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A general expression for the four-wave —mixing profiles in situations involving autoionizing reso-
nances is derived by taking fully into account the spontaneous-emission characteristics of the au-

toionizing states. The signals are valid for arbitrary values of Fano asymmetry parameters, field

strengths, and spontaneous-emission rates. The dramatic increase in the four-wave —mixing signal
for field strengths corresponding to the confluence is demonstrated. The spontaneous emission is

shown to affect the line shapes not only in weak fields but also in strong fields. The effects of spon-
taneous emission are found to be most important for field strengths corresponding to confluence
which is similar to the problem of laser-induced autoionization.

I. INTRODUCTION

Four-wave mixing involving an autoionizing resonance
has been suggested as an important method of producing
vacuum ultraviolet (vuv) radiation. ' Armstrong and
Wynne first experimentally studied four-wave mixing in
such a situation in great detail. A correct theoretical in-
terpretation of their experimental results was given by
Armstrong and Beers. Recently Crance and Armstrong
and Alber and Zoller have examined the four-wave mixing
when the autoionizing state is resonantly pumped from
the intermediate state. ' Crance and Armstrong demon-
strated that, under certain conditions on the laser field
strengths and detuning, a very large four-wave —mixing
signal is possible. However, Crance and Armstrong treat-
ed the spontaneous emission in a phenomenological
manner. It is known from the work of Agarwal et al.
that the spontaneous emission has a very significant effect
on photoemission from autoionizing states in strong
fields. ' Similarly, it is also known that the recombina-
tion effects"' play an important role in photoemission.
Therefore it is desirable to have a general theory of four-
wave mixing involving autoionizing resonances in which
spontaneous emission has been consistently accounted for.
This is all the more important if one wants to achieve
laser action in vuv using such resonances.

In Sec. II we describe our model and derive the dynami-
cal equations for the density-matrix elements by taking
into account completely the spontaneous emission and
recombination effects. In Sec. III the general solution of
the dynamical equations is given for an arbitrary continu-
um. Simpler expressions for the four-wave —mixing signal
are presented in Sec. IV by taking the unperturbed contin-
uum to be flat. The results of numerical computations are
also given in Sec. IV. The analysis is carried out for arbi-
trary values of the spontaneous-emission rates, Fano
asymmetry parameters, and the laser field strengths. A
brief comparison with the results of Crance and
Armstrong is also made. ' The main body of the paper
deals with dynamical equations for the matter only since
Shen' has shown that the steady-state generation of the

fourth wave can be calculated easily in terms of the
steady-state polarization of the atomic system.

II. MODEL AND THE BASIC FORMULATION

In order to describe the salient features of the four-wave
mixing when an autoionizing resonance is involved, we
consider the simplified model schematically shown in Fig.
1. Here the initial bound state

~ g ) and the intermediate
bound state

~

i ) are weakly coupled by a two-photon tran-
sition with the energy separation e;z-2cu2. The inter-
mediate state

~

i ) is coupled to the autoionizing state
~

a )
and the unperturbed continuum

~

F.) by a laser at the fre-
quency toi. We allow for the possibility that the laser at
coi has an arbitrary intensity. The autoionizing state de-
cays to

~

i ) and
~ g ) by spontaneous emission of photons.

We denote the corresponding transition rates by y~ and
y2, respectively. Similarly, the unperturbed continuum
can decay to ~i) and ~g), i.e., the recombination can
take place. These recombination rates can be related to
the spontaneous-emission rates y's and Fano's asymmetry
parameters q's for the two transitions. We find it con-
venient to work with the continuum of states

~
e) ob-

tained by diagonalizing the configuration interaction be-

2ld

ig&

FIG. 1. Schematic diagram of the various energy levels and
the rates involved in the transition.
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tween la) and
I
e):

I
e) =b(e, a )

I
a &+fb(e, e )

I
e )de',

where, as shown by Fano, '

(2.1)

b(ea)=sink/m V, , tan '5=- —m.
I

V,
I
zl(e e—, ),

sink (2.2)
b (e,e') = , —cosh'(e —e') .

7T V~ 6 —E'

where

e
—ihspeihr

H =(e;+i)
I
i & & z

I
+(e + 2~2+1) I g & « I

+ f«I e&&e
I
e+ f«v„

I
e&&z

I

+c.c

+(M li )(g I
+c.c. ) .

