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Multiphoton ionization in the region near a three-photon resonance is treated for focused, plane-
polarized Gaussian beams with diffraction-limited beam divergence. In this situation, a third-
harmonic field is generated within the laser beam. At, and very near, three-photon resonance the
driving rate for the upper-state probability amplitude due to one-photon absorption of third-
harmonic light becomes nearly equal to the corresponding three-photon rate due to the laser field,
but these effects are 180' out of phase. As a consequence of this cancellation between two pumping
terms, the three-photon resonance line essentially disappears at moderate concentrations and the ob-
served ionization has a line shape that is close to the phase-matching curve for third-harmonic gen-
eration. The ionization signal, near but not on the resonance, is due almost entirely to absorption of
third-harmonic photons plus other laser photons; three-photon resonantly enhanced multiphoton
ionization by the laser is much weaker. This is particularly true on the blue side of the three-photon
resonance at detunings where phase matching occurs. The problem is treated quite generally with
predictions of the full line shape for n-photon ionization and third-harmonic light generation near
three-photon resonance, including the rather strong influences of positively dispersive buffer gases.
We also show that the cancellation between the one-photon and the three-photon process is partially
spoiled in the presence of a counterpropagating beam at the same frequency.

I. INTRODUCTION

Studies of third-harmonic generation (THG) in gases
were initiated by New and Ward'; later the same individu-
als presented a theory of odd-harmonic generation in the
gas phase. This theory drew heavily on the theory of
Kleinman et al. for second-harmonic generation in solids
by focused Gaussian beams. Recently a number of stud-
ies have demonstrated the utility of gas phase THG or
four-wave mixing in generating vacuum ultraviolet (vuv)
light.

Multiphoton ionization (MPI) is currently of much in-
terest. References to experimental work on this subject
before 1978 can be found in an article by Mainfray.
Theoretical developments prior to 1976 have been re-
viewed by Lambropoulos. Recent developments in theory
have been made by many workers. Resonantly enhanced
MPI is currently being used both for spectroscopy and as
a state-selective detection method.

Almost all of the work on MPI referenced above deals
with situations where concentrations of the target species
are very small and all atoms or molecules can be con-
sidered to interact independently with the laser field.
However, Compton et al. ' and Miller et al." observed
very striking pressure effects when three-photon resonant-
ly enhanced MPI of argon, krypton, and xenon was stud-
ied for concentrations & 10' /cm, ~ If in the latter situa-
tion the atoms interacted independently with the laser
field, the resonance signal should increase linearly with
pressure until the pressure-broadened linewidth becomes
comparable with the laser bandwidth. In the Miller et al.
study, the linear increase in ionization signal should have
continued' '" up to N & 10' /cm . Further, with self-

broadening in rare gases, the pressure-broadened lines
should be symmetric about the resonance except on the far
wing of the line. The Miller et al. study" showed, howev-

er, that the ionization signal actually decreased with in-
creasing X for N&10' /cm and that the observed line
shape for ionization appeared to shift strongly toward the
blue side of the unperturbed resonance. With a lens of
-5-cm focal length and an initial beam size -0.1 cm, the
observed shifts were of the order Ace, =10 X, where Ace,
is the shift in the laser angular frequency from the unper-
turbed resonance frequency in sec and N is the concen-—1

tration in cm . These shifts depend, of course, on the fo-
cal length of the lens used to focus the beam since they
will be seen to be initiated by the absorption of third-
harmonic (TH) light.

An explanation for the strong suppression of the
resonant enhancement at the three-photon resonance was
provided in a theoretical formulation of the problem by
Payne, Garrett, and Baker' in which the atoms interacted
with the laser field and with each other via the TH radia-
tion field which was generated in the interaction volume.
Though the early theory was very approximate in the
treatment of the beam geometry, it nevertheless showed
that inclusion of the TH field in a self-consistent way led
to a great reduction in the probability of exciting the reso-
nance state and, moreover, it showed that above a critical
concentration which depends on (I) the magnitude of the
a.c. Stark shift, (2) the laser bandwidth, (3) the diameter of
the unfocused beam, and (4) the focal length of the lens,
the peak height of observed near-resonance ionization de-
creases in proportion to NF, where F is the focal length
of the lens used to focus the laser light. The magnitude of
the predicted shifts was close to what was observed experi-
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mentally, ' "' and it was pointed out that the only ob-
served ionization had a line shape closely corresponding to
the phase-matching curve for TH generation.

