6.+,„„+g (&iii.i,+„„+&i~ii.++&ii.~i+.„+„)+' '

A

(97)

where the ellipsis stands for terms of order 6 and higher, and

n 1

n!(m —n)!

a1 a~X„.. . „"„,+ g
1 m'

l,J
1&i (j(m+2

a ~ - a. , —,a. ~ ~ a. , +,a. ~ ~ ~ a
1 i —1' ' i j—2' ' j—1 m +

K1
' ' K] 1)kiKt ' ' '

Kj 2ik)Kj ] KggipV
(98)

where the last set of ellipsis stands for terms of order
m + 4 and higher, permitting the expression of the effec-
tive Hamiltonians in the general form:

2

m=0
(99)

In, coI Id)
+g) —K2

a„a„b„b„.
1 2

where

4 o
—+co~~„+g(E„+5E„)b„b„, The terms M of the Hamiltonian A now take the

following form:

m)1. (101)

Qx„, . . .„„„
n =OK1p ~ ~ ~ p K piv

t
&(a„, - - aK aK, . a„b&b„,

o--- (104a)

(104b)

()bviously, the coefficients X"„.. . „&„are symmetric in

the first n and remaining m nphoton indice-s. The prop-

erty

(~n )8 gill
—II (102)

ensures Hermiticity of the M" s. In contradistinction to
's, the M" 's are not terms of the mth order in the

perturbation but contain corrections of higher orders. The
transition from the A 's to the A m's corresponds to a
partial resummation of the series composing the Hamil-

tonian Pi . Clearly, the coupling constant 7„" . . . „&„is

nonzero only if

(103)

n, ~ k,

jj — x ((g x J

(U vg Q

(104c)

Diagram representation. The results derived by us

above are well adapted to graphical representation using

graphical symbols of Table I. Moreover, a diagram lack-

ing one of the indices will be assumed to denote the sum

of diagrams over the lacking index. For example,

&V UJ

where the ellipsis stands for the remaining (2 —1)3=21
diagrams,
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Mathematical quantity

TABLE I. Graphical symbols.

Graphical symbol Verbal description

creation b„
electron ' ., -, ~ operators ',

annihilation
continuous line

away from
directed '

t d
' dot

towards

creation ~r
photon ' -, , t.

' operators
'

annihilation a„ dashed line

away from
directed '

t d
' dottowards

electron contraction (b„) (b„)' continuous line connecting
two dots

photon contraction (a„) (a„) dashed line connecting
two dots

dot in which two
continuous lines merge

dot in which two dashed
lines merge

&K
dot in which two continuous

lines and one dashed
line merge

(. . . )I~)

(. . . )Incuj ( )
thickly drawn cartouche

thinly drawn cartouche

coupling constant
1 2 m

+F1@2 ' K,gl V

l&m
I I

m little circles, in each
of which two continuous lines

and one dashed line merge,

connected chainwise by dashed lines

shaded rectangle, into
which two (continuous)
electron lines merge

coupling constant

K PCV
1 m'

l~ l~~y l~
~ ~ ~

~ l

~ ~ ~

u
shaded rectangle, into
which two continuous lines

and m dashed lines merge

.i&i~
4 i

QQQ~
i J

3 QD 'V

. i.r~.ni.J &M

J

:rn: nt:1-': rm C~W~. +. . .MJ~ +

(104e)
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where the ellipsis stands for the remaining (2 —1)8=120
diagrams, and so forth. In the formulas for Mi and M4
we refrained, for the sake of conciseness, from plotting di-
agrams differing from those shown by the direction of at
least one photon line (21 and 120 diagrams, respectively).

Overlooking the internal structure of the diagrams, i.e.,
going over to a description in terms of the coupling con-

1 mstants E„,. . .„& we obtain

(105a)

I

r i r J.
I

J, J' y ~ ~ (105c)

where the ellipsis stands for the remaining 7 diagrams,

I

J,
4

J. r J, r (105d)

where the ellipsis stands for the remaining 15 diagrams,
etc. In general, for arbitrary m ) 1, we have

m photon lines

I I

r J.