(2.8)

(2.9)

The parameter V, is related to the autoionization rate
I =2m

I
V, I

. In writing (2.2) we have ignored the small

frequency shift terms. The spontaneous emission and the
recombination can be discussed in the framework of mas-

ter equations. One can show that the density matrix p of
the atomic system satisfies the following master equation:

The four-wave —mixing signal, i.e., the signal produced

at 2co2+co] will be determined from the polarization pro-

duced at (2coz+co, ). The induced polarization at 2aiz+co,
can be obtained from the density-matrix element p,g as

the following argument shows. Ignoring the vectorial

properties, we can write the dipole matrix element as

BP . V1

c}t
'

2
= —i[H,p] — (A,A, p —2A, pA|+PA iA, )

y2

2
(A2A2P ~zp 2+P 2A2) ~

where

(2.3)

dg, ——dg, C« (2.10)

and hence the term relevant for four-wave inixing in the

induced polarization is

P = (d ) = fde Tr(pds,
I g ) ( el +c c. )

=fdedg&p&s+c. c (2.11)

(e—eg)'
A1 —— de i e B«, B«= a e 1+2

rq1

—I (2~,+~, )~

=dga fdeC«p, ge +c.c. (2.12)

(e—e, )
A2 —— de g e C«, C«= a e 1+2

rq
(2.13)

where we have also put eg ——0. We thus need to calculate

P=dg, fdeC„,p,s,
(2.4)

and H represents all the coherent interactions including
those corresponding to the two-photon transition

I g )~
I
i ). Thus, H is given by

H—=e; Ii &&i I+eg lg&&g I+f«I e&&e le

+fde(v„
I

e& &i
I
e '""+c.c. )

+(~
I
')(g

I
'+C.C. ),

Bt
=Lp —i[(~

I

i &&g
I

+~'
I
g) (i

I »p] (2.14)

(2 5) and hence

where p,g in the steady state is obtained from the solution

of Eq. (2.7) which can be solved exactly. However, in

what follows we treat the important case when M is small

so that a first-order perturbation theory with respect to M
is sufficient. For this purpose we rewrite (2.7) as (drop-

ping the tildes}

On making a unitary transformation with

h =coi li )(z
I

+(2cvz+mi) Ig)(g I

we can reduce (2.3) to

(2.6)

Bp . — fi= —i[H,p] —g (A;A;p —2A;pA; +pA;A;),

where J" is the two-photon matrix element. The parame-
ters y1 and y2 correspond to the spontaneous emission in

the two decay channels. Fano parameters q1 and q2 are
defined by

«
I vlg)

7TV (el V Ii)
'

irV, (e

(0)
p L (0)

at

~P =Lp'" i[(~
I

i & &—g I

+~*
I g & &i

I

»p'"]
Bt

(2.15)

(2.16)

In view of (2.17},(2.16) reduces to
(1)

=Lp' " i M
I
i ) (g I

+i M—'
I g ) (i

I

.
at

(2.18)

The solution of (2.15) is trivial as, initially, the atom is in

the state
I g ),

(2.17)

The solution of (2.18) is discussed in Sec. III. For the sake

(2.7) of completeness we now record various elements of Lp:

(1) (1) - (1) (1) X2 (1)
P ~,~,= z(ei ez)P~, ~, zv, i;P—;,z+zv, zrP,—,; deB,i,B«—P«z de C...C—«P«,

71 (1) (1)

2 fdeB«B«p« — de C«C«p«,
2 1 2 1

(2.19)
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(1)
p ~;= —t (ei —t'ai e—t )p« i—u«p;; — de p~ p~t

1
l 6) I 6') I II E'iQ «PGl 2 J 6&0 «PGl

(1) ~ (1) 3 2 (1)
P6 g

= i(el ~i 2~2)peg iud ipig deBEQBEQPEg de CE,aCEQPEg

(2.20)

(2.21)

(2.22)

and

p Ig ~ 0QIp„de + de1 de B«B«p«+ c.c.~ (1) y (1) 71 (1)

2 1 1

(2.23)

(1) (1)
pgg = dE'1 dE'C~ gC«p~~ +c.c.

gg 1 1

(2.24)