In a subsequent paper on resonantly enhanced ioniza-
tion near three-photon resonances, Payne and Garrett'
gave a very detailed ab initio treatment of the resonance
suppression effect in the simpler geometry of unfocused
beams. At the power densities of interest there (and here)
the three-photon Rabi frequency is so low that depletion
of the ground state is negligible, ' and stimulated process-
es out of the upper state at three-photon resonance are of
no importance. Yet the coupling between three- and one-
photon pumping (by the TH field) of the resonance level is
so strong that one cannot assume that the near-resonant
TH field is the same as that produced in the absence of
the new effect. Thus, the present authors treated the
problem as follows: (1) by deriving the equivalent of
Bloch equations for a two-state plus ionization continuum
representation of the system where the ground and excited
states of an atom at position r in a laser pulse of arbitrary
time profile were coupled by three-photon absorption and
stimulated emission as well as by one-photon absorption
and stimulated emission driven by the TH field; (2)
Maxwell's equations were written for the propagation and
generation of the TH field with the source terin for the
TH field being written in terms of the coinponents of the

Bloch vector, and with the solution for the TH field, E3,
being obtained by a Green's-function method and written
as an integral operator operating on components of the

Bloch vector; (3) the integral expression for E3 in terms
of Bloch vector components was used to replace E3 in
Bloch's equations. The Bloch equations were then self-
consistently linearized in the three-photon Rabi frequency
03 and the ionization continuum was eliminated in terms
of a damping rate and an a.c. Stark shift. This analysis
led to a linear inhomogeneous integro-differential equa-
tion for the probability amplitudes or for the polarizabili-

ty from which the ionization yield and the TH field could
be determined within the linearized approximation. The
resulting integro-differential equations for the polarizabili-

ty contained a conventional three-photon term due to the
interaction with laser photons and an integral term due to
the TH field. Explicit solutions of the equations of
motion showed that, except for the region near the en-

trance to the gas cell, the contributions to the time evalua-
tion of the polarizability from the three-photon and one-

photon process exactly cancel as the resonance is ap-
proached. The complete line shape was given as a func-
tion of pressure, laser bandwidth, and oscillator strength
for transform-limited and broad-bandwidth pulsed lasers.
The cancellation effect persisted even with very nonideal
characteristics of the exciting laser.

In another recent MPI study involving the TH cancella-
tion effect, Jackson and Wynne' treated the problem on
resonance with a simple perturbation treatment for a
plane-wave approximation to a focused geometry and in a
steady-state approximation to pulsed laser excitation.
They also made the ad hoc assumption that the TH field
could be written in terms of the nonlinear susceptibility at
3' as would obviously be valid in the absence of the rath-

er striking coupling effect. This latter assumption is
essentially correct, as was shown in Ref. 14, but it was not
obvious until proven. Finally, the authors added a semi-

empirical width to the resonance as opposed to the more
exact treatment in Ref. 14 through the Bloch equations.
With this great simplification of the problem, a fifth-
order perturbation analysis of the five-photon ionization

problem showed that the three-photon and one-photon
contributions to resonant excitation are 180' out of phase,
which the authors designated as an interference effect.
Thus, they arrived at the same result which was obtained
in the more general and more exact treatment of Ref. 14
though the latter was more complex due to the inclusion

of pulse effects and due to a treatment in which E3„and
the atomic response were derived self-consistently without

assuming that ionization could be dramatically altered
while Ei~ is completely unchanged. Thus, Ref. 14 was

less transparent than the treatment based on the Fermi
"golden rule" approach. '

In the present study we present a detailed treatment of
the MPI problem near a three-photon resonance for
focused diffraction-limited Gaussian beams. In Sec. II we
consider a simplified perturbation approach wherein the
physical effects are handled from first principles but
within a picture which provides a clear illustration of the
rather dramatic effect under investigation, with a slight
generalization of earlier treatments to include the effect of
a buffer gas. Then, in Sec. III, we present a more exact
treatment of the less tractable exact resonance region
where a perturbation approach could be flawed, but where
we prove that the behavior tracks smoothly through the
resonance as would be inferred from the simpler treatment
of the problem. Thus, we obtain the complete ionization
signal line shape in the resonant region, including the in-

fluence of a phase-matching buffer gas on the observed
resonance profile. In Sec. IV we briefly discuss the partial
reappearance of a resonance signal in the presence of a
counterpropagating portion of the laser beam and, in Sec.
V, we present some conclusions.

