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A fully self-consistent theory of the free-electron laser is derived in the collective regime which in-

cludes all transverse variations in the wiggler field as well as the effects of a finite waveguide

geometry. A general orbit theory is derived by perturbation about the steady-state trajectories in a

configuration which consists of an axial guide field in addition to the helical wiggler field, and used

to obtain the source current and charge density for the Maxwell-Poisson equations. By this means,

a set of coupled differential equations is found which describes an arbitrary radial beam profile. A

dispersion equation is obtained under the assumption of a thin monoenergetic beam, and solved nu-

merically for the growth rates of the TE» and TM» modes in a cylindrical waveguide. A selection

rule is found by which the TEI or TM~ modes are resonant at the 1th free-electron-laser Doppler

upshift.

I. INTRODUCTION

Interest in the free-electron laser (FEL) as a source of
coherent radiation with wavelengths in the millimeter
range and below has been maintained by both experimen-
tal' and theoretical studies. Experiments designed
to operate in the infrared have, of late, concentrated on
the use of a linearly polarized wiggler field composed of
permanent magnets. ' In contrast, experiments at longer
wavelengths ( —I—5 mm) generally make use of helical
wiggler fields in concert with an axial guide field. The in-
clusion of an axial guide field is necessitated by the high
currents ( —l kA) employed, and such experiments can be
made to operate in the collective regime. ' Theoretical
analyses of the helical wiggler FEL experiments have,
hitherto, been able to treat the collective regime only in
the limit of an idealized one-dimensional wiggler field
which is valid only as long as the electron-beam radius is
much shorter than the wiggler period. ' ' ' ' A
fully self-consistent, three-dimensional theory which in-
cludes all transverse variations of the wiggler field as well

as the effects of a finite waveguide geometry has recently
appeared; however, it is restricted to the low-gain,
single-particle regime. It is our purpose in this work to
extend the three-dimensional theory to the collective re-
gime. In contrast, a nonlinear theory has been developed
by Colson and Richardson for a helical wiggler/pulsed
electron-beam configuration. The radiation mode struc-
ture is assumed to be that of an optical resonator and is
described in a three-dimensional manner; however, the
wiggler field and single-particle orbits are described in the
idealized limit in which transverse gradients are ignored.
In addition, no axial guide field is included in the treat-
ment.

To this end, we first derive the single-particle trajec-
tories of electrons in the self-consistent static magnetic
fields by perturbation about the steady-state, helical or-
bits. ' These orbits are then used to obtain expres-
sions for the source current and charge density which

drive the FEL interaction by solution of the Vlasov equa-
tion. The source current and charge density are then used
to obtain Maxwell's equations subject to boundary condi-
tions suitable to describe a loss-free cylindrical waveguide.
In this manner, a set of differential equations result which
model the presence of an arbitrary radial beam profile of
electrons which to lowest order execute the steady-state
trajectories. In order to obtain analytic solutions to these
differential equations, the approximation of a thin beam
(i.e., small radial profile) is imposed which is consistent
with the assumption of a nearly monoenergetic beam.

The organization of the paper is as follows. The orbit
theory is presented in Sec. II, and applied to obtain the
source current and charge density in Sec. III. The coupled
field equations are derived in Sec. IV for an arbitrary radi-
al profile. The assumption of a thin, monoenergetic beam
is imposed in Sec. V and used to obtain and solve the
dispersion equation. A summary and discussion is
presented in Sec. VI.

II. SINGLE-PARTICLE ORBITS

The physical configuration we employ is that of a rela-
tivistic electron beam propagating through an ambient
magnetic field composed of a periodic helical wiggler field
and a uniform guide field

B (x)=28 [I', (A)cosXe, —A, 'Ii(A)sinXee

+I
&

(A, )sinX e, ] . (2)

In Eq. (2), 8~ is the amplitude of the wiggler field,
A, —:k r, X—:0—k z, k—:2m. /A, ~ (where A,„defines the
wiggler period), and I„and I„' are the modified Bessel

B(x)=Boe,+B (x),
where Bo denotes the magnitude of the guide field, and
the wiggler field is taken to be that generated by a bifilar
helix
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function of the first kind of order n and its derivative,
respectively.