III. EXACT SOLUTION
OF THE DENSITY-MATRIX EQUATION (2.18)

The density-matrix equation (2.18) has a rather compli-
cated structure. In order to solve (2.18) we make use of
the technique that was used earlier ' in connection with
the simpler problem of laser-induced autoionization, in
which one solves for a set of auxiliary density matrices
and then the solution of the full equation is constructed in
terms of such density matrices. For this purpose we
rewrite (2.18) as

p"'=~p"'+I;(t)
I

i &&i
I

+Ig(t)
I g & &g I

i~
I
i &

—&g I
+i~'

I g & &i I, (3.1)

where

In Eq. (3.1), W is a simplified Liouville operator and is
defined below. Let us now introduce a density matrix 0.

with elements

o...,(t) =P,,(t)P,,(t), o,,;(t)=P,,(t)P; (t),

o,„( )t=P,
,
(t)Pg(t),

cr;;(t) =
I g; , o (t)=

I
1(

og (t) =P; (t)P, (t),
whose equations of motion are

o.=Wo,

(3.4)

(3.5)

where W is now defined in terms of the equations of
motion for 1(t's:

I;(t)=Tr p'"(t) f de~ fdeB'. ..B„
I
ei & &e

I
ib, , ;P, iu, ,

—;g; —— fdeB*, ,B„Q,

+H. c. (3.2) fdeC,*,,C„Q, , (3.6)

Ig(t)=Tr p"'(t) fde, fd Ce*, ,C„le,&&el

+H. c. (3.3)

(3.7)

fg = +g' v= &i—e;, 5q t =ei —Ml —el . (3.8)
1

We now show how the solution of (3.1) can be obtained in
terms of o.;. One obviously has from (3.1)

p'"(t)= dr[I (r)e " 'li &&i
I
+Ig(r)e " 'lg&&g

I

ice —" 'li &&g
I
+i% 'e " 'lg &&i

I ]
0

(3.9)

and from (3.5)

o(t) =e 'o(0) .

We solve the set [(3.6)—(3.8)] subject to the arbitrary initial condition on 1i; and gg, i.e., we assume

0)=
I 4 I'I i &&i I+ I @g I Ig&&g I++;Pg li &&g I+ggP,' Ig&&i

and then one has

o«)=
I A I'e 'li&&i I+14g I'e 'lg &&g I+@Wge 'It &&g

I
+0'age

which, on using the definition (3.4), can be written as

(3.10)

(3.11)
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a(t)=
I
A(t) I'Ii&&i I+ Igs(t} I'lg&&g I+Pi(tW, (t) lg&&i I+A(t)W*(t) lt &&g I

+ f«i f«6', ,(tW;«) I
ez & &ei

I
+f«if. ,(tWs(t)

I
ei & &g I

+f«iP",
,(t)fs(t)

I g & & ei
I

+ fdeil, ,(t)P;'(t)
I
ei&&i

I
+fdei@*,

,(t)P;(t) Ii &&ei
I

We now write the solution of (3.6)—(3.8) in the form

y, (t)=e-'"'g, (0}, g, (t)=S;(t)g;(0), 1i,(t)=S,(t)g;(0)

(3.12)

(3.13)

and substitute in (3.12) and then compare the coefficients of f;(0) and Ps(0) since g;(0) and gs(0) are taken to be com-
pletely arbitrary. This procedure leads to the following operator relations:

(3.14)

e 'Ii &&i
I

=
I
S; I Ii &&i

I
+fdei fdeqS, (t)S, (t)

I
ez&&ei

I
+ fdeiS, (t)S;*(t)

I
ei&&i

I

+ fdeiS, (t)S;(t) Ii &&eil

e 'li &&g
I

=S;(t)e+'"'li &&g
I
+ fdeiS, ,

(t)e+'"'I ei &&g I

e 'Ig&&i
I
=S; (t)e '"'Ig&&i

I
+fdeiS* (t)e '"'Ig&&ei

I

(3.15)

(3.16)

(3.17)

&ei I
(e 'li &&g

I
) I ei&=0,

&ei I(e 'Ig&&i
I

) leg&=0.
(3.18}

On using (3.2), (3.3), and (3.18) in (3.9) we find the result

I;(t)=Is(t) =0 . (3.19)

On substituting (3.19), (3.16), and (3.17) we obtain for the
Laplace transform of p" '

p'"(z) = i% S;—(z i v)z ' —
I
i & &g I

We now return to Eq. (3.9) and evaluate I;(t) and Is(t)
From (3.16) and (3.17) we have the important relation

' 1/2

P= —iM P3( i v)d—s,
y2

' 1/2
2

Q ILIA g[(Im) ']3tmji
Jy2

1/2

ds, [(3.+m ) ']pi
2

y2

where the matrix m is defined by (A5).