I

/ J. 1 J ~ ~ ~ (106)

I I

r J. r J,

(105b)
I

where the ellipsis stands for the remaining (2 —1) dia-
grams. The final step of the preceding part of this section
consisted in the application of normal ordering of the field
operators. Taking recourse to expressions of the form

+ + V

+p + ~ ~ ~

(107a)

" zuzuzuur. "
X1

IX1 I +g
J P +~

2 IS1
~-C- I

/
+ A i h r J + ~ ~ ~

(107b)

(107c)

etc., which graphically represent the relationships between
the constants E~+5E~ and X„" . . .„&„and the coeffi-

a1 a
cients E„.. . „&~ we finally arrive at the following di-

agrammatic representation of the terms M~ [Eqs. (100)
and (101)]:

m

AJ,
I I I

Z/ID'/1/g. '

+ ~ ~ ~

m
r

I

~ ~ ~

I I

zuuuaur.

m-1 1

AA
I I I+: .uuuuur

, m+1.

(109)

0 a —q—~—-+ — + . W/DWXX/i' (108)
I

Yet another, maybe even more convincing visualization
is worth mentioning. It consists in the assignment to each
M" of A of the corresponding scheme of transitions of
the electron spectrum. This is a one-to-one assignment; it
can be expressed as follows:

&n+1 &n

0 ~ ~ I I ~ ~ 0
I i Ivuuuuuuur t . . .p ' . ~ ~„- ~ ~~b„

1 ns& 1 n a+1 tN

(110)

The horizontal lines, denoting electronic levels, are con-
nected by arrows which define the electron transition. On
the other hand, the number and lengths of the arrows cor-
respond to the number and frequencies of the photons tak-

ing part in the process. An arrow pointing upwards
denotes absorption whereas one pointing downwards
denotes emission of the corresponding photon. Intermedi-
ate levels have been omitted intentionally. They can be
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ares D ssiIt One —photon
emission

One-photon
absorption

FIG. 2. Effect described by 5E„.

-~x,+ ~p, v = 0

real or virtual. The existence of transitions by way of real
intermediate states is equivalent to the existence of com-
positions of generalized resonances. The structure of
these compositions, defined by the formulas (33), is com-
plicated and it is by no means easy to point to some sim-
ple procedure leading to it. Within the framework of the
present theory, the question as to whether a given transi-
tion involves a real or a virtual level affects the dynamics
of the system but does so indirectly —by affecting the
values of the coefficients 5E„and X„" . . .„„„.Diagrams
of the above form readily permit the classification of the
processes of quantum optics. Figures 2—5 represent such
a classification of the phenomena under consideration,
described by 6E& and 7„" . . .„&„,for m (3.

One electron; A type inte-raction taken into account
Taking into consideration the interaction term in A
causes but one complication: instead of the simpler for-
mulas (33), the more highly complicated ones (31) have to
be used. In all other respects the procedure is the same;
even the final result is of the same form [Eqs. (100) and
(101)], albeit the numerical values of the 5E& and

will contain corrections for the A -type in-

teractions. Only the numerical values of the coefficients
I

FIG. 3. Effects described by X„",».

1 mat the E„.. . „&„'sundergo a change, whereas the subse-

quent procedure of going over from the M 's to M" 's
remains the same. Matters are similar regarding the di-
agrammatic representation. Apart from their internal
structure, the diagrams will be the same in either case
[formulas (105) et seq.]. This may suffice, as there is no
need to reproduce essentially identical considerations.

Many electrons; cooperative effects This case. is more
highly complicated. Although the free Hamiltonian A 0
has the same unchanged form (64), the relation (88) is, in
general, no longer valid. The present considerations refer
to, e.g., a system of the electrons of a solid at interaction
with a radiation field, a system of electrons of a many-
electron atom, or a system of many atoms interacting with
a field. On performing the canonical transformation as
for the case of one electron we obtain, instead of (91) and
(92), the following expressions:

~o= gtoHH~+ QEI bpbp

X X X
Q l, c2, . . . , 9 f =0 jul l,P P, . . . , P

Vl V2p ~ ~ ~ y Vm

E'' 'a '- a b b b b . . b bK 1K2
' Km, P l VlP2V2

'
jLC r Vm r K) K2 K P ) V) P2 V2 Pm (112)

The occurrence of more than two electron operators in a single term is due to the fact that, here, Eq. (89) no longer
holds.