II. PERTURBATION TREATMENT
OF THE NEAR-RESONANT
FOCUSED BEAM PROBLEM

We consider a gas with concentration X in the presence
of a focused diffraction-limited Gaussian laser beam. We
will later consider the additional effect of a buffer gas
which has no resonances that are close to either the laser
or TH frequencies. The laser light is plane polarized in
the direction of the y axis, and the optical axis of the lens
corresponds to the z axis with the origin being the focal
point. We follow Kleinman et al. in writing the laser
field in the form

E(r, t) = (A (zp)exp[ i [tot +/(t ——z/c)]]

+A (z,p)exp[i [cot +P(t —z/c)] j )

XEO(t —z/c),
A (z,p) =e' (1+2iz/b) 'exp[ kp /b(1+—2iz/b)],
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A. Perturbation equations
for the bound-state probability amplitudes

It is well known that in the region near a three-photon
resonance having AJ =1, plane-polarized light generates a
polarizability at frequency 3' and that this effect leads to
a TH electric field. Consider an atom at position r and

time t. The response of the atom to the TH field E, (r, t)

and the laser field E(r, t) is determined by the time-

dependent Schrodinger equation

H(r, t)
~ g (t)) =i%

~ f (t))a
(2)

or equivalently in a time-evolution operator form'

where k is given by k =n (co)co/c. Here n (co) is the index
of refraction of the gas (or gas mixture when a buffer gas
is present) at frequency co, and b =ktv, where
m =A,F/m. d. Also, m is the beam waist at z =0, d is the
beam diameter just before the lens, F is the focal length, b
is the confocal parameter, and p is the radial distance
from the z axis. Equation (1) applies to cases where

d/F «1 so that a paraxial approximation applies in the
development of the equation. The time dependence of the
pulse, Eo(t —z/c), will be restricted only by the condition
that its time derivative be small as compared to co. Finite
bandwidth effects will be included for the pulsed laser by
assuming that Eo(t —z/c) and P(t —z/c) undergo fluctua-
tions during a laser pulse, as would be the case if there
were a very large number of longitudinal modes present
with each having independent phases. The amplitude of
E(r, t) before focusing can be related to Eo(t —z/c) by

evaluating Eq. (1) at z = Fand —by assuming that F/b is

very large. Thus, the on-axis power densities before and

after focusing are related by having Io equal to the
focused power density which is equal to
(2F/b) l„=(d/w) I„, where I„ is the unfocused power
density on axis.

In the following we repeat some well-known material in

order to show clearly the effect of THG on MPI in the re-

gion very near a three-photon resonance. We define the
detuning b,0=3co—co„where co, is the frequency of light
emitted in spontaneous emission between the excited state

~

1) and the ground state
~

0). When b, o ——0 we have

three-photon resonance. In all that follows we assume

~
bo

~

&&co„and that
~

Ao
~

is also very small compared to
the detuning from any other three-photon resonance.

is Ho, then in a dipole approximation the Hamiltonian for
the present problem is given by

H(r, t) =Ho —9'» [E(r,t)+E3„(r,t)] e», (4)

where the N» is the atomic dipole operator and the laser

is polarized in the y direction e». Then, from Eqs.
(2)—(4),

iA S(—r, t) = Vt(r, t)S(r, t), (5)

where for any operator 3 we define the interaction repre-

sentation of 3 as

Vt(r, t) = Vi )(r, t)+ Vt2(r, t),
where

(6)

(7a)

and

Vt2(r, t)= &t»(t)Ei (—r, t) . (7b)

The operator 0't»(t) is just 4» in the interaction repre-
sentation. Initially, all atoms are assumed to be in their
ground state and

~ f (0))=
~

0). Defining eigenstates of

Ho by Ho
~
n) =fico„~ n ), we can write I='f

~

n)(n ~,

where the &F indicates a sum over discrete states and in-

tegration over continuum states. Inserting 1 between

exp( iHot/A) —and S(r, t) in Eq. (3),

~

@-„(t)&=/) e
' " (n ~S(r, t) ~0& ~n&

n

e "a„r t n (g)
n

with a„(r,t) =(n
~

S(r, t)
~
0), which is the probability

amplitude for atoms at r and t being in state
~

n ). If we

use the simple properties of S(r, t), S(r,0)= 1, and the fact
that the laser is triggered at t =0, we can integrate Eq. (5)
and obtain the well-known result

At =exp(iHot/A)A exp( iHot—/fi) .

