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A microscopic correlation-function theory for coherent, parametric, four-photon processes (four-

wave mixing) and for single-absorber two-photon processes (two-photon absorption, Raman, and

fluorescence spectra) is developed. Both types of experimental observables are expressed in terms of
four-point correlation functions of the dipole operator. The latter are then evaluated semiclassically

or within the factorization approximation in which they are expressed in terms of ordinary single-

photon line-shape functions. The common results of the Bloch equations are shown to be the out-

come of two successive approximations: the factorization approximation and the impact limit

whereby the single-photon line-shape functions are taken to be Lorentzian. Effects of fluctuations in

the radiation fields are easily incorporated within the present approach.

I. INTRODUCTION

Studies of nonlinear optical phenomena such as four-
wave mixing' or two-photon absorption, Raman, and
fluorescence spectroscopy ' provide a very sensitive
means for the measurement of spectral line shapes. The
common theoretical model which applies to these studies
consists of a few-level system (the "absorber") which in-

teracts with an electromagnetic field and with an external
bath consisting of many degress of freedom. The bath
usually causes relaxation and the absorber-bath interaction
influences significantly the time evolution of the absorber.
The conventional theoretical tool in these studies, which
was applied with remarkable success for numerous dif-
ferent experimental situations, is the multilevel Bloch
equations. ' ' In these equations the radiation field is
treated classically and the effects of the bath are incor-
porated by the addition of phenomenological level relaxa-
tion ( Ti ) and dephasing (Ti) rates into the Liouville equa-
tion for the isolated absorber plus field. The classical
treatment of the radiation field is justified in many
cases' ' and is usually equivalent to the fully quantum-

mechanical "dressed-atom" approach' ' with the excep-
tion of phenomena such as spontaneous emission. The
phenomenological treatment of the relaxation poses
several serious fundamental problems. A direct conse-
quence of this treatment is that an ordinary line shape is
predicted to have a simple Lorentzian form. Moreover, all
few-photon and multiphoton cross sections are given as
sums of products of Lorentzian complex amplitudes. This
simplicity which provides a very convenient way for back
of the envelope interpretation of experiments, is obviously
at the expense of rigor, and is often in disagreement with
experimental facts. A few examples are the following. (I)
It is well established both experimentally and theoretically
that no ordinary line shape is Lorentzian in its far wings,
which means that even if the simple Bloch equations hold
for small detunings, they will fail in the wings. ' Devia-
tions from a Lorentzian form will be significant whenever
the detuning is comparable with the inverse correlation

time of the bath (e.g., duration of a collision in pressure
broadening, the inverse of a typical phonon frequency in
crystals, etc.). The detailed study and analysis of spectral
line shapes in the wings may yield microscopic informa-
tion regarding the dynamical interactions in the system,
provided an adequate theory is available. (2) Precise mea-
surements of spectral line shapes near the line center show
asymmetries which reflect the finite duration of atomic
collisions and are in contradiction to the simple Lorentzi-
an form, even in cases where the latter is most likely to
hold. ' (3) Single-photon line shapes are often adequate-

ly evaluated in the static limit where the deviations from a
Lorentzian behavior are very significant. ' (4) In multi-
photon processes, there are dephasing-induced effects such
as the collisional redistribution in resonance Raman
and two-photon absorption' or the collision-induced reso-
nances in four-wave mixing ' [the so-called PIER4
(pressure-induced extra resonance) or its solid-state analog
DICE (dephasing-induced coherent emission) signals]. In
these cases, the magnitude of the effect itself (and not just
its behavior in the wings) depends on the behavior in the
wings of some line shapes. As a result, these effects pro-
vide a convenient and a sensitive way to study line shapes
at large detunings where the Lorentzian form fails. For
resonance Ram an in a three-level system, there is a
coherent and an incoherent (redistribution) component of
the scattered radiation. The theoretical treatment based
on the Bloch equations predicts that the ratio of these
two components is independent on the detuning of the ex-
citing radiation. This is in contrast with reality, since the
redistribution component actually vanishes much faster
than the coherent component as the detuning is in-
creased. ' In this paper, we shall develop a microscopic
theory for four-wave-mixing (4WM) line shapes. Four-
wave mixing is one of the most sensitive spectroscopic
tools available at present. The 4WM is a parametric (i.e.,
many-absorber) macroscopic four-photon process in which
three electromagnetic fields (coi, co2, and co3) are interact-
ing simultaneously with a sample and a fourth field (co4) is
being coherently generated and detected (Fig. I). The
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fourth field is subject to phase-matching conditions and
has a sharp frequency and spatial profiles -5(co4+coz —a),

c03)5( k4+ kz —k i
—k3), k; being the wave vector of the

ith field. The basic quantity which is usually used in
4WM studies is the nonlinear susceptibility 7' ' which was
evaluated by Bloembergen' using the Bloch equations.
The signal intensity in a 4WM experiment [Eq. (27)) is
proportional to the absolute magnitude square of X( ', i.e.,