The basic equations governing the single-particle orbits
in the static magnetic field are

1.0

3.5
yck = 0.05

yv i
———[Qo—yk~v3+2Q„I i(A. )sinX]V2

+Q v3I2(k)sin2X,

yv2 ——[Qp —yk U3~2Q Ii(k)sinX]vi

—Q V3[Ip(A, }+I2(A,)cos2X],

yv3 ——Q V2[Ip(A, )+I2(A, )cos2X]—Q viI2(A, )sin2X, (3)

A, =k~(U i cosX+ v2slilX),

X=k~ A. ( —v i slnX +U2 cosX —A.v 3 )

C
0.5

RBITS

where Qp = ~e8o /mc ~, y—= (1—v /c ) '~, and
( v i U2 v 3 ) denote the components of the velocity in a
frame rotating with the wiggler and specified by the basis
vectors e

&

——e,cosg —easing, e2 ——e,sing+ e~cosg, and
e3 ——e, . It is clear that y (i.e., the total energy) is a con-
stant of the motion. The class of helical orbits is found by
requiring steady-state solutions in which v&, v2, v3, A. , and
7 are constants. ' In this work, the orbits we employ
are obtained by expansion about the steady-state trajec-
tories, and a review of the properties of the helical orbits
is useful.

The steady-state requirement in (3) results in trajectories
in which v i

——v, v2 ——0, v3 ——v II, X =+ir/2, and
A, =+v /vll, where vll(&0) is a constant and

O~lyc k

FIG. 1. Graph of the axial velocity of the steady-state orbits
vs guide-field strength for ideal and realizable wiggler models.

—[yk~v +2Q Ii(kp)]5U3

—2Q vllkp 'M[I2(ko)+Agio(ko) —&oIi(&p)],

y5U3 —2Q~U~I2 (Ap)5X+ 2k p Q~Ii (Ap)5V2

5X= —k (5U3+A, p '5vi+A. p v M, ),
5A, =+k (5v2 —U 5X),

(6)

y»i = —[Qo —yk. vll+2Q I, (A, )]5v2 —2Q VIII2(Ap)5X,

y5v2 = [Qp ykwvll+2Q Ii(kp}]5vi

2Q UIIIi(A, )/A,

Qp —yk~vl
I

+2Q I (4)
where we denote A,p

—=+v /vll. The system of first-order
differential equations represented by (6) can be simplified
to a pair of fourth-order equations

Observe that (4) reduces to the result for an ideal
wiggler ' in the limit as X~O. Final determination of
the orbit requires knowledge of either U, v II, or A, (specifi-
cation of any one of these is sufficient to determine the
other two) which, in turn, requires an additional equation
relating these quantities:

1, [(1—y )(1+A, ) ']'i =poA, +2p~(1+A, )I, (A.), (5)

where pp „=Qp /yk c. Solution of these equations pro-
duces two distinct classes of trajectory as shown in Fig. 1

in which we plot Vll/c vs pp (for p =0.05 and y=3.5).
Also shown in the figure are the corresponding solutions
in the limit of an ideal wiggler. .

We now consider the characteristics of particle trajec-
tories which are close to these steady-state trajectories. To
this end we write v& ——v +5v &, v2 ——5v2, v3 —v

~~
+5v3,

7=+m./2+ 5g, and A. =+v /v~~+5A, . To first order in
the perturbed quantities, therefore, we find that Eq. (3)
implies

d2
+I

dt2

d'
=0,+02

where

Q1,2= 2 (pari+ pi2)+ 2 [(pal p32) + A2 2]

and

co, =k vll+2Y Q k Ull o (1+kg)I2(kp),

piz=y (Qo —yk vll)[Qo+2Q Ii(ko) —yk vll]

+2y 'Q k„vlllo (I+Ao)I2(lo) ~

A2—= +ck Ao y(Qo —2yk vll),

82 —= —2y Q pll [(1+Ao)[Qo+2Q Ii(ko)]I2(Ao)

+Aoyk vll [Io()io)—Ap 'Ii(lo)]],
and pll =vll/c. Observe that Qi and Q2 must be comput-
ed separately for each class of steady-state orbit, and that
an orbital instability occurs whenever either Q~ or Qz be-
comes negative. These frequencies are plotted in Fig. 2
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FIG. 2. Graphs of Ql/c'k (dashed line) and Aq/c k (solid line) vs Qo/y, k„ for group I and group II orbits.

versus pp (for p =0.05 and y =3.5) for stable trajectories
(i.e., Qf, Qz&0). Note that the unstable trajectories are
represented in Fig. 1 by the dashed lines. It is evident
from Fig. 2 that O»)Qz and 0]-k U~~ except for a nar-
row range of axial fields corresponding to group II orbits
in the neighborhood of Qo —yk U

~

~. Also, Az varies wide-

ly and the orbital instability occurs when 02 & 0.
The solutions to Eq. (7) are of the form

the velocity are

20
5v& ——— [+-Ap I~(Ap)azcos(Qzt —Pz)

Q2

+pzv
~

~Iz(Q)cos(Qzt —Pz)]

and

6v p
———a ) sin( Q )t —P ) ) —apsin( Qpt —(hp )