In the following analysis we separate the atom field in-

teraction term Vt into a component due to the TH field
and another due to the laser field according to

(t))=e ' S(r, t) ~g (0)), (3)

where t =0 corresponds to the time when the laser is trig-

gered. If the Hamiltonian in the absence of the laser field
which when iterated n times leads to a time-dependent
perturbation series':

S(r, t)= I+(iA') ' f dt, Vl(r, ti)+(ih') f dt's f dt's Vt(r, ti)Vt(r, tz)

1 n —I+ . +(i') " dt, dt2 . dt„Vt(r, ti )Vt(r, tz) . Vt(r, t„)S(r,t„) .
0 0 0

With this expansion in the equation a„(r,t)=(n
~

S(r, t)
~
0), we get a similar perturbation series for a„(r,t) in the

form'
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a„(r,t)=5„p+(iiri) ' f (n
l
VI(r, ti) l0}dti+(iA) f dt, f dt2(n

l
Vt(r, ti)Vt(r, t2) l0}

t)
+(iR) f dti f dt2 f dt's(n

l
Vt(r ti)Vt(r t2)Vt(r ti) l0}+ (9)

The perturbation series of Eq. (9) can be used if
l
4p

l

is
large compared with the resonant linewidth, the a.c. Stark
shifts in

l
0}and

l
1},the laser linewidth, and the ioniza-

tion rate of
l
1}.Since we will use Eq. (9) in our present

discussion, the theory developed in this section will not
hold at, or extremely close to, the resonance because at
zero detuning E3„is in one-photon resonance between

l
0 }

and
l

1 } and is very strongly absorbed. Also, since we as-
sume that

l
bp

l

is small enough so that the three-phot, on
resonance dominates the ionization signal, we cannot be
too far from resonance. In the Miller et al. study" with
xenon and with Ip & 10 w/cm, a region with

l
b,p l

& I )& 10' /sec must be excluded and
l
b,p l

must be
& 5 ~ 10' /sec. A more exact treatment appropriate to the
resonance situation will be presented in Sec. III.

I

In the interaction term Vt ——Vt(+ Vt2 of Eq. (9) the

magnitude of Vi(, due to the laser field, is much larger
than Vt2, which is due to the TH field. However, since it
is near three-photon resonance, Vl& is only important in
third order. On the other hand, the TH light is near one-
photon resonance and is important in first order but negli-
gible in higher order. Also, as indicated above, we consid-
er a regime which is far below saturation such that a p( r, t)

remains almost unaffected, ap( r, t) —1, and where the only
near-resonant condition is that between 0} and

l
1}.

Thus, we consider Eq. (9) for ai(r, t), where we include

terms through third order in the laser field E but include

only first-order contributions from E&„. We get

t
ai(r, t)=(i') ' dt((1

l
V»(r, ti)+ Vti(r, t()

l
0}

tl t2

+(iA) f dti f dt2 f dt, (1
l

Vt, (r, t, )Vt, (r, t2)Vt((r, t3) l0}+ . (10)

To evaluate Eq. (10), unit operators 1 are inserted between each of the interaction terms and use is made of dipole selec-
tion rules. Also, for convenience the laser field of Eq. (1) is written in the simple form

Ep(t —z/c)
E„(r,t)=, exp[ kp I—b(l+4z Ib )](1+4z'/b') '"

and

p(r, t)= kz+P(t z/—c)+tan —'(2z/b) 2kp z/b (1—+4z /b ) .