~4wm( —co4 o~) toz co3)(z l& ( 4

Equation (1) holds since the 4WM is a coherent
parametric process. Therefore, we may calculate an am-
plitude for the process (X( '), average it over the bath, and
then square it to get S4w~. Using a microscopic descrip-
tion, the cross section for an n-photon process is usually
expressed in terms of a 2n time-correlation function of the
dipole operator. Therefore, the rigorous calculation of
S4w)vt (a four-photon process) requires the evaluation of an
eight —time-correlation function. However, since we are
actually calculating a thermally averaged amplitude for
this coherent processes, the calculation involves only a
four-point correlation function. It is our purpose in this
paper to develop a microscopic theory for S4w~. To that
end we shall express 7' ' in terms of four-point correlation
functions and then derive microscopic expressions for the
latter quantities. This is done in two degrees of sophisti-
cation. We first make use of the factorization approxima
tion which enables us to write the cross section for any
multiphoton process as a product of single-photon com-
plex line-shape functions. The problem of ordinary
(single-photon) absorption line shapes has been treated in
the literature by numerous methods (cluster expansion,
perturbation theory, semiclassical methods, stochastic ap-
proaches, etc. ) and is well understood. ' By now there
exists the unified theory of spectral line shapes which en-
ables us to calculate them microscopically. Using the fac-
torization approximation, we can then make use of the
enormous progress made in the theoretical treatment of
the latter quantities and provide simple easily calculable
expressions for 7' '. We further show that the convention-
al results of the Bloch equations are obtained if in addition
to the factorization we further assume that the single-
photon line shapes are simply Lorentzian (the impact lim-
it). The Bloch equations are therefore equivalent to the
factorization together with the impact approximations.
By relaxing the impact and retaining just the factorization
approximation, we are able to generalize Bloembergen's
expression for 7' ' in a straightforward way. The second
method for the calculation of the four —time-correlation
functions is semiclassical and utilizes the cumulant expan-
sion. Both methods interpolate between the impact and
the static limits. %'ith this we conclude our discussion of
four-wave-mixing experiments. We note, however, that
the cross sections for two-photon processes (two-photon
absorption, fluorescence, or Raman spectra) of a single ab-
sorber (in a bath) are also given by a four-point correlation
function. In this case, since these are nonparametric
processes, we average the cross section (and not the ampli

II. SURVEY OF NONLINEAR RESPONSE
THEORY

In this section, we shall briefly review nonlinear
response theory in order to introduce the formal tools and
the notation to be used throughout this paper. '

We consider a system driven by a time-dependent classi-
cal field. The Hamiltonian for the perturbed system is
given by

H =Ho+ V(t) . (2)

The Liouville equation for the density matrix p is

dp
dt

iLp= —i [LO+ F (—t)]p,

where

and

Lo=[HO l

L=[H, ],
(4a)

(4b)

(4c)

are Liouville-space (tetradic) operators.
Assuming that at time t~ —co, p( —ao ) is an equilibri-

um distribution of Hp i.e.,

Lop( —oo )=0,

we may write the formal expression for the time-
dependent density matrix p(t) as follows:

p(t)U(t )p()p()+p()+p()+

Here, U is the propagator,

tude) over the bath and this is why we need a four-point
correlation function for a two-photon process. We there-
fore show later how the cross section for two-photon pro-
cesses is actually probing virtually the same microscopic
quantity as a 4WM experiment (of course with a different
sensitivity, and each experiment may be probing better dif-
ferent features of this correlation function). The plan of
this paper is as follows. In Sec. II, we review nonlinear re-
ponse theory and derive a compact expression for non-
linear susceptibilities [Eq. (14c) or (21)]. In Sec. III, we
specialize to 4WM and present the diagrams as well as ex-
plicit expressions for g' ' in terms of appropriate four-
point correlation functions. In Sec. IV, we evaluate the
latter using the factorization approximation and in Sec. V,
we present the more rigorous semiclassical calculation of
the four-point correlation functions. Finally, in Sec. VI,
we consider two-photon processes and show how both
steady-state and transient experiments are actually probing
the same correlation functions which appear in 4WM.
The present theory is valid for a general type of bath
which causes dephasing and it may be collisions, density
fluctuations in liquids, electron-phonon coupling, phase
fluctuations of the radiation field, etc.
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1

U(t& —oo ) = 1 —i dr Gp(t —r)V(r)+ ( —i) dr] dr2Gp(t —r] )V(r] )Gp(r] —r2)F (r2) +

where

Gp(r) =exp( iL—pr) .

p'J' is the term in the expansion [Eq. (6)] that is to jth or-

der in P . We shall now assume that the external field is a
superposition of a few monochromatic fields, i.e.,

p' '( t) =p( —oo ),
p'"(t) =E,exp( iso—]t)G0(co] ) P p( —oo ),
p' '(t) = E]exp( —iso]t)E2exp( it—o2t}

X G (to]+to, )WG (]o])&p( —~ ),

(1 la)

(1 lb)

(1 lc)

V(t) = V{ [E]exp( ic—o]t)+Ezexp( i toqt—)

+ '']+cc J . (9)

etc. , where F =—[V, ] and

1
Gp(co) —= ~, a~0 .

co —Lp+l6'
(12)

exp( i toj—r) =exp( i coj t)exp—[ i coj (r—t)]—(10)

and substituting it in Eqs. (6}and (7), we get

Here Ez is the amplitude of the jth field and V is the di-

pole operator of the material system. Making use of the
trivial identity

In Eqs. (11) we should also include positive frequency
terms obtained by the substitution coj~ —mj. . Moreover,
p'"' should contain a sum over all possible permutations of
the n frequencies co], . . . , co„. This corresponds to the
fact that the interactions with the various fields may occur
in all possible sequences in time. For brevity, we did not
write these terms explicitly here.

The expectation value of the dynamical variable 8 at
time t will now be given by

(8(t)) =Tr[Bp(t)]
—:gp'"'( —, ~],~2, . . . , tok )E]exp( —iso]t)E2 exp( ico2t) . E—kexp( icokt), —

k

where

(13}

(13')
N& =CO~+N2+ ' ' +COk .