6X= —pepsin(Q &t —0& ) —pepsin(Qzt —9&),

2Q
5v3 =kp [Ap I&(A )pap cso( Qpt

—Pp)
02

+pqv
~

~I&(Ap)cos(Qzt —P~)] . (10)

where a~, aq, p~, pq, P&, Pz, 8&, and Oz are the integration
constants. Using these solutions we can derive the ap-
propriate forms for 6v& and 5v3 from Eqs. (6). However,
we note that since 0] & k„v~~, such terms will provide for
interactions at higher harmonics of the free-electron-laser
Doppler upshift. Thus, since we confine ourselves to
treatment of the interaction at the fundamental Doppler
upshift, we are justified in neglecting oscillatory terms in
Q~ (which is equivalent to the requirement that
a& ——p&

——0). Within this context, the other components of
l

240 a2
az=

&
(1+Ap) +

& I~(Ap)+v~~ppIp(Ap)
022 Ao

2

As a consequence, the orbits can be written in the follow-

ing form in rectangular coordinates:

Observe that 5v&+Ap5v~~ =const. The further constraint
imposed by energy conservation implies that 8z ——Pz, and

p„=p cosk z+(1+A, )
' a+[P„cos(k z —Qzt) —P»sin(k z —Qzt)]

+(1+A, )
' a [P„cos(k z+Qqt)+P»sin(k z+Qqt)],

p»
——p sink z+(1+k )

' a+[P„sin(k z —Qzt)+P»cos(k z —Qzt)]

+( +A, )
'~ a [P„sin(k z+Q~t) P»cos(k z +—zQt)], (12)

p, =p
~ ~

— (1+A p)
'» (P„cosQzt +P sinQzt),

where a+ —= [1+(1+ kp) ]I2, p„=—ymv~, p~~
=—ymv~~, P„—:ymaqcospz, and P»

—=ymazsinpz are analogs of the canoni-
cal momenta. Observe that limx pQz ——k v~~

—Qp/y, limx pa+ ——1, and limx pa =0; hence, (12) reduces to the or-

bit equations used by Freund et al. in the one-dimensional limit and (P„+„)are the usual canonical momenta in the
limit Bo~0.
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Before closing this section, some discussion is in order in regard to the transition to orbital instability at Q2 ——0. The
gain exhibits large enhancements in this region since the natural response frequency of electron motion (Q2 in the
wiggler frame) is small and can be comparable to the frequency of the ponderomotive wave which drives the stimulated
radiation process in free-electron lasers. For simplicity, we consider the product QiQz rather than Q2 independently
(since Qi —k„v

~~
this cannot affect the orbital instability criterion), and find that

I(1+kp)[Qp+2Q Ii(lp)] —yk vii IZ(Ag) —ykpk uii Y(Ap)=0 (13)

at the transition to orbital instability, where

and

2Z(Ap): ( 1 +A p)I'i ( Ap) —
I i (1p)

A2

1
Y(Ap)—:(I+Ap)Ii (Ap) — Ii(lp) .

~0

(14)

(15)

In the limit in which Ap«1 and B «Bp, Eq. (13) reduces to (1+ Ap)Qp —yk u~~ =0, which is the orbital instability
threshold found using an idealized one-dimensional wiggler field. ' '

III. THE SOURCE CURRENT AND CHARGE DENSITY

The source current and charge density are obtained from the moments of the perturbed distribution function

z aF
5fb(r(z), z, p, r(z) }=e f 5E{r(z'), z', r(z'))+ —v(r(z'), z') X5B(r(z'),z', r(z'))

v(r(z)z) ' c ap
(16)

where Fb is the equilibrium distribution, 5E and 5B are the fluctuating electromagnetic fields, r(z ) is the position « the
electron relative to the axis of symmetry at z', r(z') =tp+ dz'lv, {r(z'), z'} is the sum of the time required for an elec-

0
tron to travel from (r(z =0),z =0) at the start of the interaction region to (r(z =z')g =z') and the entry time tp. The
equilibrium distribution must be a function of the constants of the motion (P„,P» p), where small P„and P» are required.
As a consequence, we choose a distribution of the form

Fb(P„,P»,p}=nb5(P„)5(P» )Gb(p),

where nb is the average beam density, and Gb(p) is an arbitrary function of the total momentum. In addition, we work
with vector and scalar potentials of the form

(5A(x, t), 5$( x, t) ) = —,
'

(5A ( x ),5P( x))exp( itpt)+ c c— .