Additionally, the TH field E&„(r, t), in a nearly paraxial focused beam, will be of the form

Eq„( r, t) = e»E i„(r, t)cos[3tpt +8( r, t)],
where again E3 and exp[i8(r, t)] are slowly varying as compared to exp(3itpt). The expression for a((r, t) becomes

, ( )t e
—i (3cot+8) i (3cot +8)

ai(r, t)= '
e ' ' Es„(r,t) +

2R CO ~
—COp —3CO CO ~

—Np+ 3CO

i (cot+@)+'
CO] —COp+ CO

e
—i (cot +P)

+E„(r,t)
N~ —Np —N

3
E„(r,t) M) nMn mMm p

exp[ i [(co(—c—op —3cp)t —3p(r, t)]J, (11)
2i(i (co„—cpp —2co

)(corn

—cpp —N )

where here and below we define the dipole matrix element M„=(n
l 4» l

m };thus, Mi p = (1
l 0» l

0}. In Eq. (11)
the last term will be recognized as the three-photon Rabi frequency 03 for the

l
0} to

l

1 } transition:

( ((t tt(E)" (r, t)/2))] g f Mt M M p/(tp ptp 2pt)(pl ptp pt) . (12)

E(r, t) = e»E„(r,t)cos[cot+p(r, t)],
where the time dependencies of the pulse shape function E ( r, t) and of the phase change in exp[ip( r, t)] are very slow as
compared to exp(3i pit) The term. s E ( r, t) and p( r, t) are related to the amplitude and phase of Eq. (1) through the rela-
tions

Thus, Eq. (11) can be written in the form

a, (r, t) =
CO ~

—COp+ COCO ~
—COp —CO

Q3(r, t)
+ expIi [(co( cop 3')t —3p(r, t)]), — —

~o

e
—i (3cot +8) Eo i (3cot+8) gp —I (apt+8) Ep I (cot+9)

],p t (co& —coo)t 3~ 3' CO CO

e + + +2A' CO ~
—

COp —3CO CO ~
—COp+ 3CO

(13)
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where hp ——3' —tp„ is the detuning from three-photon resonance between
~
0) and

~

I).
For all a„(r,t) with n & 1, the third-order term involving 03 is quite small as compared to its value in Eq. (13). Thus,

we can neglect the third-order contribution in all other amplitudes and write

(r t) i—(3rot+8) i (3cot
1
+8)

i (co„ro—(&)i )),0 3r0 "» e ea„r,t =e +
2A con —cop —3co co~ —cop —3co

ei (cot+@)
+

CO„—Cop —Co Co„—Cop+ Co

p
i (ru„duo—)t MnpE, re e+e " ' ' (r t)

for all n & 1.
In order to evaluate these expressions for the amplitudes a„(r,t) we must know the TH field:

E3 (r, t)=E3 (r, t)Iexp[ i(3'—t+8)]+exp[i (3tpt+8)]I /2 .

(14)

m

To the same order of approximation as that of Eqs. (13) and (14) we can use the results of these equations for aj ( r, t) and
write the local polarization in the form

M
( ) N ]t I P 1 1+

co~ —cop —3co co~ —cop+ 3co

1 1+
Co„—Cop —Co CO„—Cop+ CO

E3„(r,t)

But the TH field is determined by the atoms themselves as they respond in a cooperative manner both to the laser field
and to the TH field due to other atoms further upstream in the laser beam. The electric dipole polarization at a point r
and time t is given by the expectation value of the dipole operator 9»:

ee(r, r)=N(r(r (r)(o)»(r(» (r))e»=e»Nlt f e " e (rr)e"„(r,, r)M (15)

03(r, t)
Mp, exp[ —3i [tot +p(r, t)) ) +c.c.

5p

=X(rp)E( r, t)+X(3')E,„(r, t)+
03(r, t)

Mp iN exp[ 3i [tp—t +p(r t)]] +c.c. e»
6p

(16)

Thus, the polarization has the usual component

X(p»)E(r, t} which oscillates at the laser frequency cp where

X(to) =2N f ~ M) p ~
(cpj top)/fi[(tp/ ——top) —co ] (17)

J
is the linear susceptibility at co. This term leads to a
modified phase velocity for the laser field which is already
included in Eq. (1), where n (tp) = I+4mX(cp) and
k =n(tp)tp/cc Note f»or later reference that the presence
of a buffer gas of number density Nz would simply add a
term similar to Eq. (17) to give an additional nonresonant
contribution to X(cp).

The polarization has two additional components that
oscillate at the TH frequency 3co. The first of these,

X(3')E3, is proportional to the TH field where the linear
susceptibility at X(3') is again

I

the laser field.
In Eq. (16) the susceptibilities, the Rabi term, and the

laser field are known or calculable, but the TH field

E3„(r, t) is unknown since, as noted above, it is contained
in the expressions for a„(r,t) which are to be evaluated.