The index ]oz in the definition of X]"]means that we select the component of 8 oscillating at this frequency [Eq. (13')].
Using Eqs. (11) and (13)P]"]are given by

X'"=((8 ~G( )~~p( — ))},
( (8

~

G (co] +cop) P G (co] )&
~
p( —oo ) ) ),

P (co&,co2)

(14a)

(14b)

P ( co ), f02~. . . , co )

«8
I
G(~]+~2+ +. )~G(~]+. +~. ])~ (14c)

where we have introduced a notation for a tetradic "matrix element"

((8 P ~A ) )—:Tr(Bt&A) . (15)

Equation (14c) is our basic formal relation to be used later. Alternatively, we may rewrite it in the time domain:

(n)
( —&p,&], ~ ~, &g )

00 1 n —1=( i)" —g f dt] f dt2 . . J dt„exp(ice]t]+ico2t2+ . +iso„t„)
P(till)co2, . . . ~ co )

X((B
~

Gp(t~)P Gp(t& ] —t~)P Gp(t& 2
—t& ])F

X GO(tl t2)~
l p( —oo ) }& (16}
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It should be noted that when the polarizations of the vari-
ous fields are explicitly included, X' ' becomes a tensorial
quantity. For the sake of simplifying the presentation we
did not introduce here the tensorial notation. This can be
done, however, without major difficulty. '

We are now in a position to rewrite Eq. (16) in terms of
appropriate correlation functions. To that end let us

specify more precisely our Hamiltonian Hp. We assume
that we have a few-level system with levels

I
v) =

I
a),

I
b ),

I
c ), etc. , interacting with a bath. The total Hamil-

tonian is written as

Hp=H, +H', (18)

where H is Hermitian. A simple choice for the partition-

ing (18) is

H, =g I
v) (e„——,

'
iy„)& v I, (18')

H'=g
I
v&F, (Qa)&v

I

(18")

y„. Owing to our phenomenological treatment of the level

lifetimes y Ho contains an anti-Herinitian part ( ,—iy„)

It is therefore convenient to split Ht] as follows:

Hp ——

v=a, b, c, .

(17)
with the corresponding Liouville operators

Here, e„nad y„are the energy and inverse lifetime of the
level v. F„(Qt]) is an adiabatic Hamiltonian describing the
bath degrees of freedom (Q]]) interacting with our n Ievel-

system in the state v. For the sake of the present develop-
ment, we do not need to specify F„any further. The only
restriction here is that F„ is adiabatic (i.e., diagonal in the
system states). All inelastic interactions are included in

I

L, =[H„],
L'=[H', ] .

Note that H, and H' commute, i.e.,

[H„H']=0 .

We can then write

(19a)

(19b)

(20)

(n) n
1 n —IX" =( i)"—

0 0
dt] dt2 dt„exp(iso]t]+]~2t2+ +i~„t„)

0a(~, ,~,, . . . , ~„)

X «B(t, )
I

G, (t„)7 (t] —t„)G,(t. ] —t. )~(t] —t.

X . W(t] t2)G, (t] —t2)~(0)
I

a—a ) ), (21)

where

and

B(r) =exp(iH'r)B exp( iH'r), —

F()=rexp(iL''r) V exp( iL 'r), —
(21')

(21")

6, (r ) =exp( iL,r) . — (21'")

It is important that L is Herrnitian so that the non-Hermitian parts of Lo are included in L, . G, (r) is a simple operator
given by

« v]]t
I
G, (r)

I

v'p') ) =5~5q„exp( y~r), y~= ,—(y„+yq)+i —(e„eq). —

Upon changing the integration variables

7i =fi~ 72=ti —tnt 73—t] fn ]p ~ ~, p 7n —ti

(22)

(23)

we finally get
oo 1 n —1x'"]=(—)" dr, d r2 dr„exp[ in]r]+

iraq(r]

r„)+i F03(r] —r—„])
0 0 0

P ( co I, co2p ~ ~ ~ i CO )

+ ' ' +]&q(rl —r2)]

X «B (r ] )
I

Gz ( r ] —ri )V( r2 )G, ( rp r3 ) +(r3)—
X . &(r„)G,(r„)&(0)Ip( —oo))) . (24)
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When Eq. (24) is evaluated explicitly, the G, terms simply contribute phase and damping factors [Eq. (22)] whereas the
terms when applied in all possible ways (from left to right) will result in a linear combintaion of correlation functions

of the dipole operator. Equations (7), (14), and (24) are the general formal relations which will be used in the following
sections to calculate 7' ' and the cross sections for two-photon processes.

III. A CORRELATION-FUNCTION EXPRESSION FOR FOUR-WAVE MIXING

We shall now focus on four-wave-mixing experiments. In these experiments, we have three external electromagnetic
fields (coi, co2, and co3) interacting simultaneously with a macroscopic sample, and a fourth field (co4) is being generated
by the process shown in Fig. 1. The conventional procedure for the calculation of the gain in the co& field' ' ' consists
of calculating the inacroscopic polarization, which is the expectation value of the dipole operator at steady state [B= V
in Eq. (24)], which oscillates at frequency co4 ——coi+co3 co2,

P(co4) =7 ( co4,—coi, —co2,co3)EIE2E3exp( icoit—+ico2t ico3—t) .{3)
(25)

This polarization is then used as a source in Maxwell s equations and generates a field with frequency co4 and wave vector
k4 ——k, + k3 —k2. We therefore have [using Eq. (14c)]

~"'(—~4 ~I —~2 ~3)= 2 g& & v
l
G(~I —~2+~3)~G(~I —~2)~G(~I)~

I
aa &»(a)

P{co&,—co2, co3) a

Alternatively, in the time domain [Eq. (24)], we have

{3) . 3 1 2
( co4 co i co2 co3)= ( i) —$ $ d7i d72 d73exp[icoi7i —ico2(7i —73)+ lco3(7i —72)]0 0 0

P(co&, —~&,co3) a

(26a)

X « V(7i)
l

Gs(7i —72)+(72)Gs(72 73)

x P"(73)G,(73)P (0)
l
aa ) )P(a) . (26b)

We have taken B = V in Eqs. (14c) and (24). In addition,
we took

p( —ao ) =QP(a)
l
aa ) ), (26c)

sin [(ki+k3 —k2 —k4) 1/2]
X

[(k I+ k3 —k2 —k4) 1 /2]
(27)

Here n is the index of refraction, c is the velocity of light,
and I is the length of the sample.