With respect to the basis e+ ———,(e„+ie» ), integration of (16) yields

5fb(r(z), z) = D+ —i +D +i +D, Fb(P„,P»,p),a a a . a a
(19)

where

Z e lClPT(Z, Z )

D, = dz' [—c (p, V, + —,p V++ —,p+ V )5/+i co(p, 5A, +p 5A+ +p+5A )],
2cp v~ {I' (z ),z }

(20)

Z EEOC(Z, Z )

D+ =— dz'
u, ( r (z'),z')

a+e V' 5$+(itv v, V, )5A +——,
'

v, V —5A, + (V 5A —V 5A )

+'8+a e + V+5/+(ic—p u, V, )5A+—+ —,u, V+5A, + (V 5A+ —V+5A )
2

(21)

A A
where r(z, z')—:r(z) —r(z'), p =p„+ip», 5A+ =5A„+i5A», V+ =5„+i5», V, —:B„and 8+ =k z Qzr(z).

The current and charge density are found by computation of the appropriate moments of (19) as

and

5J+= ——f dP„dP»dp(1+A, ') ' ' 5f, 5J, = ——f dP„dP»dp(1+A, ') ' '+5f,
m yp,

' '
m y

(22)
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5p= —e f dP„dP&dp(1+hz) '~2~5f .
pz

(23)

By application of Floquet's theorem, we express the axial and azimuthal structure of the fields and sources in the form

5f ( r,z) = g 5f!„(r)exp[i (k +nk )z +i18],
I, n = —oo

(24)

in cylindrical coordinates. As inight be expected, substitution of (19) into (22) and (23) results in source currents 5J!„
and charge densities 5p! „, each of which depends upon a complicated superposition of many harmonics of 5A!„and
5$!„. However, in the limit in which the frequency cv »Qz, 8

~
5A!„(r)

~

IBr && k, and 8
~
5$!„(r)

~

Idr &&k we find the
comparatively simple forms

~ 2
~!+! lSb a& 1 ~+ ~ + . ~ ~ pw 1 8

5J I-„-— dp [—p~(H i-„+H !+2„+2) ipll ckn+154I Tl, n+1 ~ 5Ai+1, n+1,s)]
8mc o y

' ' ' —n+lvII P

and

2Q+
2

co+02 —k„+I v
I I

L! '+A, (1-+A, )
' (R' 'L ' ' -R!'„+-L—Iyp, „+z) G! (P)

1

2

(25)

2
l COb

5pI „-— dp
8~c o yv

) ~!q! . ~ ~ pw 1 ()
[p (H! !n+I+H +11n —!), ipll(c—kn50! n cv5A—I ns)]

co —k„+ivll p Bp

+ 1, (I+A. )
' (L! i „+)RI„' L !+I„—)R!„+'+ ,'v~K—!„S!„) Gb(p) )

2

(26)

where 5J!-„'—= (5J!„),+i(5J!„)e, 5A i-„'—= —,[(5A!„)„+i(5A!„)e], cob =4me nblm is the average plasma frequency,
V', "=aIar+1 Ir-, —

L i, n
=i(co k~—vll )5A—'i, ~ VVI ''(c54i, „-—vll5A! „,),

HI„)=™A!„——,'cV! 5$!„, E!„=V! i5A l, n
—Vi+&5A I,~', (27)

and

(+) CX+ a
RI —„=

~++2 k +IvII ~+2 k +IvII

1 1SI„—=
+IvII +2 k +IvII

co —k„+gv II

2

+—kn+1v
I I

(28)

Observe that 5J!„, has been omitted because the specification of a gauge condition allows us to eliminate one of the

components (5A,5$), and we choose to deal with 5A+ and 5P.
It should also be remarked that our choice of distribution (17) is equivalent to the requirement that the unperturbed

orbits are of the steady-state type (P„=P~=0). Such orbits are axicentered, and there is a unique mapping between the
radius of the orbit and the particle energy (for given B,Bo, and A, ). As a consequence, a small spread in the energy of
the beam will imply a narrow radial profile.

IV. THE MAXWELL-POISSON EQUATIONS

The starting point for the development in this section is the Maxwell-Poisson equations

d 2 (1+1) !+! 4' !+!
T T r +En 2 I n I n

T c
(29)

1 d d 2 l+p„——
2 5$!„———8m5p! „,r d1 dl' p'2

(30)

as well as the Lorentz gauge condition

k„5A!„,=—5P!„+i(V! 'i5A i+„'+V'i+i5A! „'), (31)
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where p„—:co /c —k„. In order to carry the analysis further, a distribution function must be specified in order to evalu-

ate the sources. We choose Gb(p) =N (p)5[p —p (r)], where p (r) is the mapping between the energy and the radius of the
steady-state trajectory

p(r)=mc(1+k )'~ [yPO+2y13~A, (1+k )1](k)], (32)

N(p) is an arbitrary function of p which is chosen such that N(p(r)) models the density profile, and

cub(r): 4v—re noN(p(r))/m is the local plasma frequency. As a consequence, by retaining only the dominant coupling
terms, we find

and

A(+)C(+) (+)
5J l, n — (Ai, n 5'4l, n + Tip 1,n+15]I}lt],n+]+ ~IT2, n+25 lp2, n+2)

7T

1 (+) (-)
5PI, n — (+I n 50I, n + ~l + 1, n —15~ I + ]n —,1 + ~!—1,n + 15~ I —1, n + 1 ) ~4n.