However, the relation between H and E is governed by
Maxwell's equations; thus, we can solve Maxwell's equa-
tions for the TH frequency components of Eq. (16) and

obtain E3„ in terms of a spacial integral over the polariza-
tion sources of this field. For convenience we define the
components of 9 from Eq. (16):

9'(r, t)=X(cp)E(r, t)+X(3')E3 (r, t)+%3 (r, t)

(19)

where

X(3»o)=2N f (M, o l
'(ro» roo)/)(((ro» —roo)' —(3—»o)'1

and
9 3 (r, t)=X(3')E3 (r, t)+ H 3 (r, t) (20a)

(18)

We rewrite this only to comment that at near zero detun-
ing the j= 1 term of X(3') in Eq. (18) becomes very large;
thus, it may not be proper to cast the polarization in the
present form exactly on resonance. (We consider this situ-
ation in Sec. III.) Note again that a buffer gas would add
another nonresonant contribution to X(3') similar to Eq.
(18}. The other 3' component of H is that due to the
three-photon Rabi oscillation A3 which is third order in

3 (r, t)=II3(r t)5p Mp iN expI —3i [tot +p(r, t)]]

+C.C. (20b)

B. Expression for the third-harmonic field

In order to evaluate the TH field in terms of the laser
field and relevant atomic transition moments, we solve
Maxwell's equations for E3 with the polarization terms
of Eqs. (16) and (20), where the polarization becomes a
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spatial ly distributed source term for the TH field. Thus,
in Maxwel 1's equations we have

p(r, t)= —V 9'3„(r,t)
an d

J =3P,„(r r)/Br,

where p and J are effective charge and current densities,
respectively. Very succinctly, we Fourier transform
Maxwel 1's equations, e.g .,

[BP i„(r t)/Bt)e"'dt = is—93„(r,s) = J ( r,s),0

etc., and manipulate the transformed equations into the
0rm

$2
V E3 (r,s)+ [I+4m+(3')]Ei„(r,s)

C

n 4n. V[V. 9'3 (r,s)]

This is a wave equation with the nonlinear Qi term of
H 3 as source terms for Ei„. We solve by a Green's-
function method where the Green's function appropriate
to Eq (2.1 ) is just

eiS t
r —r

I
/rV

G(r, r ')=-
4m

[
r —r '

/

where we have defined u =c/[ I +4~1(3ro) ]' . After
solving Eq. (21) and taking the inverse transform (which
produces the usual retarded time variables), we get the TH
field in terms of an integral over source terms:

3~ p

E3~(r t)= f
/

r —r '
[

1 a' -n
r ', t — '( I- RIRI )—

C
2 at2 V

( I —3RIRI )

I +4~1(3' )

yn, [r —r'/
r ', t—

/

r r'
/

'—
/

r —r '
/

-n, (r r'/—
r ', t—

8t v+—
V

(22)

where I is the unit dyad and

E3„(r t)=—1 f dr'B-n, (r —r'(
r ', t—

When
~

z —z'
~

is larger than a few wavelengths and the
paraxial approximation is used, Eq. (22) simplifies to

on
~

z —z'
~

. Here b && w and there is a lengthy region, as
compared with the beam waist, over which the photon
flux is nearly constant. Thus, contributions from

~

z —z'
~

&& w are of more importance than those from

~

z —z'
~

& w in the calculation of E3„(r, t). Consequen-
tially, Eq. (23) is equivalent to the approximations
kz +ky && kz which are made in the elegant Fourier
transform method used to evaluate E3„ in the work of
Ward and New. We write

CO G 1

c

n
r ', t—

(23)
E& ( r, t) = , [E&+ ( r, t)+E—3 ( r, t))e~,

Since the beam waist w =AF/rrd » i(, , because F»d, it
can be shown that Eq. (23) can be used with no restriction use Eq. (20b) in (23), and get

Nco, M 3~/
Ei (r r)=

z
' f Qi(r', t —

~

r —r '
~
/v)expI 3i [cot +p(—r ', t —

~

r —r '
~
/v)]je '

c ~o
/

r —r '
f

(24)

(25)