IV. DETAILED FEATURES
OF THE FOUR-WAVE —MIXING SIGNAL

(3.23)

de1S, z —iv z '
e1 g +c.c. 3.20

The steady-state value of p',z' is given by

p ',s'( t~ oo ) = liinzp ',s'(z) = i A S,(—iv)—
z —+0

(3.21)

and hence the quantity P [defined by (2.13)) which is
relevant for four-wave signal becomes

In this section we obtain the general form of the four-
wave —mixing signal, which is valid for arbitrary values of
the field intensity associated with the laser at cubi, and for
arbitrary values of the spontaneous-emission rates. On us-

ing (A6) and (A10) and on introducing the parameter x
defined by

2x = ( eo —co i
—2' p ), (4.1)

Eq. (3.23) can be written as

P= iM f d—e C„S,( iv)ds, . — (3.22) P =2i Mds, S(x), (4.2)

It should be remembered that S,(t) is the solution of (3.6)
and (3.7) is subject to the initial condition g;(0)= 1,
f,(0)=0. We derive the complete solution of (3.6) and
(3.7) in the Appendix. Using the solution given in the Ap-
pendix we can write (3.22) as

S(x)—:~Qqi 1— l lX+
q2 q1q2

D. (4.3)

Here the polynomial D, which is related to det(1+m), is
given by

y2 1

I q1

y1 ~ 2D = (x +a) i Qq, —r
'2

1
2

i (1+ix)+ ~ +(x+a) (1+ix) 1+ ~ + 1—y2 y2

I q2

2
l

q2
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The four-wave —mixing signal is proportional to
I
S(x)

I
whereas the susceptibility X' ' for the four-wave

mixing is proportional to S(x). The spectral features of
S(x) depend on various system parameters such as the
spontaneous-emission rates y& and y2, Fano asymmetry
parameters qi and qz, the strength of the pump field at
co&, and the detuning parameter a. It is quite remarkable
that the numerator in (4.3) does not depend on r's. This
is because all the recombination effects have been included
in the theory. Before we discuss the general features we
examine several special cases and establish contact with
the results already known in literature.

A. Weak field 0 && 1 and negligible spontaneous emission

The conventional treatment of four-wave mixing as-
sumes that the field at co& is also weak and ignores spon-
taneous emission. In such a case one finds

10

2
Is(x) I

-1
10

(4.5)

l l lXl-
q2 qiq2S(x)= (x+a) 1+ix

which agrees with the result of Armstrong and Beers.
The line shapes corresponding to (4.5) are well known. 2'3

10
-8 -4

B. Field with arbitrary strength but with yi ——y2-0

Another important case treated in detail by Crance and
Armstrong is when the laser field at coi could be of arbi-
trary magnitude. They ignored the recombination effects
though dampings were included in a phenomenological
manner. The recombination effects can be ignored" if
r/I q &&1. Their model of damping is different from
ours since they considered the decay of, for example, the
level

I
a ) to some other level rather than to Ii ) or

I g ).
In our model we not only consider the decay of the unper-
turbed continuum but also "recycle" the system, i.e., the
system decays back to

I

i ), for example, and gets raised to
the levels

I
a) and

I
e) by the interaction with the

coherent driving field.
Let us assume that the spontaneous emission is negligi-

ble r i -r2-0. In such a case S(x) reduces to

i/Qq i 1— l lX+
S(x)=

qi q2

( x+a)(1 +ix)

iraqi

—1—

q&q2
'2

i (1+ix)+

0= ]+a/q) . (4.7)

We thus find that S(x) will have a spike for values of the
field intensities corresponding to (4.7). This, in turn, im-
plies that for such values one will have a very efficient
four-wave mixing. ' Our analysis thus shows the impor-

(4.6)
The polynomial that appears in the denominator of (4.6) is
precisely the polynomial that appears in the studies of the
laser-induced autoionization ' without any spontaneous
emission effects. Such a polynomial is known to have the
root x=q& for the case when confluence ' takes place,
i.e., when

FIG. 2. Four-wave —mixing signal
I
[S(x)(x+a)/~Q]

I

for weak fields as a function of x =(2/I ) (e, —co~ —2'~) for the
relaxation rates in units of I (1) y~ ——y2 ——G, (2) y~

——y2
——0. 1, (3)

y~
——0, y~

——1, (4) yi ——1, y2
——0, and(5) y~

——y2
——1.

tance of the confluence in the determination of the effi-
ciency of four-wave mixing. Of course the spontaneous
emission r2 cannot be completely ignored, for even a very
small value of ri is going to affect the spike height con-
siderably. For very small yi and y2, the denominators in

I
S(x)

I

are going to be proportional to

I
~r i+&ri I I

dagd« I

' .