(33)

(34)

where

(+)
~1+1,n 7 &

col, (r)
CO —kn V

I I

1+
yc 2k„r

2a+
m+02 —kn+l V

CX
2

+ + ~2 kn + l V
+ Vl+i,.*i (35)

cob(r) co —c k„
+I,n =

VIIkn

(1 —X )co —kn+Iv]~(+)
Tln

Vr+i, nV& =

In Eqs. (35)—(39) (y,v~~, v ) are implicit functions of r and

Q(&) —=
y k viiI](A, )/A.

I (1+k )[Qo+20 I](k) l —rk v
ii j Z(A, ) —k yk v

ii
Y(k)

cob(r) p~ ci) —c k„ CO
1 —Q(A, )

2yc pii n y (1+A, )(co—kn+Ivii) CO

cob(r) p]0 !vkn+Ic co —(I+A, )kn+Iv~~
1 —Q(k)

yc pii y (I+A, )(co —k„+iuii) kn+lV II

c]]b(r) g2~2 2(co k„+Iv—
~~

) —I, kn+Iu~
~

1 —Q(k)
2yc r (1+A')(~ , k„+- CO

(36)

(37)

(3&)

(39)

(40)

which contains a singularity at the transition to orbital instability for the group I and group II orbits. In the vicinity of
these points, therefore, we expect the interaction strength to be greatly enhanced. Analogous results were found in the
idealized one-dimensional theory. ' ' As a consequence, we obtain the following set of coupled differential equations:

1 d d 2 1 (+) (+) (+) (+) g g (+)
+pnp] 2 5~!+],np] Al+]yn]5'+, 1np] Tl,, n 5]t'Inly], n+ ]5~17, ],n+]

r r r r
(41)

1 d d 2 1 A A A(+) A( )
2

+pn 2 5kl n +I n54'I n ~I+1,n —]5~ I ~ ln —1 ~,l —1,n+15~ I —1,n +1
r

(42)

Sgl, n(Rg) =52 I, n (Rg)

[«» I, n +5~ I, n (43)

It should be observed that Eqs. (41)—(43) describe a cou-
pling between five harmonic components: 5/1 „,
6A l+~ n ~, and 5A l-

~ n+&. Finally, we also assume that(+) (+)

the potentials are continuous within the waveguide (i.e.,

In order to solve this set of differential equations, we
must specify the boundary conditions appropriate to a
cylindrical waveguide of radius Rg. We assume the walls
to be grounded and at zero potential; hence,

across the boundary of the electron beam). The problem,
therefore, has been specified with the essential physics of
the interaction contained within the radial dependence of
the coupling coefficients in (41) and (42). It is important
to observe that with the above choice of indices, the az-
imuthal mode number for the electromagnetic waveguide
modes is given by I+1, and not simply by I. Thus, if we
wish to study the TE~ or TM& modes for the 5Al'+&'„+&

eigenvector, then we must set 1=0.
V. THE LIMIT OF A THIN BEAM

A solution to Eqs. (41)—(43) is found for the case of a
thin beam in which the density profile is assumed to be
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constant (no) within the range R o
—bR & r & Ro. As a re-

sult, in the limit in which AR &&Rp the beam density is

given approximately by

&4(.,=&(.,J((p.r)+ C(.,N((p. r»

~A (,n ~ ( nJ( + )(p nr )+C ( nN( v ) (Pn r )

(47)

nb(r)=nobR5(r —Ro) . (44)

(45)

where A,p=k Rp. Observe that within the context of our
analysis, a thin beam is equivalent to a relatively small en-

ergy spread.
The solutions are of the form

&(t)( „=A, „J((p„r) ~A(, „' '=A( '-„J(~)(-p„r)

for 0&r&Rp, and

(46)

It should be remarked that we have assumed the unper-

turbed orbits to be the stable steady-state trajectories.
These orbits are axicentered and, for orbits of either group
I or group II, there is a unique mapping between y and k
(i.e., the orbit radius) for given Bo, B, and X . Thus, it is
sufficient to specify the class of orbit and Ro(yo) in order
to obtain yo(RO). In addition, a spread in radius b,R of
the beam is equivalent to an energy spread Ay given by

y yo —1 ~R
Xo (I+~o)Q()(o) Ro

for r & Ro. In (46) and (47) J((x) and N((x) are the regu-
lar Bessel functions of the first and second kind of order l.
Observe that each field quantity (i.e., 5$(„, 5AI+I „
6A( ) „+i, 5A( ) „+),and 5A(+ i „)) requires three coef-(-) (+) ( —)

ficients to characterize the solution throughout the
waveguide. Two of these coefficients may be determined

from the boundary conditions at r =Rp, and Rg. The
third coefficient is found by multiplying the field equa-
tions by r and integrating over R p