A pictorial representation of Eq. (26) is given in Fig. 2.
Each bond denotes a radiative coupling P . Since P is a
commutator, it can act either from the right (horizontal
lines) or from the left (vertical lines). Figure 2 is an effi-
cient bookkeeping device which keeps track of the eight
different three-bond pathways relevant for P' '. In each
pathway, the first bond which starts at

l
aa ) ) comes first

in time, etc. [Eq. (26b)]. We note that in general for X'"'
there will be 2", n-bond pathways. In addition to this, the
fields co&, —co2, and co3 can be applied in all possible se-
quences. We therefore have 3!=6 permutations of the

where P(a) is the population of level
l
a) at thermal

equilibrium, in the absence of any radiation field. The in-
tensity of the 4WM signal may be obtained by substituting
the polarization [Eq. (25)] as a source in Maxwell's equa-
tions and solving for the co4 field. Within the slowly vary-
ing amplitude approximation this results in'
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FIG. 1. Energy-level scheme and mode frequencies for four-
wave mixing.

I

fields. Altogether, we have 6X 8 =48 terms (for X'"' we
shall have 2"n! terms). '

Let us consider now the eight pathways in detail. The
first pathway is the one in which / operates always from
the right, and ends up in

l
ad ) ). We denote this path by

(RRR). The second pathway is the one in which
operates first from the left and then twice from the right.
It ends up in

l
dc) ) and will be denoted (RRL), etc. We

shall now list our eight pathways. The first set of
parentheses in each line in Eq. (28) denotes the left-right
choice of the path. Note that there is a minus sign associ-
ated with each R (commutator acting from the right). The
second set of parentheses denotes the points (Fig. 2)
through which it passes, and then comes its contribution
to Eq. (26b). Note that all the pathways end up along the
broken line in Fig. 2:
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(l) (RRR),
(il) (RRL),
(iil) (RLR),
(iv) (LRR ),
(v) (LLL},
(vi) (LLR ),
(vii) (LRL),
(viii) (RLL),

(ctd, ctc,ctb, ctct),
(dc, db, da, aa),
(dc, db, ab, aa ),
(dc, ctc, ab, ac2),
(ba, ca,da, cta),
(cb,db, ab, act },
(cb,db, da, cta ),
(cb, ca, da, aa),

F(0 73 72 71)exp[ Yab73 Yac(72 73) Yad(71 72)l
F(73,72, 7l, 0)exp[ —yd, 73 —ydb(12 —73)—ydc(71 72)],
F(0,12,1 l, 1 3)exp[ y—ab 73 y—db (72 7—3) y—d, (7l —72) ],
F(0,73,7l, 12)exp[ y,—b73 y.—, (72 73—) y—d, (7l 72—) ],
F(7„7„7„0)exp[—y„.7, —y,.(7,—7, ) —yb. (7, —72)],
F(0,7l, 72, 73)exp[ y—,b73 ydb(72 73) ycb(7l 72}],
F(13 1l,12 0)exp[ yd —73 ydb—(12 13—) yb—(1l —72)],
F(72,7l, 73,0)exp[ —

yda 73 —y„(72—73)—Y b (7l 72) ],

(28)

where

F(7l&72&73&74}—( Vab(7l }Vbc(72 }Vcd(73) V«( 4) )

V(7) =exp(iH'7) V exp( iH'—7) .

Upon substituting Eq. (28) in Eq. (26b) we finally get

X ( —CO4, COt, —CO2, C03)
(3)

(29)

(30)

a, b, c,d
P(a)

00 X] T2

d 7l d72 d73exp[ico l7l +i co2(7l 73—) +i F3(7l —72) ]0 0 0
P(,co), —A@2,a)3)

X ( [ —F(0,73,72, 7l )exp[ yah 73—
Yac (72 73 } yad(71 72) ]

+F(73,72, 7l, 0)exp[ yda73 —ydb(72 73) ydc(7] 72)]

+F(0 72 7l 73)exp[ y.b73 —ydb(12 13) ydc(1 l
—72)]

+F(0 73 7l 72)exp[ y b73 —y (12—1 3) —yd (1 l
—7 )) ]

—c c )

(31)

The following points should now be noted.
(1) In Eq. (31) we have written explicitly only pathways

(i)—(iv). Pathways (v)—(viii) are obtained from the first
four paths by reversing all time arguments and inter-
changing b and d. Since Eq. (31) includes a summation
over all possible b and d states, their contribution is sim-
ply the complex conjugate of the former, as indicated in
Eq. (31).

(2) The expression is ctueraged over the initial thermal
distribution of

~
a), P(a) and summed over all possible

b, c,d states.
(3) +pl„„ l means that after calculating the eight

pathways, we have to allow for the 3!=6 permutations of
the three frequencies. This will make 6X 8=48 terms al-
together. (In general, for g'"' we have 2"n! terms corre-
sponding to the 2" pathways and n! permutations of the
fields. )

0ya

0

~ab

r)b5

b

L2n

0

c

Qod

0

Qdd

IV. FACTORIZATION A4'PROXIMATION

As is clearly evident from Sec. III, the microscopic
evaluation of 7' ' is quite tedious. It involves the calcula-
tion of the four-point correlation function F(~],rp 7 3 7 4 J

followed by a triple integration. While a semiclassical mi-
croscopic evaluation of F will be carried out in Sec. V, we
shall consider here a much simpler and often very useful
approximation for g' '—the factorization approximation
This approximation was developed recently for multipho-
ton process in general and was successfully applied to a
variety of line-shape problems. It enables us to express the

FIG. 2. Pictorial representation of the possible pathways for
four-wave mixing [Eq. (26)]. Solid lines denote radiative cou-
pling 7 . Horizontal (vertical) lines represent action of W from
the right (left). Starting at aa, after three perturbations, the sys-
tern finds itself along the dashed line. Open circles represent the
last V which acts from the left. At the end of four perturba-
tions, the system is in a diagonal state (aa, bb, cc, or dd). Num-
ber of three-bond pathways leading to ad, ba, dc, and cb is 1, 1,
3, and 3, respectively. Altogether, there are therefore eight path-
ways. In each pathway one perturbation has to be V&, another
V2, and the third V3. There are 3~=6 possible permutations of
these fields. Altogether, Eq. (31) contains 6)& 8=48 terms.