The expression of E3„(r t) as an integral over source points is being used here because it is most useful f'or dealing with
an extension of the theory to cases where b,o can be small. We evaluate Eq. (25) for a laser beam whose intensity is in-
dependent of the azimuthal angle P in cylindrical coordinates z, p, and P. We note that, with the laser field of Eq. ( 1),
Q3( r, t) can be written as (in a rotating-wave —type approximation)

with E3„(r, t) the complex conjugate of Eq. (24). If b /u is small compared to the inverse laser bandwidth, we can go
further than replacing

~

r —r '
~

by
~

z —z'
~

when F&&d and replace
~

r —r '
~

by
~

z
~

in the slowly varying quantities
such as p and Q 3 ~ Thus,

E+ (r r) e 3iror —r ~ (r, & /u)e
—3ip( r , t —~z ~Ic)e3ira) 'r —r ' Iv

NM0 i co, 3 ~ r

C 50 /r —r'/
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—3kp2/rb( ]+4z2/rb 2)

fI ( r r) II (0 0 r) 3itan (2z/b)

(1+2iz/b)

where 03(0,0, t) is the three-photon Rabi frequency at p =0 and z =0.
In the Appendix, expression (25) is explicitly reduced to the form

inNb. cu„Mp iv Q3(0, 0, t —
I

z
I
/c)

E3+ (r, r)= '
exp{ —3i [cut kz—+P(t —Iz

I
Ic)]]

C2 1+2izv /bc

(26)

&& exp {—3cpp /[bc ( 1+2izu Ibc ) ] I g
2 2z Ak b

b
'

2
(27)

where bk =3(k —co/v), p =xz+y, u =c/[I+4irX(3cp)]'~, b is the confocal parameter of Eq. (1), Ap ——3cu —(cp& —cup),

and

g IV (Q —Q)

g(u, v) = I du' .—"(1+iu') (28)

The TH field is thus expressed in terms of atomic matrix elements and a single closed fo~ quadrature, g(2z/b ~k b/2)
The total field is F3 (r, r)= —, (E3 +&3 ), where the E3 term makes the major contribution in considerations below.
Note that E3 has the same confocal parameter as the laser field, but the beam waist is smaller by about a factor of ~3

~ith the expression for E3„we return to Eq. (13) and, in a rotating-wave approximation where only near-reso»«
denominators and slowly varying exponentials are retained, we substitute E3 from Eq. (27) for the TH field and the ex-
pression (26) for the three-photon pumping component Q3(r, t) and get

a&(r, t)=e exp{ —3cpp l[vb(1+2izlb)]]exp{3i [kz P(t —
I

z—
I
/c)]I

Q, (0,0, t)
X

(1+2iz/b)bp
—i ~b 2z 6kb 1

2&p b 2 (1+2iz/b)
(29)

where, for convenience and physical implications to be
discussed below, we have defined

2~
I
Mp,

I

'
Ac

(30)

Also, we have restricted the analysis to the region not too
near bp ——0 such that the phase velocity of the TH field, v,
is not too different from c, i.e., v =c+5, where 5/c & l.

Before we go on to calculate the resonantly enhanced
ionization probabilities we pause to note some features of
the expression for the probability amplitude a i(r, t) for the
one- and three-photon allowed excited state

I
1). First we

note that inside the brackets of Eq. (29) there are two
terms that contribute to the probability amplitude for the
excited state, the magnitudes and phases of which were
important in the analysis leading to the equation. The
first term involving the integral g(2zlb, b,k b/2) is pro-
duced by the TH field E3, while the second term is due
to three-photon pumping by the laser field. As was shown
in Ref. 14 for unfocused geometry, these terms tend to
cancel each other as 60~0. We can easily establish the
same behavior here from Eq. (29) where the result is more

transparent than was the case in the integro-differential
equation for a i(r, t) in Ref. 14.

To establish the behavior of a, in Eq. (20) as the reso-
nance is approached, we must evaluate g (2zlb, hk b/2) in
this frequency region. First we note a feature of
b,k =3(k —tvlu) in Eq. (27) where

v
' =c '[1+2m.X(3cp)),

v is the phase velocity of the TH field, and the susceptibil-
ity X(3cp) was defined in Eq. (18). Since hp is restricted to
stay very small as compared to the detuning from any oth
er three-photon resonance, all terms in g(3cp) are almost
independent of b,p except for the term associated with

I
1), i.e., the j= 1 term in Eq. (18),

N
I
Mi p I

lfi(cpi cop 3cp)= ——N IM— i p I
IRb.p.