On omission of the A interaction term, each of the A s will contain only terms with r=0. One notes that the prin-
ciple previously applied to the one-electron case is still successfully operative here. The above form of the Hainiltonian
is unsatisfactory now for the same reasons as it was then: it lacks a sufficiently clear physical interpretation. The diffi-
culty is removed by performing a normal ordering of the operators. We obtain

~0——g ri)~&„+g (E„+5E„)b„b„, (113)

n=OK&, . . . , K r=lP,,, . . . , Pm 1

(114)
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Rarnan effect
(Stokes)

x2 X1

Ca)x (gy
1 2

Two-photon
emission

x1

~x+ ~x +Ca)~y= Q
1 2

Rayleigh
effect

Jk

2 X1

~x = ~x
1 2

4)„-4)„+~ —Q
x1 x2 py-

Raman effect
(anti-Stokes)

~x) ~x
1

Two - photon
absorption

-Ca) -4)x+(a) y=Q
1

where the X„" . . .„& . . .& „.. .„are nonzero constants"m»1 ' ' ' &rv1 . . v

only if

CO + +N —CO — ' ' —CO
1

~ ~+1

+Ep, + . +Eq E—„— E—„=O (115)

and their explicit form results from the application of
Wick's theorem. Compared to the previous case, a novel

nontrivial element emerges here: terms occur, each con-

taining r &2 electron creation and annihilation operators.
With regard to the Pauli principle they differ from zero

only provided that no two creation operators or annihila-

tion operators of electrons concern the same state. Thus,
these terms describe cooperative pairwise (r=2), triple
(r=3), etc., interaction of the electrons with the field.
That is to say that the electrons do not interact with the
field independently (individually) but in complexes of two,
three, or more electrons. As an example, we shall consider
the effect of cooperative two-photon absorption, given by
terms of the form

0
X„,„,,&,„,„,„,a„,a„,b„,b„,b„,b„, .

The electrons go over from the states vi and vi to the
states p& and p2, and simultaneously two photons with the
frequencies co„and co„are absorbed. At the same time,

1 JC2

the condition

FIG. 4. Effects described by P„"„&„.

Hyper -Raman
with

two.Stokes photons
li

X Ir
3

„"f
p
'V

Frequency
splitting

x3 1'

~x+Ca) =4)x
1 x2 3

Hyper-Raman
with

two anti-Stokes
photon s

X3 x2
y

Jx,

Hyper- Raman
(Stokes)

x2
x1

ir p
'V

Frequency
mixing
'up-conversion)

2 X1

1F I"

Calx = Ca)x+ Calx
1 2 3

Hyper-Raman
(anti- Stokes)

'1

x2
X1

"3t

~+u &u
1 2 3

~„+~ )cu„
1 2 3

~„(u„+uxx1
aux )wx+ ~x

1 2

~x-~x-~x+~ v=Q

Three-photon
emission

Jx3

jx'
J X1

Three -photon
absorption

tx,

t.3

S„+Q„+Qj„+~ -Q
xq x2 x3 p'p -CO -COx-Q) +CO+~=Q

x1 x2 x3

FIG. 5. Effects described by p„"«».
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is fulfilled. The essence of the phenomenon resides in the
circumstance that neither of the two electrons could
separately absorb a radiation field quantum of one of the
above given frequencies since the conditions

~p= &"»-+X(E~q+5E~q)b~qb~q
K qp

(116)

67~ v, COp v, COp v ~Q)p v +Q)~, Q)~

are fulfilled; however, they can do so jointly.
Cooperative processes represent a highly interesting

nonlinear aspect of interaction of radiation and matter.
Although they doubtlessly deserve wider consideration, we
refrain from their further discussion here so as not to
exceed the scope of the present paper excessively.

Many electrons; cooperative effects omitted We. select
this case for closer consideration as that on which we pri-
marily concentrate our attention. As assumed by us, the
atoms are one-electron ones. Hence, in the particular case
of a single atom, we shall be dealing with the previously
discussed one-electron system. Before going any further
in our analysis we exclude the index q, labeling the atoms,
from the set of electron indices p. Neglecting cooperative
interactions of electrons and the radiation field, we readily
obtain from formulas (100) and (101)

The time-dependent vectors Bq = Bq(t) correspond to po-
sitions of the atoins. If one assumes that the atoms move
uniformly and rectilinearly, the vectors Bq are determined
by the positions rq and velocities vq at the initial moment
of the time t=O:

eq ——rq+vqt . (120)

V. APPROXIMATION OF TWO-LEVEL ATOMS

X~X —=QXQ,

where, for the case of N atoms,

(121)

The approximation of two-level atoms consists in deal-
ing with the atoms as if they possessed but two levels.
The problem of whether a given physical system can be
dealt with in this way is by no means simple and we shall
not discuss it here, but refer to the book by Allen and
Eberly' and the paper by Takatsuji. "