—e & r (Rp+e in the
limit a~0+. This procedure determines the "jump condi-
tion" across the thin beam, and allows us to obtain a 5 X 5

matrix equation in, for example, the coefficients A(„,
A+ — +

)+1,n —» A) —1,n+» A) —1 n+» and A)+1,n —1. Observe
that the coupling to the field components in 5A)+1„+1

(+)

occurs not through the source terms in the field equations
but rather through the boundary condition at the
waveguide wall.

The matrix equation obtained in this manner can be
written as

&),n

—RphRT( „ (+)
~) +1,n —1

'lT

2
Ro~R V

7T

2 '" 2
—R phR T)„—R phR V) +1 „ ( —)

~) —1,n+1

RpkR W)+1 ~ 1
— R pAR W)

A)„
(+)

A)+1, n —1

( —)
Al —1,n+1

=0, (4&)

where the equations for A)+1 „+1 and Al'+1„1 have al-

ready been eliminated,
where g„=p„Ro, („=P„Rg,and J( is the derivative of the
Bessel function. In (52) and (53),

e) ~ =D) „— RpkR+), n

(+) (+)
~)+1,n T1=DI+1,nW

(49)

—(+ )
—

( y ) (l+2)+—ROAR(A(+) n~)+A(+) p) n(y(n+) ) ~,

J((g„)
)[J((S„)N((g ) —J((g„)N((5„)]

( )
2J(+1(g,vl)JI+i(0 T))

D+l+i, T) J (~ )~(I+2)

(51)

(52)

(50)
(+)

where W)+1,n+» V)+1,n+1& ~)+1,n+» T),n~ and X),n denote

those quantities specified in Eqs. (35)—(39) in which the
substitution cob(r)=4m. e np/m has been made. In addi-
tion,

and

I «,
=—N((g )d J«(g

d

m

d
«(0m) «(0m)]

m

S« =I «' + Rb,RA«J( —(g )%'«

4« '=N( 2(g )I'«"-

J(+2(km ) N((km )
d (N«(gm )J«(km )]

d

m

—J((g ) N«(g )
m

(54)

(55)

(56)

and
(I+2)

((+2) J(+2(kn T) ) I+)n+),
(+), +i = J (. )q((+2)

l Sn+1 )+1,n T1
(53)

The dispersion equation is found by setting the deter-
rninant of this interaction matrix to zero.

Substantial simplification occurs in the limit in which

I
co —k„+Iv~) I

«~
I kn+(v~~ I

and we obtain
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Nb C N —C kn
2 2 2 2

+I,n-
y~ vll ckn yp(1+)(p)(o) —k„+lull )

1 vw-
VI+1 „y1— ~I+1,n +1

2 c
(59)

2 2
Vw ~b C CO

ypc "II 'Yo(1+~o)(~—kn+lv ll
)

(57)

(58) and
I

1 vw-
Tl, n — +I,n2 c

(60)

2 2
CO b CO~ I+1,n +1=

2ypc yp(1+ kp)(o) —k„+l v
ll

)

COb $2

kn+1VII 1+ 2 2
QQC 2kn y1R Q

2Q'+

~+&2 —kn+I v
I I

a2

+
CO+02 —kn+I Vll

(61)

where 4—= 1+Apg(kp). Observe that for all cases of practical interest v «c and
~
Vl+1„+) ~

&&
~

IV(+) n~) ~.

consequence, the terms in VI+, „+) can be ignored. This is equivalent to the neglect of any direct coupling between the

electromagnetic modes 6AI+1 „+1. In addition, we shall neglect the coupling to the 5AI~1 n+1 modes, so that(+ ~ (+)

(+) ~l+)(gn+1) 1+1(kn+) 7r —(+) (62)+
2 0 l+1,nT)

~l(g Tl )~l+), n T)

Within the context of this approximation, the dispersion equation is of the form

2 2 2
2~p b CO 1 1

I, n 2
4

2
RQAR 2 2+I, n1+ko 2ypc 2 yo(o) —k +(U

I I
~1+),

(63)

Finally, if the solution is restricted to the first quadrant in (p), k„) space, then
~

el 1„+1 &&
~
@I+I „1~

and (63) can be

approximated by

12 2
AP COb

I, n I+1,n —1— 2
0 RQAR

1+gp 2ypc 2

2
2

CO

2 2 +I, n
yo(o) —kn+lvll )