The numerator is also at least proportional to
I d,gd„ I

(Id« I
comes from 0 and Id,s I

comes from the dipole
moment at 2co2+coi). Thus, near confluence, it is suffi-
cient to have very small r in order to have efficient four-
wave mixing.

As noted earlier by Agarwal et al. , the spontaneous-
emission changes the photoelectron profiles in an impor-
tant way. The four-wave —mixing profiles depend on ri
and r2 because the denominator in (4.3) is r dependent.
The width of the roots is critically dependent on ri and

y2. In the special case when y2-0, the polynomial
D( )=xP( —x) of Ref. 11. Hence the roots of D(x) can be
obtained from Figs. 4(b) and 5 of Ref. 11. The results of
our numerical computations are displayed in Figs. 2—4.
In Fig. 2 we show the effect of spontaneous emission in
the two channels on the four-wave —mixing signals when
the field on the transition

I
i)~

I
a) is weak. The spon-

taneous emission leads to a considerable change in the
profiles. In particular, one observes a shift in the peak po-
sition as one changes y& and y2. The changes in the peak
position can be understood from an examination of the
denominator D [Eq. (4.4)], which in the limit of Q~O
reduces to



RECOMBINATIONTANEOUS EMISSION AND RECEFFECT QF S o 343528

y2 $1y2 ~, 1+i~+ + I- rq1
+ 2(x+&)

r2
1r

i + $1
r q1

(4.8)
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APPENDIX: SOLUTION OF (3.6) AND (3.7)

In this appendix we derive the general solution of (3.6)
and (3.7) subject to the initial condition f;(0)= I,
g,(0)=0. On taking the Laplace transform of (3.6) and
(3.7) and using the initial conditions we get the following
integral equation for the Laplace transform of g,:

P, , + fde+K;(e, )L;(e)g(e)= —iKi(e, ), (Al)

The integral equation (Al) has a separable kernel and,
hence, can be solved by using the standard methods. The
final solution can be written as

g;= fdEL;(e)P(e)

(A3)

where

P(~)= iK, —(e) gK—, (&)q, .

V1Kz(ei}=
2

1/2

= —i+K;(e)[(I+m ) '], , (A4)

71L2(e)=
2

r2
Ki(ei) =

2

r2
Li(~) =

2

Boa (A2) In Eqs. (A3) and (A4), m is a 3 X 3 matrix with elements

m,j ——fdeL;(e)KJ. (g) . (A5)

The matrix elements of m can be evaluated depending on
the structure of the continuum. In what follows we as-
sume a fiat structure for the unperturbed continuum. Cal-
culation of the integral by contour integration leads to

m11 = 2/ d;. .E['
Z/1

m22

2

mjj =
2z

r + 1 —I', a

1+

&rir2
m23 —m32- r 2z +1—I,ar

q2
' +

9'102
(A6)

2

m12 ——

V ei

m„zv,
Vei

3 1

2

' 1/2

2z

r +1—ia

1+

m1p =
V ei

m g1z V~

Vei

r2
2

' 1/2
q2

2z

r +1—I,a

' + 1

9102

where

I =2m
~

V ~, a= —(cg, +e; E) . —2 = 2
(A7)

Here U„. is the matrix element of the dipole interaction between the unperturbed continuum
~
e) and the state

~

i ) and
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can be related to the previously defined parameter

&=2n.
~
U„~ '/I

m)) =

which is a measure of the laser field coupling between
~

i ) and
~

e}. On using (A8) we can rewrt«m ti as

Qq)
mph' 2Z 71

(A8}

(A9)

y( Qq ) I
det(1+m) = +

2z

1+ 2+2z +1—ta
I

For completeness we also list the value of det(1+ m }:
'2

1 y2

'2
1

2zI -- +1—ia
1

+1+ r2

'2

q2

2z +1—iar

1
,
+

q2
(Ala)

which will be seen in Sec. I& to determine the characteristics of the four-wave —mixing signal.
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