Here, we shall carry out the approximation by project-
ing the Hilbert spaces of the electrons of the various
atoms onto spaces spanned on two selected electronic
eigenstates. We label the latter 1 and 2, so as to have
E2(q) & Ei (q). At the same time, we subject all operators,
including the Hamiltonian, to the transformation

n =Owl, . . . , z q p, v

ga„.a„a„.a,
1 n n+I m

)&bqqb„q, m ) 1 . (117)

Q=lqt(l 1&&ll+ l2&&21), ,

(
I

I& & 1
I
+

I
»

(
I

1 & & 1
I
+» &21,= ) . (122)

u„(x)=v '~ e~,
I
e„l =1

the coupling constants take the form

(118)

For a single atom in the system of reference attached to
its nucleus, the form of the coupling constants in the
above formulas is identical with that previously derived
for the single electron [Eqs. (97) and (98)]. In general, the
constants X"„.. . „„„qcan be represented in the form of a
product of the constant 7„" . . . „&„and a term dependent
on q. For example, on the assumption that the atoms are
disposed within a box of volume V and accordingly taking
mode functions in the form

It should be stressed that the sequence [apply the canoni-
cal transformation (13) and then perform the projection
(121)] cannot be inverted. Even a superficial analysis
shows that this —the sequence applied in our paper —leads
to physically meaningful results: no effects "get lost. "

In this section we consider atoms for solely traditional
reasons. Obviously, nothing stands in the way of applying
the two-level approximation to other systems as well.

Let us consider the transformed Hamiltonian of the
form of Eqs. (116) and (117). The two-level approxiina-
tion then leads directly to the formulas:

X„" . . . „„~=exp[ iBq (k—„+ . +k„—k„ m=0
(123)

—k..)]X., (119) where

~p= g co~ ~&+ g [(Eiq +5E iq)b iqb iq + (E2q+5E2q)b 2qb2q]
K q

,21qa b2qb iq+X, 12qaIP 1qb2q)
q

(124)

n 0 Klp ~ ~ p Ic

n tr, 2iqar, ' ' a b 2q b iq+ H c ) (125)

m —1

+ g g g(X„" . . . „22 b2 b2 +X„" . . . „ iiqbi biq)a„. . a„a„,. . . a„, m &2 .
n=1 xl, . . . , ~ qnl
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Consider operators defined as follows:

~3q = ~ b2q 2q 5 iqb iq

+0'q: b Zqb 1q 0'q 6 1qb2q

They fulfill the usual spin commutation rules

[~q+, &q ]=25qq ~3q
+ +

[~3q ~q']=+—5qq'~q .

The value of the qth spin is

re —=
2 (&2qb2q+b iq~lq) .

(126)

(127)

(128)

This operator commutes with the Hamiltonian (129) and
its eigenvalues are —, and 0. Strictly, the time evolution of

I

the operator in question is described by the total Hamil-
tonian [Eqs. (116) and (117)]; for a given q, the spin can
appear ( —, ) and vanish (0) with time. The approximation
applied by us has eliminated the possibility of time varia-
tion of oq. In this way we ignore the possibility of the
atoms performing transitions between 1 or 2 and the other
levels. Maybe the two-level approximation could be
enhanced by postulating a time dependence of the value of
crq W.e would then be dealing with a system of stochasti-
cally appearing and disappearing spins —,, i.e., with a sort
of "spin glass, " interacting nonlinearly with the radiation
field. Here, however, we shall restrict ourselves to the
case of frozen spins. The Hamiltonian, described by the
formulas (124) and (125), can be expressed in terms of the
spin operators as follows:

A"o——pa~„+ g [Qqoq+(eq+5eq)g, ],
K q

g g (X„2iq&„uq +X„izqa„aq ), m = 1

q

m —1

~+(X . . . a . . . a an
,21q Kpg Kpg + )m 0 K]p ~ ~ ~ p K~

a„oq +H. c. )

(129)

(130)

m —1

+ X g g [Xr& ~ a,22q(oq+o3q)+X@ . . . iiq(o'q —
cT3q)]Q

' ' 0 0
n=1 K), ~ ''Km

Q, 1tl )2
l8

where we have made use of the notation

eq E2q Eiq~ 5' 5E~ 5Eiq

Q, =E2,+5E&+E„+5E„. (131) ~K) ' K,PV ~K) ' ' K,PVq (133)

mode interaction, then the dependence on q can be
neglected in the coupling constants:

Henceforth q will label only those atoms whose spins are
equal to —,

' .
In many cases it is highly convenient to use total spin

operators, often referred to as "collective dipole opera-
tors." We proceed to give an example of this. First, we
assume homogeneous line broadening, i.e., we assume that
E2, 5E2, E1q, and 5E1q do not depend on q. At the same
time we introduce the notation