3486 SHAUL MUKAMEL 28

cross section for an arbitrary multiphoton process in terms
of ordinary single-photon line-shape functions, which are
readily calculable. A detailed discussion and analysis of
this approximation was made recently. Using
projection-operator techniques it was shown that the fac-
torization is the first term in a systeinatic expansion of the
multiple time-correlation functions. ' In the impact

I

limit (short correlation time of the bath) the factorization
is exact. For nonimpact line shapes the factorization
amounts to treating the correlations between the system
and the bath in an approximate way.

The factorization proceeds as follows. When we evalu-

ate X' ' we have to average the entire right-hand side of
Eq. (26) over the states of the bath, i.e.,

X ( —CO4, CO1, —CO2, CO3) =(3) V
~

G (CO1 CO2+CO3 )P G (CO1 —CO2)F G (CO1)1
~

aa ) ),„P(a)
P(col, —co2, co3) a

(32)

where the bold brackets stand for the average over the bath. Within the factorization approximation we replace this by
the product of averaged Green's functions:

g « V
I
G(~1 ~2+~3)~G(~1 ~2)~G(~1)~

P(co), —A@2, A@3) a

X«»
I
~G(~1 ~2+C03)&G(coi co2)mG(~1)~

l
«& }P(&)

P(cu&, —co2, ro3) v, a
(33)

where the bar stands for the average over the bath. The second equality is simply the definition of a trace. Each G~ is a
complex generalized line-shape function for the vp transition, i.e.,

I (co)=G (co) = i f—dr exp(icos)exp[ ico &—r , (y—„+y—&)r g„&(r—)] . (34)

Here y y„are the inverse lifetimes of the v and p levels, co p
=—e 6 is t—he frequency of the vp, transition, and g„&(r) is

the line-broadening function which may be evaluated in numerous ways. We note that I„& satisfies the Kramers-

Kronig relations

ao I „ii(CO )

I~p = P dco
7T CX3 Q) —CO

where

(35)

I~(co)=I'„„iI„'p— (36}

and I„'& is the ordinary absorption line shape between levels v and p. Within the factorization approximation, each of the
eight pathways contributes a simple product of three G's. We thus get

X ( —CO4, CO1, —CO2, CO3)
(3)

g P(C2)
a, b, c,d

[ I,d (CO1 CO2+—CO3)I—«( CO1 CO2 )I,b (C—O1) +Id, (CO1 CO2+ CO3
)—Idb ( CO1 CO2)Id, ( CO—1)

P(ml, —A@2, A@3)

+Id, (COi CO2+ CO3)Idb—(CO1 CO2)Igb (CO1) —+Id' (CO i CO2+ CO3 )I—„(CO1 CO2)I, b (CO1—)

+Ibg (CO1 —CO2+ CO3)I„(CO1 —CO2)Ida (CO1) —Iqb (CO1 —CO2+ CO3)Idb (CO1 —CO2)I~b (CO1)

I,b (CO1 —CO2+—CO3 )Idb (CO1 CO2)Id, (CO, ) —I,b (CO1 —CO2+ CO3—)I«(CO1 CO2)I&, (CO1 ) ) . — (37)

g„( )=l„„~
and we get

(38)

I„„(CO)=
m„&+i( —,y—„+—,y&+ 1 „&)

(39)

Upon the substitution of Eq. (39) in Eq. (37) we finally get
Bloernbergen's expression for g' '.""' In other words, the
general expression of X' ' [Eq. (26)] reduces to

The eight terms in Eq. (37) correspond to the eight path-
ways (i)—(viii), respectively. In the impact limit, '
g (r) is linear in time:

Bloembergen's expression which is based on the Bloch
equations when two approximations are made: (1) factori-
zation [Eq. (33)], and (2) the impact limit [Eq. (39)].
Equation (37) allows us a simple generalization in which
we invoke the factorization, but not the impact approxi-
rnation. The result is an expression involving only ordi-
nary line-shape functions I„„(co}[Eq. (34)]. It should be
noted that the imaginary part of I„&,I„'&, [Eq. (36)] is sim-

ply the absorption line shape for the vp transition and
may be evaluated using one of the many standard tech-
niques developed for single-photon line shapes. ' I„'&

(and I~) may then be evaluated using the Kramers-
Kronig relations [Eq. (35)].
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V. WEAK-COUPLING SEMICLASSICAL
EVALUATION OF THE FOUR-POINT

CORRELATION FUNCTION

We shall now develop a more rigorous expression for
the four-point correlation function F (7] 72, 73 74) [Eq.
(29)]. The natural thing to do is to use the cluster expan-

sion and to get an expression to the lowest order in per-
turber density (pressure). This was done recently for the

case b =d which appears in fluorescence and may be

easily done here as well. The problem is that the resulting
final expression is quite complicated and difficult to use.
We shall, therefore, adopt a simplified method which

yields a much more transparent result. This will be done

by going to the semiclassical limit and making a weak-

coupling approximation. The semiclassical limit is
achieved as follows. We first make the (reasonable) as-

sumption that the dipole operator depends weakly on the

bath coordinates, and get

Vab (7)=pab exp(]Ha 7)exp( —]Hb1 )

T

=]]],bexp+ i—dr]Ub, (7])
0

(40)