(64)

The complete dispersion equation (48) has been solved

numerically for y =3.5, cobly' ck =0.1, 0 /yck„
=0.05, b,R /Ro ——0.1, k Rg ——1.5, and a wide range of axi-

al guide fields for both the TE» and TM» waveguide

modes. It should be remarked before we proceed further
with a description of the numerical analysis that each of
the off-diagonal elements of the dispersion tensor in Eq.
(48) is directly proportional to 4& and, hence, the coupling
coefficient also depends upon this function. The variation

of N with the axial guide field, therefore, provides valu-

able insight into the effect of Bp on the radiation growth
rate. To this end, we plot 4 versus Qp/yck in Fig. 3, in

which the distinction between the value of the function
for group I and group II orbits is clearly made. As dis-

cussed in Sec. II, 4 is characterized by singularities for
both groups of orbits at the transitions to orbital instabili-

ty (13), which occur at Qp/yck =0.75 (group I orbits)
and Qp/yck =0.62 (group II orbits) for the parameters
considered. While the growth rates at these points are
also singular, it should be recognized that the linear

theory itself breaks down in the vicinity of the singulari-

ties and a fully nonlinear treatment is required. The
difference between N in the present three-dimensional
theory and the one-dimensional analog lies, principally,
in the fact that no orbital instability (hence, no singulari-

ty) occurs for the group II orbits in one dimension. In ad-
dition, 4 vanishes at Qp/yck~=1. 25 (group II orbits) and
the growth rate may be expected to vanish at this point as
well.

The growth rate Imk„/k is plotted versus o)/ck~ in

Fig. 4 for the TE)1 mode and Qp/yck~ =0.0 and 0.5. The
waveguide cutoff occurs at o)/ck =1.23 and the two
peaks shown for each value of the axial guide field corre-
spond to the upper and lower intersections between the
space-charge wave and the waveguide mode. This figure
represents the cases corresponding to group I orbits, and
we observe that the unstable spectrum is quite narrow but
tends to broaden slightly with increasing Bp correspond-
ing to decreases in vl

l

as the transition to orbital instability
is approached. In addition, the resonant frequency de-
creases relatively fast with increasing Bp for the upper in-

tersection, but is not very sensitive to the value of the
guide field for the lower intersection. Finally, we observe
that the two peaks are well separated and that the growth
rate corresponding to the upper intersection is the larger
of the two. The peak growth rates and corresponding fre-
quency at peak growth are plotted in Fig. 5 versus

Qp/yck, in which the singularity at Qp/hack =0.75 is
evident and that the growth rate for the upper intersection
exceeds that of the lower intersection over the entire range
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FIG. 4. Plot of the growth rate Imk„/k vs frequency for the

TE» mode and group I orbits at Qo/yck =0.0 and 0.5.

-10—
FIG. 3. Graph of 4=1+A,ig(A. ) vs the axial guide field for

both group I and group II steady-state trajectories.

TE11 MODE

GROUP I ORBITS

I

0.2 0.80.4 0.6
0 lyck

FIG. 5. Plots of the maximum growth rate and correspond-
ing frequency for the TE» mode as a function of the guide field
for group I orbits. Both the upper and lower intersections are
shown.

of group I orbits. It is also clear that while the frequency
at the upper intersection decreases with decreasing v

~
~, the

frequency at the lower intersections increases. As a result,
the interactions tend to coalesce with decreasing v~~', how-
ever, the cutoff of the TE» mode for the parameters con-
sidered is sufficiently low that coalescence does not occur
for the group I orbits and the two lines remain well
separated.

The growth rate for group II orbits is plotted versus fre-
quency for Qp/yck-=1. 0 and 1.5 in Fig. 6 for the TEii
mode. It is again clear that two peaks are found which
correspond to the upper and lower intersections. Howev-
er, in the case of Qp/yk-c=1. 0 the axial velocity
(v!!/c=0. 87) is sufficiently low that the two peaks are not
well separated and overlap. This results in a substantially
broadened spectrum of unstable waves. As the guide field
is increased the axial velocity also increases and the
separation between the peaks becomes more distinct. This
is illustrated for Qp/yck =1.5 (v!!=0.95) in which the
two peaks are seen to be well separated. The peak growth
rates and frequencies corresponding to the group II orbits
are shown in Fig. 7 versus Qo/yck„. As in the case of
group I orbits, the growth rates for the upper intersection
everywhere exceed those of the lower intersection. In ad-
dition, it is clear that the growth rates vanish for
Qo/yck~ =1.25 corresponding to the zero of 4. Finally,
it is seen that as Qp/yck~ decreases below unity the
coalescence continues rapidly and the resonance is lost for
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tdb/p~ckw = 0.1

Qw/yckw = 005
Ro =

k~ Rg 1 5

Oc/yck~ = 1.0

Qo/yck & 0.89 by which point the double peak in the un-
stable spectrum has merged to form a single line. As a re-
sult, the interaction is lost at a value of the axial guide
field greater than that corresponding to the singularity in
4 at Ao/yck~=0. 62 and no difficulties arising from the
singularity occur.