5E' =—6Eq, 0=—Qq

If the dimensions of the atomic system are small com-
pared to the lengths of the waves participating in the

I

Now, defining operators

S3=

S-+= goq,
q

S= goq,
q

having the meaning of total spin operators,

[S+,S-]=2S,, [S,,S'-]=+S-,
we obtain the following expressions:

(134)

(135)

~0—g ~~~„+QS+(e+5e)S3, (136)

g (X„2ia„S++X„'i2a~ ), m =1

m —1

. X X (137)

m —1

+ y y [X",. . . ,22(S+S3)+X, ii(S —S3)]~, ' '

n 1 Klp ~ ~ ~ p Km
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The total spin S has to satisfy the relation S (N/2.
If the dimensions of the system are large it is, in general, no longer sufficient to introduce a single operator of total

spin. A set of such operators has to be introduced (see, e.g. , Ref. 12). Thus, e.g. , for a system of atoms in a box of
volume V we define (see Ref. 13)

S3(k)= ge o3z, S +—(k)= ge o'z, S= ger& .
e

Moreover, we shall also apply the notation

(138)

S3=S3(0) .

The above operators fulfill the following commutation rules:

[S+(k),S (k ')]=2S3(k —k '), [S3(k),S+-(k ')]=+S-(k+k ') .

Since the coupling constants are given by the formulas (119) we obtain

A 0——g ai~ ~„+QS + (e+5e)S3

(139)

(140)

(141)

g [X„2ia„S+(k„)+X„' i2a + ( k„)], m = 1

n=O Kl,

m —1

. . Km

[X„", 2ia, a a, a„S+(k„,+ . +k„—k„,— —k„)+H.c.]

[X~, . . .~,2q(S+S3)+X„" . . .„ ii(S —S3)]a„. a„a„.a„, m &2.

(142)

n=1 K]p ~ ~ ~ f Kgg

M = g ai~~„+AS+(e+5e)S3

where (for atoms in a box)

(143)

S+-=S'-(k„+ . . +k„—k„,—. —k„),
k' = (n!)(m!)X„",. . . „ (144)

In the other type of process the atoms are passive; here, a
typical example of the Hamiltonian is as follows:

Here, we have come to the crucial point of our con-
siderations. The Hamiltonian M consists, in general, of
an infinite number of terms. It is well known, however,
that in the description of a given physical system not all
of them are equally essential. Some are zero, whereas oth-
ers may well be neglected. Regrettably, there are as yet no
general criteria for a good approximation, i.e., for decid-
ing as to which effects can be dealt with independently
and which have to be considered jointly. Hence, essential-
ly, each physical system has to be analyzed individually
and the decision lies with experiment. In quantum optics
it is most usual to apply a Hamiltonian of the form of
Eqs. (136) and (137) in which all coupling constants, with
the exception of several, are omitted. Two types of Ham-
iltonians are thus obtained. The one describes processes in
which the state of the atom changes. A typical example is
the Hamiltonian

M = g ai~~„+AS+(e+5e)Si
K

+ I [A2(S+S3)+Xi(S—S3)]

Xa„. a„a„, a„+H.c. j, m )2

where
(145)

A.q
= (n!)(m! )g„" . . .„q„, p = 1,2 . (146)

In this case, averaging can be performed over the spin
states and constants neglected as irrelevant to the dynam-
ics of the system. This leads to the Hamiltonian

M = +co~~„+(Aa„.. . a„a, . a„+H.c. ) .

(147)
Obviously, here the summation is carried only over those
Ki . . . K which are distinct from one another.

We proceed to applications. First, we shall derive effec-
tive Hamiltonians in the two-level approximation for the
case of many-photon resonance.

Many-photon resonance. We start by considering a sys-
tem of one atom and one mode of the radiation field.
When possible, we shall omit the index q labeling the atom
and a labeling the field mode. Let the (usual) p-photon
resonance condition be fulfilled for two states of the atom:

Q)2) =E2 —E) ——p~ . (148)
Through (124) and (125) we easily obtain the following ex-
pression:

M =boa a+8'q(a a)b2b2+8', (a a)bib,
+[A,~(a a)a~b2b, +H. c.],

where
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g„(o a}=E„+5E„+g X~@„~„&&aa(a a —1) . (a a r—+I), p, =1,2

Az(a a)= g X~'z+,~„2~a a(a a —1) (a a r—+I}
v=O

and use was made of the identity

(at}"a'=ata(a a —1) (a a r+1—},

(150)