Here exp+ is the positive-time —ordered exponential and

Ub,
—=Hb —H, . (41)

V»b(7) ~ p»bexp ] J dr]5t)]»b(7])
classical 0

limit

(42)

Similar expressions are written for Vb„V,d, and Vd, .
Upon substituting them in Eq. (29), we get

In the classical limit we replace exp+ by an ordinary ex-

ponential and treat Ub, (7) as an ordinary function of time

(not an operator) denoted 5',b
—(7). We then have

T2 ~3 T4

F( &, &&, &&, &&)&=)& &)&&,)&,&&&& (e&)& ) d&))&& &)&)+ d&))&&&,)&)+ d ))&, (»)&+&d&))»& (&)
0 0 0 0

To proceed further, let us define

T T]

gap(r) = dr] dr2(5eap(72)soap(0) ) = dr](7 —7])(5t)]ap(r])5coap(0) ) &

q ap yb(7]&72) = f2'&]ay(7])—f]&yb(72) i

1 T2

+aP ]&b(71,T2):— dt i dt2%'aP yt)( t] & t2 )

Without loss of generality, we can always shift soap so that

(5a] p & =0 .

Upon expanding Eq. (43) to second order in 5' and making use of the definitions (44)—(47), we get

F(T],72&12,T3)= 1 —g b(7a]) —gy(72) —g&g(73) —gga(74) —%'»b bd(71&72) q'bd, ed( 2,T3)

—%dd d&& (T3&14)—0
d&& &&b(74, 1 i) —% &&b dd(7], 1 3)—0 bd d&&('72, 1 4)

(43)

(44)

(45)

(46)

(47)

(48)

Since

~~ &=5CO p+$~
we have

+ap py(71& T2) = 2 [ %ay ay(7], 12)—Pap ap(1 ]& 72)

(49)

(50)

used to express 'P,b,d and 4b, d, in terms of gap. The fi-

nal step in the evaluation of F will be to use the cumulant

expansion which amounts to exponentiating the expansion

(48) and results in

E

Using Eqs. (45) and (46) and Fig. 3, we get,

T] ~2

0 aP aP(1 ],12)= dt, dt2 VaP aP(t, ) t2 )

gap(7] )+gap(72) gap(7] 72) (51)
=g (7.)

0

9(7,-7 }

Equations (50) and (51) can be used to express the %,b b„
]1]b,d, 4',~ ~, and %d, ,b terms in Eq. (48) in terms of g p.
The last two ]Id's in Eq. (48) ('P,b,~ and 0'b, ~, ) may be
evaluated by using the identity

7g

4 P i B

0 ap ya(t], t2) = [Sro y(t] )+5COygt] )]5a]yb(t2)

=4
y /(t], t2} 4Py /(t], t2) . —(52)

Equation (52) together with Eqs. (50) and (51) may also be

FIG. 3. Pictorial representation of Eq. (51). +(~1,~2), g (~l),
g(T2), and g(~1 —~2) are obtained by integrating 4 over the fol-

lowing regions: —ABCD, ABE, ADO, and EOC, respectively.

ABCD region is~a sum of ABE and ADO minus EOC. This re-

sults in Eq. (51).
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F(Ti&T2&T3&T4) = Pabi4bcijcdi4da

XeXpI ——,
'

[ g,b(Ti —T2)+gab(T1 T4} gab(T2 T4) gac(Ti T2) gac( 3 4)

+ga (Ti —T3)+g (T2 T4) +g d(T3 —T4) +g d(Ti —T4) —g d(Ti —T3) +gbc(

+gb (T2 T3} g—b (Tl T3}—gbd(T2 —T3)—gbd(Ti —T4}+gbd(Ti —T3)+gbd(T2 —T4)

+gcd(T2 T3 }+gcd(T3 T4) gcd(T2 4)] I
(53)

Equation (53) is our final result for F within the semiclas-
sical and perturbative (second order in 5') approximation.
Together with Eq. (31) it provides a microscopic expres-
sion for X' '.

We note that in order to calculate F we need to know
the line broadening associated with all possible pairs of
levels: ab, ac, ad, bc, bd, and cd, regardless of whether

they are radiatively coupled or not. In the impact limit,
we set

(54)

where I „„is the proper dephasing rate of the vp transi-
tion. Upon substituting Eqs. (54) and (53) and then back
in Eq. (31) we recover Eq. (37) together with (39). In gen-
eral, however, the factorization is not rigorous and X ' as
given by Eqs. (53) and (31) is more complicated than Eq.
(37).

Finally, we note that Eq. (53) is the exact solution of the
stochastic Gaussian random modulation model of Kubo
which asssurne 5cu p to be a Gaussian random process.
The present derivation shows that in reality it corresponds
to the semiclassical and the weak-coupling approxima-
tions.

V(t) =[@,abEL, exp(tait. t)
I
a ) &b

I

+pb, E,exp(iso, t)
~
b)(c

~
]+cc.(55)

VI. CORRELATION-FUNCTION EXPRESSION
FOR TWO-PHOTON PROCESSES

It was already mentioned in the Introduction that the
cross section for nonpararnetric single-absorber two-

photon processes is also given by a correlation function
very similar to F(Ti,T2, T3,T4) [Eq. (29)]. In this section,
we shall derive explicit expressions both for time-resolved
and frequency-resolved two-photon processes using F.
This will show the intimate relation which exists on a rni-

croscopic level between these two types of experiments.
We consider a three-level absorber which undergoes a
two-photon process with two fields col and co, . We shall

treat in a unified way a Raman process [Fig. 4(a)] and a
two-photon absorption (TPA) [Fig. 4(b)]. In a Raman
process, energy is being absorbed from coL and emitted to
co, . In a TPA energy is being absorbed from both fields.
(In order to treat the Raman process classically we have to
assume that we put in two fields. The result is, however,
the same as obtained from the quantum dressed-atom pic-
ture with no external co, field present. )

We further assume that the coL field is near resonance
with the ab transition (ai,b) and co, with cob, . We there-
fore modify slightly V(t) [Eq. (9)] and write it in the
rotating-wave approximation (RWA)

and

E+ =6'++HL, +s~ Eb 6b+~s (56)

E, =e, .