One characteristic of the resonant nature of the interac-
tion which must be emphasized is that the 1th Doppler up-
shift describes interactions for all radial eigenmodes TEt
and TMt (m =1,2,3, . . . ). This constitutes a selection
rule which stems from the azimuthal variation of the
steady-state orbits; specifically, that 8=k z and the phase
of the waveguide modes varies as

exp(ik„z +i/8 idiot)—-exp(ik„z +ilk cot) . —

0.01-

I il I

20
I

10

cu/ck

FIG. 6. Plot of the growth rate vs frequency for the TE»
mode and group II orbits at Oo/yck =1.0 and 1.5.

The behavior of the growth spectrum for the TM»
mode as a function of the axial guide field is qualitatively
similar to that shown for the TE» mode. However, the
TM» mode is characterized by a higher cutoff frequency
(at ru/ck =2 55 for. the parameters chosen); therefore, the
upper (lower) intersection frequency is lower (higher) for
the TM&& mode than for the TE~& at a given axial velocity.
The maximum growth rate and corresponding frequency
of the TM)) modes are plotted versus Ao/yck~ in Figs. 8
and 9 for the group I and group II orbits, respectively.
The growth rates are found to be comparable to those
found for the TE~& mode. It is evident, however, that the
upper and lower intersections coalesce for the TM» before
the singularity in 4 occurs on both the group I and group
II orbits. Such coalescence was found only on the group
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FIG. 7. Plots of the maximum growth rate and correspond-
ing frequency for the TE» mode as a function of the guide field
for group II orbits.

0.2 0.4 0.6 0.8
0 /yck

FIG. 8. Graph of the maximum growth rate and correspond-
ing frequency for the TMII mode vs axial guide field for group I
orbits.
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0 p2
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lON

II orbits for the TEii mode due to the lower value of the
cutoff frequency.

VI. SUMMARY AND DISCUSSION

In this paper we have developed a collective theory of
the free-electron laser which includes the effects of finite
waveguide geometry and transverse gradients in the
wiggler field. To this end, a Vlasov-Maxwell formulation
has been employed which is equivalent to a perturbation
expansion of the single-particle orbits to first order in the
radiation and space-charge fields. The single-particle or-
bits are assumed to be helical, steady-state trajectories.

1.2 1.4 1.6 1.8
0 /hack

FIG. 9. Graph of the maximum growth rate and correspond-
ing frequency for the TM» mode vs axial guide field for group
II orbits.

The principal difference between the orbits in the ideal
(one-dimensional) and realizable (three-dimensional)
wigglers is that in three dimensions unstable trajectories
are found for both group I (Qo(yk vii) and group II
(Qc)yk~vii) orbits, while in one dimension only the
group I trajectories can become unstable. Because of this
feature, singularities are found in the linear growth rates
for both types of trajectory in the realizable wiggler,
which contrasts with the one-dimensional theory in which
such a singularity occurs only for the group I class of or-
bit.

An additional feature of the three-dimensional theory
arises from the fact that for given B~, Bc, A,~, and y at
most one stable, steady-state orbit of each type exists.
Thus for a specific guide and wiggler-field combination
there is a unique mapping between y and the orbit radius
which implies that a nearly monoenergetic beam will be
characterized by a small spread in the radii of the orbits
described by the constituent electrons. As a result, we
have solved the coupled Maxwell-Poisson equations in a
"thin-beam" limit, and obtained the growth rates for the
TEii and TM» modes. Wave amplification is found, in
general, at both the upper and lower intersections of the
waveguide and space-charge modes, although for suffi-
ciently low axial velocities these two unstable regions of
the spectrum are found to coalesce just prior to the point
at which the intersections are lost.

It should also be reiterated that amplification of the
TE1 or TMi modes (m=1,2,3, . . . ) occurs only for the
resonance corresponding to the 1th Doppler upshift. This
constitutes a selection rule, and occurs because the azimu-
thal variation of the steady-state orbits varies as 8=k z
and the phase of the waveguide modes vary as
exp(ik„z+il8 i rot). It i—s important to recognize, howev-
er, that not all beam electrons in an experimental device
can be expected to execute the steady-state trajectories
and, as a consequence, other waveguide modes (i.e., TMo
or TED ) may be excited as well.
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