(151}

and (2r)a and (p +r)z are shorthand of 2r and p +r identical subscripts z. Above, an essential difference by comparison
with the usually applied Hamiltonians resides in the fact that, beside the usual shift of the levels, there appears a shift
dependent on the number of photons n =a a and, moreover, the coupling constants are also functions of n. On per-
forming an approximation consisting in the omission of all terms but those of lowest order in the expansions (150), i.e.,
in the assumption of

8'„(a a)=E„+SE„, A~(a a}=X~~~„2&=—A~,

we obtain the Hamiltonian

(152)

M =coa a+(E2+5E2}b2b2+(E~+5E~)b&b~+Aza~b2b~+Az(a pb, b2 . (153)

If the transition of the electron occurs by way of virtual levels only, i.e., if no intermediate resonance level is present, the
exp»cit form of the constants Az can be given easily (on neglecting the A -type interaction):

'
In, cuj I pg, ~I ' IncoI Id I—K —K —K —K

P)iPP. ~ ~ - ~Pp
2pi pip2 pp —2pp —1 pp i1

Pl ]fPPP ~ ~ ~ P Pp
1p) p)p2 pp 22

(154)

On rewriting these formulas in the equivalent form

—K —K

P)~PP. - . .Pp

P )~@2& ~ ~ ~ ~ Pp

2p) p)p2 pp 2' & pp

(co2& —co)(co2& —2co) [co2&,—(p —1)co]

+K +K +K +K
~ ~ ~

1p) p(p2 pu-&2

(co)„,+co)(co)„,+2co) [co)„,+(p —1)co)
(155}

one immediately sees that they are in agreement with ones derived earlier. '

The preceding formulas dealt with the case of a single atom. For a system of many atoms, albeit neglecting coopera-
tive interactions, we obtain, similarly,

M =coa a+ +[8'zq(a a)b2 b2 +8'&q(a a)b~qb~q]+[A~(a a)a~bqqb~q+H c ], . .
e

where

(156)

8'„q(a a)=E„q+5E„q+ g X~2,~„»qa a(a a —1) . (a a —p+I), p=1,2
r=0

A~(a a)= g Xtz+,~„2&qa a(a a —1) (a a r+1) . —t t
r=O

On making the approximation

(157)

(158}

we obtain the Hamiltonian

=co«+ g [(E2 +5E2 )b2 b2 +(E~q+5E~q}b&qb&q]+X~ar'bzqb&q+A~(at}I'b&qb2q
e

(159)
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The coupling constants A~, calculated on the same assumptions as those made for the single atom, are of the form

'
fn, coI In, a)I—K —K

t In, a)I —K

PI PP . ~ Pp
2p )q p )p2q p& —2p& —&q p& ~1q

Pl P2 ~ ~ - Pp

I n, a) I I n, a) }+K +K
1p &q p ~p2q p& 2p& ~q

' In, coI
+K

pp )2q
(160)

In the above system we can go over to a description in
terms of spin operators. We obtain

=coa ta+ g [Qqcrq+(eq+5eq )criq

P/'& /f&=2~I &f I
+'~+ Ii& I'p( If&)

=2m.
I &f I

k 'QA. Q k
I
i ) I

'p(
I f ) )

=2~
I &f I

+'Q~ 0+
I

i & I'p( If &

(165)

+karat'crq++A, ~(a }per@ ] . (161)

For a system of atoms with a homogeneously broadened
line, the preceding Hamiltonian can be reduced to the
orm

Considering the probabilities per unit time, it is thus not
necessary to take into account the whole Hamiltonian
M—it can be replaced by Pi . In particular, the processes
(A), (B), and (C) are described by terms of the operator M
as follows:

(166)
'=era a +OS + (e+5e)S3

+Azar'S++Az(a ) S (162)
(B) )I,'a a . a a . . a S+,"m "m - I KI+ I K) Kl (167)

which is a particular case of formula (143). In this Ham-
iltonian, particularly if p= 1, we recognize the well-known
Hamiltonian of Dicke.

Hamiltonians of the form (143) and (144) are well
adapted to the visualization of the highly interesting
difference between "active" and "passive" processes with
regard to an atomic system. We shall discuss the matter
further on.