For a Raman process, we define

Eg ——eg+uL, ~ Eb ——&b~ Eg ——eg+ms

We shall define the detuning parameters (Fig. 4)

L =Eg —Eb NL cob

co, —cib„(Raman)
C0 —Cd (

(57)

(58)

The different definition of 6, [Eq. (58)] is the only differ-
ence between the theories of Raman and TPA. From now

on we shall consider TPA but all the results of this section

apply to Raman spectroscopy as well.
Our experimental observable is the rate of change of the

population in level c which is the same as the photon ab-

sorption (or emission) rate in the mode co, . If we define

(59)

then the desired rate of the two-photon process will be

1(t,a, h, ) =(B)= i & (cc
~

—P
~

p(t)) ) .

We shall consider now several cases.

(60)

Ic&

I'
Ib

Ic&

la& [a&

(b)

FIG. 4. Two-photon processes in a three-level system (
~

a ),
~

b ), and
~
c ) ) interacting with two modes of the radiation field

with frequencies coL and co, . Corresponding frequency detunings

are denoted by hq and 6,. (a) A resonance Raman process. (b)

Two-photon absorption.

I

Equation (55) automatically chooses the right (near-

resonant) frequency with the right sign for each transition
in a TPA. We shall further introduce the following defi-
nitions. For TPA,
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A. Steady-state experiments

At steady state, we may use Eqs. (59), (60), and (6) and (7). We then get '

00 T] T2

I(4L, ,&,)=( —t') f dr) f dr2f d73«cc
I
Y(ri)G&(7& —72)P (72)G&( 72—73)P (73)G&(73)F(0) Iaa)) .

Since we are in the RWA, it is more convenient to include the field frequencies in G, (1). We therefore modify Eq. (22)
and define

(61)

« vp I G, (r) I
v')tt') ) =exp[ i(E—„E&—)r , —(y„—+y&)r]5~5&&, (62)

where E„,Ez were defined in Eqs. (56) and (57).
A simple inspection of Fig. 5 shows that there are three different pathways (plus their complex conjugates) which lead

from
I
aa ) ) to

I
cc) ) in fourth order and contribute to I(AL, b,, ). Adopting the same notation introduced in Eq. (28),

we have

(i) (RLLR ), (cc,cb, bb, ab, aa }, F(p, r, 7„73)y(7,, 72, 73),
(ii) (LRLR), (cc,bc, bb, ab, aa), F(p, r, 7, 7, )y(7, 7, 7, ),
(iii) (LLRR }, (cc,bc, ac,ab, aa), F(0,73,7„72)p(73,7„72),

(63)

where

and

F( 7i y 72 y 73 t 74 ) = & V,b (7i ) Vg (72 ) V&b ( 73 ) Vg ( 74 ) )

4(rl 72 73} exP[ t ~L73 t ~.( ir72) —y. 7—3
— yb(TI +72 73) 'y. —

I

r-i —72
I ]

(64)

(65)

It should be noted that pathways (i) and (ii) represent processes where a population (
I
bb ) ) ) is created in the intermediate

state on the way from
I
aa ) ) to

I
cc ) ). Pathway (iii), on the other hand, represents a direct photon scattering process in

which a two-quantum coherence
I
ac) ) is being generated instead. ' ' Using Eqs. (61) and (63) we finally get

OO T] T2

I(bL, E, )=)ML)M, dri dr2 dr3t [ p(7»72, 73)F(0,7»72, 73)+p(r2, 1»73)F(0,12,7i, 13)

+Q(73~7i, 72 )F(0,73p1 i, 72 )]+C.C. ] (66)

where pL ——I)tt,b I
and p, = I)ttb, I

. Equation (66) is the most general expression for a stationary two-photon process. It
is given in terms of a four —time-correlation function very similar to the one which appears in 4WM (the only difference
being that here we have only three levels and b =d). Let us consider now several special cases.

1. Faetorization approximation

Here, we use Eq. (7) and average each Green's function separately, resulting in

Tl T2

I(I3L,A, )=( i) f —dr~ f d72 f d73& &cc
I

W(7&)Gp(7& —72)W(72)Gp(72 —73)F (73)Gp(73)P (0) I aa) ) . (67)

Equation (67) allows us to express I(EL,b, ) in terms of
the single-photon line-shape functions I„&(ro) [Eq. (34)].
It will be convenient to change slightly the notation and
define

I„„(h)= i f dre—xp[ —

iver

,
' (—y„+y„—)r —g„&(7)]—

(68a)

Wb

bb

Using Eqs. (67) and (68a) we finally get

I(b, b,, )=2@ P, I,'b(AL )I,b(4, )
Xb

+ 1m[I,*,(br 6,, )I,b(b, , )I b(AL )]—
(68b)

FIG. 5. Pathways in Liouville space which contribute to
two-photon spectra. There are three pathways (plus their three
complex-conjugate pathways) which lead from aa to cc in fourth
order. These correspond to the terms (i), (ii), and (iii) in Eq. (63).
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2. Impact limit

The impact limit for the single-photon line shapes was
discussed in detail previously. Basically, it results in sub-

stituting the simple Lorentzian amplitude [Eq. (39)] for
the single-photon line shapes I~. Upon the substitution
of Eqs. (39) in Eq. (68), we finally get '

2 2
2PLP, 2I b I b,I(ht, b, ) = 175(h, —AL, }+a,'+ r.', '

rb a,'+ r'„

(69)

1

g~(Ti&72&T3&T4) 2 [g&1&(Ti—72) +g»ti(73 —T4)

74} g&S&(71 73}] ~

We then get

F(Ti,72,73,74) =exp[ g,—b(Ti 74—) gb&;(72 73)

—
g&&t& (Ti &72& 73&74) —gi&i (7i,12, 1 3&74)

+gac(71&72&73&74)]

(72)

(73)

where for the sake of simplicity we have also taken

(70)

Equation (73) together with Eq. (66) is the general semi-

classical weak-coupling expression for steady-state two-

photon processes.