Supereffects (in the meaning of Dicke) Consider .a sys-
tem of many atoms (N »1) at interaction with a radia-
tion field. We now assume the following m-photon pro-
cesses: (A} absorption of m-1 photons (indices
Kt ~ i,Kt+2, . . . , K~ } and emission of 1 photons (indices
Ki, K3, . . . , Kt) with simultaneous transition of the atomic
system from the upper to the lower state; (B) the inverse
process, i.e., absorption of 1 photons (indices Ki, K2, . . . , Ki )
and emission of m-1 photons (indices Kt~i, Kt~2, . . . , K )
with simultaneous transition of the atomic system from
the lower to the upper level; (C) absorption of m-1 photons
(indices Kt+i Kt+2, . . . K ) and emission of 1 photons (in-
dices Ki, K2, . . . , Ki) with no change in the energy of the
atomic system.

Applying Fermi's golden rule, we calculate the proba-
bilities per unit time of the occurrence of the above pro-
cesses as follows:

/f& 2~1 &f I ~It& I
'p( If&& (163)

where Ii) and
I f) denote the initial and final states of

the system as a whole, respectively. The Hamiltonian A
can be expressed by the formula

(164)

where M is the diagonal operator (13). We derive the fol-
lowing exact result:

(C) [)(2(S+S3)+A,i(S —S3)]

respectively.
Let us assume the system to have been, at the initial

moment of time, in a state
I

i ) such that

. ,n„, . . . )tI Is,$3) . (169)

Here, we describe the atomic system in terms of the total
spin and its third component:

s
I
$ $3) —$($+1)

I

$ $3)

s3
I
s&$3) s3

I
$&$3)

S-+
I
$,$3) =[($+$3)($+$3+1)]

I
$,$3+1) .

(170)

I
$3

I
(s (N/2 . (171)

Applying the formula (171) we consider the probabili-
ties per unit time P&,PS,Pc for the occurrence of the pro-
cesses (A), (B), and (C}, respectively. (i) Incoherently
pumped atomic system: s =s3-N/2. We now have

P&-ri(n„, +1) . . (n„, +1)n„, ,
. . . n„N,

Pg-0,
Pc-gi(n„, +1) . . (n„,+1)n„, ,

. . . n„N .

(172}

Hence, P~,Pc ~ N and PB -0. (ii) Thermal equlibrium of
the atomic system: s = —s3-N/2. Here,

The physical meaning of these has been discussed in Ref.
15. We only note that
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PA-O,

Pa-rl(n„+ I) (n„, , +1)n„, . n„,N,

Pc -g2(n», + I) (n„, +1)n„, , n„N .

(173)

Accordingly, PA -0 and PB,Pc ~ N. (iii) Generalized
super-radiant state: s =N/2, s3-0. Now,

Dicke' —all effects of the types (A) and (B) can be "su-
pereffects, " provided that the initial state li ) has been
prepared adequately [see case (iii) above]. The conclusion
to be drawn is that all effects in which the atomic system
plays an active role can be supereffects in the meaning of
Dicke. It suffices that the atomic system be prepared in a
state

l
i ) such that

P& r-l(n„, +1) (n„,+1)n„, ,
n„——+1

0+ li)=
I

. n. . &e lss3& (175)

s =N/2, s3-0 .

PB =iI(n„+1) . . (n„+1)n„. n„——+1N N
Km

Pc = —,
'
(gi+gq)(n„, +1) . . (n„, +1)n„, , n„N .

(174)

Since N &g1, we now have PA, PB ~ N and Pc ~ N.
In the literature it has hitherto been usual to speak of

super-radiance and superfluorescence, the prefix "super"
meaning that the probability per unit time was dependent
on N rather than on N. In this sense —which is that of

Hence the definition of this state as a generalized super-
radiant state. When expanding the operator U in a series
and cutting off at the first term, i.e., replacing U by the
unit operator I, we derive the "usual" super-radiant state.
On the other hand, effects in which the atoms are passive
in the sense that they do not participate in the effect but
are its catalysts —their presence being necessary for its
occurrence —cannot be super-radiant. For example, Ra-
man supereffects as well as one- and many-photon absorp-
tion or emission supereffects can exist, whereas speaking
of a Rayleigh or frequency mixing (up-conversion) su-
pereffect would inake no sense.

VI. GENERALIZED MAXWELL-BLOCH EQUATIONS

We have only one step to make in order to arrive at the generalized Maxwell-Bloch equations. It suffices to write the
Heisenberg equations, derived by using the Hamiltonian in Eqs. (129) and (130) or one of the Hamiltonians originating
therein and to adjoin terms describing the influence of the surroundings (damping of the field, relaxation of the atomic
system, Langevin forces, etc.). The problem of this adjustment to physical reality has been considered in various ap-
proaches, e.g., by Haken, ' Senitzky, ' ' Louisell, ' and Lax. We derive

T

a„= (I „+ic—o)a„i g g— g g X„,. . . z 2iq t a„, ' ' a„a„, ' ' a„oq'
m=1 n=O K&, . . . , K q

m —n a
+X» . », 12q ta» '' a» a» a»oq + & (t)

1 m g& m n+1 n 1 K
K

(176a)

oo m —2

»q+' q+~ q+ + r + ~»i" » .22q ~»i".», »q)», ''
m=2 n=1 K) . ~ . K~

~ ~ 0 Q
Km

+2i g g g X», . . . „2iqa„a„a„
m=1 n=O K&, . . . , K

m —1

o3, = r)( (o3—q 9q) t X X X
m=1 n=O K&, . . . , K~

. . a„o3q+P (t),
&q

(176b)

(176c)

I „describes the field damping; yqq, y~~q, and gq denote
the transversal and longitudinal constants and the popula-
tion inversion parameter of the qth two-level atom.
W, (t), W (t), and W (t) are the respective Langevin

forces for the quantities a„,o.q, oq, and o.3q.
From the most general form of the Maxwell-Bloch

equations as proposed above, special cases can be derived.
Suppose, for example, that we deal with the case of a sys-
tem of atoms at p-photon resonance with the radiation
field. We will neglect cooperative effects. Then, by ap-

a = (I +iso)a ip—(at)P —' g A~oq +W, (t),
q

(177a)

oq = —[ri +i (e+5e)]oq +2ik~ai'o3q+& (t),
CTq

(177b)

plying the same approximations as when deriving the
Hamiltonian (159), we obtain the following generalized
Maxwell-Bloch equations (we drop the redundant mode
index a):
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+i [A~(a t)t'oq A,—~at'trq+]+P (t) . (177c)

X=i [A,X] .

However, we used the formula

(178)

In deriving the generalized Maxwell-Bloch equations
(176), we assumed yet another approximation. In fact, the
Hamiltonian part of the Heisenberg equation for an arbi-
trary operator X (in two-level approximation) has the form

VII. FINAL REMARK

An advantage of our method of obtaining effective
Hamiltonians resides in the fact that it requires no equa-
tion of motion. Certain steps of the method still need to
be refined; e.g., the use of the two-level approximation.
Nonetheless, the effective Hamiltonians are derived on a
strict mathematical basis and can serve for further analy-
ses and evaluations. The new Hamiltonians derived strict-
ly in this paper, e.g., those given by Eqs. (113), (149), and
(156), are more general than those used until now and
reduce to the latter if rougher approximations are applied.

X=i [M,X] (179)

thus performing the replacement

4 =( Et' k)~M . (180)

H =Hp+H;„, ,

Hp =ES3+ct)a a, a=co

H;„,=A(a +a)(S++S ) .

(181)

The commonly used rotating-wave approximation gives

Replacing ( k M k ) by A in the equation of motion is,
in fact, the mathematical expression of the rotating-wave
approximation (RWA). For this interpretation we refer to
the Dicke Hamiltonian of the form

APPENDIX: PROOF OF FORMULA (26)

We have

d'
k(e)

d e=p
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H ~ eS3+a a+A, (a S +aS+) .
RWA

(182)
dl —1 «

g (m+1)e X +i+(e) .
m=0 g=p

The application of the procedures described in the previ-
ous sections neglecting the terms with powers of the cou-
pling constant A. higher than 1 leads to the same result.

The preceding generalized Maxwell-Bloch equations
(176) stand in direct connection with practice. These
equations, when specified for a concrete physical system,
can be used to calculate many effects of quantum optics.
At this point we conclude the considerations of the
present paper.

By equality

1 d'
r! de'

we obtain

yl —1 l —1

g (m+1)e X +i k(e)
m=0 e=p

l —]. m m 1 dl i —m

g (m +1)X +i g . . . +(e)
m=p

e=p

l —1

g (m +1)Xm ~i ki
I m=0

= g —&{X
m=1

'-' m=Xt+ g —&{X ki I .
m=1

Applying this theorem, we easily derive formulas for the successive operators +l.
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0=I
+ ]—X]

k2 ——X2+ —Xt,1

k 3 ——X3+X2X)+—X),1

31

+4—X4+X3X1+—X2 + X2X) +—X)
1 2 1 2 1 4

2! 1!2! 4!

etc. Obviously, these formulas are explicit expressions of the relations (24).
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