We recall that in this case

1~,b =—yb+~,
1

~b =—rb+~.. (71)

4. Effects offluctuations in the radiation fields

If the amplitude or the phase of the radiation field E; is

fluctuating (incoherence in the field ' ) we can very easi-

ly incorporate this into our Eq. (66). All we have to do is
set

The first term in the square brackets in Eq. (69) is a direct
scattering (Raman) component whereas the second is the
redistribution. Note that the intergrated ratio of these

components is simply 2l, t, /yt, and is independent of EL, .
Experimentally however, this ratio goes to zero as AL in-

creases. ' This is a limitation of an impact limit. Equa-
tions (66) or (68), however, show the correct dependence
on 5

3. $Veak-coupling semiclassical limit

This is the special case of Eq. (53) with b =d. It can be
written in a simpler way by defining

F(Ti&72&73&74}

~ (Et, (1 i )Et (74}) (Eg(72)E&&(73))F(Ti&72, 73,74), (74)

i.e., we should simply multiply F by the appropriate corre-
lation functions of the field. (Note that Vt acts at times
1 i and 74 and V, acts at times 72 and 73.} In the case of
Raman or fluorescence processes, E, is not fluctuating.

By using the dressed-atom picture, we see that E, comes
from coupling with vacuum modes of the radiation field.
In this case, we should multiply F by ((Et.(73)EL(74))
only. If the field correlation functions (E;(7)E;(7')) are
exponential in ~—~ this simply amounts to the addition
of another dephasing process to the problem.

B. Time-resolved experiments

In the case of time and frequency resolution, we define (dP, /dt) using Eqs. (6), (7), and (57), and we get

T] T2

I(t g, g, )=( i)'f dT, f dT, f d73((cc
I
V(t)Go(t —Ti)&(Ti)Go(Ti —72)&(72)Go«2 —73)&(73)I«)) ~

(75)

The bookkeeping is as before except that the amplitudes of the external fields are time dependent Et =Et (7), E, =E,(7).
The time dependence represents the envelope of an external pulse. It can also come from fluctuations in the fields.

Proceeding along the same steps that led to Eq. (66) we get in this case

T] T2

I(t EL, &b,, )=( i) d—T, d72 d73F(0 t 73&1] T3&12 73—)Q(t 73&1i 73&T2 13)'
X (Et (72)Et (73))(E,(t)E,(Ti})

+F(0&7i 73&t 73.72 73}P(Ti —73, t———73,72 —73)(EL (72)EL (73—) ) (E,(t)E,(Ti) )
+F(0&T2 73, t —73&1 i

—1 )p3( 7213,t —13&'ri —13)(EL(71)Eq (73) ) (E,(72)E,(t) ) . (76)
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We thus see that the same four-point correlation function enters also in the calculation of the time-resolved experiments.
In the case of a Raman process (spontaneous emission), we should simply put E, = 1 in Eq. (76).

Within the factorization approximation, we have in this case
T] 72

I(t,~, ,~, ) = ( —t)' f dr, f d~, f dr, I„(t—r, )I»(r, —r, )I.,(r, —r, ) &E,(r, W;(r, ))&E,(t)E, (r, ))

+I»(t ri)—I»(ri r2—)I,b(72 73—)&EL (r2)EL (r3) ) &E,(t)E, (7i) )

+I»(t ri)I—„(ri ri—)I,b(r2 r3—) &EL(ri)EL, (ri) ) &E,(t)E, (r2) ), (77)

where

I„„(r)=exp[ i (—E„E„)r——, (y„+y&—)r g„&(r) ]—.

(78)

In the semiclassical weak-coupling limit, we substitute
Eq. (53) in Eq. (76). Finally, we note that I(t, b,L,K, ) as
defined in Eq. (75) is not an observable quantity since it
corresponds to an unrealistic measurement with infinite
temporal and frequency resolution, which violates the
energy-time uncertainty relation. Any realistic detector
will contain a finite temporal and spectral resolution and
these should be convoluted with I(t, hL, b,, ) to get the ac-
tual result of a particular measurement.

VII. CONCLUDING REMARKS

In this paper, we have shown that coherent 2n-photon
processes and incoherent n-photon processes are both
probing a similar 2n —time-correlation function of the di-
pole operator. The reason is that in a coherent process we
calculate an ensemble averaged amplitude whereas in an
incoherent process we average the cross section (amplitude
square) over the ensemble. We specialized in n =2 and

looked at the following processes: (1) four-wave mixing in
steady state, (2) two-photon processes in steady state, and
(3) time-resolved two-photon processes. We have provided
explicit expressions for all the observables in these experi-
ments in terms of essentially the same four-point correla-
tion function F(ri, r2, ri, r4). A semiclassical approxima-
tion for F was developed. In addition, we have derived the
factorization approximation which expresses these observ-
ables in terms of products of ordinary single-photon line-
shape functions. In all cases, our results reduce to the
conventional expressions of the Bloch equation if we in-
voke the factorization approximation and the impact limit
whereby we replace each single-photon line shape by a
simple Lorentzian. Effects of fluctuations in the radiation
field (amplitude, phase, or both) are easily incorporated in
the present approach. Our result for X' ' in the factoriza-
tion approximation [Eq. (37)] is of particular interest since
it provides a simple and a straightforward generalization
to the well-known expressions of Bloembergen et al." '

which are valid in the impact limit.
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