Thus, we write b,k as the sum of a part which is almost

frequency independent and a frequency-dependent part by

separating the j=1 term from the expression for p(3co) to

get

k =3k —3~/v =3k — [1+2m X(3cp ) ]=3k-3co

C

3co 1+4' I Mj, p I (cpj —cup) 3cp 2mN
I
M, p I+c g[(co; —cup)' —(3cv)'] c iii6p

kkp+2~cv~N
I
Mi p I

/iricQp (31a)
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or

b,k =hkp+R'/hp, (31b}

where x. is given in Eq. (30). For convenience we define

and

vs =hkpb/2 (32a)

VR rtb/2——b p (32b)

and note that U~ becomes large as the resonance is ap-

proached, whereas U& remains essentially constant. In
these variables, and with u =2z/b, the terms inside the

brackets in Eq. (29) become

I(u, vR+vs) = 1
z

—i VR g ( u, UR +US )
(1+iu)

(33a)

—i 1 2 1
g(u, VR +US) = ~+

vR +vs (1+iu) (vR +vs} (1+iu)

+ ~ ~ ~ (34)

Thus, to first order the two terms in the parentheses of
Eq. (33a) cancel as VR becomes large. That is

1 Uz 1

(1+iu)' VR+vs (1+iu)'

hko 60
=(1+iu) (33b)

We want to evaluate g of Eq. (28) when
I
vR+vs

I
» l.

We can repeatedly integrate Eq. (28) by parts to get an

asymptotic expansion

which approaches zero as 50 approaches zero.
Thus, we conclude that the single-photon pumping by

the TH field and the three-photon pumping by the laser

field strongly cancel at small b,p, leading to a greatly re-

duced probability of populating
I

1&. This same con-

clusion was reached in the earliest treatment by Payne,

Garrett, and Baker of this effect' and in the more de-

tailed analysis of Payne and Garrett. ' In the perturbation

treatment the effect is easily described in a physical pic-

ture wherein E ( r, t) (the laser field) and E3„(r, t) (the

third-harmonic field) each drives the transition from
I

0&

to
I

1& with equal Rabi frequencies, but the effects be-

come 180 out of phase as the resonance is approached.
The more recent and more simplified perturbation treat-
ment of Jackson and Wynn' exhibited the same effect.
We return to this point again below, where we obtain the

total line shape for MPI near the three-photon resonance.

C. Ionization probability: line shapes

for n-photon ionization and third-harmonic photon output

With the above expressions for E3 ( r, t) and a i ( r, t) we

now consider ionization in the presence of both the TH
and laser fields. Let C„(r,E, t) be a continuum amplitude

of the atom in state
I
E,p &, where Hp

I
E,p & =E

I
E,p &.

The continuum states, along with the discrete states, are

contained in 1=~L'
I

n &(n
I

and are involved in the im-

plied integration over continuum and sum over discrete
states. We have simply labeled the continuum states dif-

ferently here to designate continuous energy eigenvalues.

The normalization is such that (E,p I

E',p' &

=5(E E')5„„,wh—ere the p quantum numbers label an-

gular momenta. The explicit expression for C„(r,E, t)

analogous to Eq. (7) is

(36)

C„(r,E,t)=(Ep IS(r, t) IO&

=(i&)-' f, «i&Epl Vr{r ti)10&+('&) f,«i f, '«2&E pl Vr(r ti)Vr(r t2}10&

+(i') f dti f dt2 f dt's(Ep I
Vr(r, t)Vr(r, ti)Vr(r, t3) IO&

+(iR) f dti f dt's f dt3 f dt4(E p I
Vr(r ti)Vr(r ti)Vr(r t3)Vr(r t4}

I
o&+ (35)

Near the three-photon resonance the dominant terms are those already considered which are near resonance between
I
0&

and
I

1 & either with one TH photon or with three laser photons. We will assume here that one more photon can ionize

I
1&, but it is trivial to generalize the results to situations where two or more photons are required to ionize

I
1&. The

first- and third-order terms adiabatically follow the perturbations and lead to no final-state ionization (except for the

third order with absorption of one laser photon plus two third harmonics —the latter, being second order in a weak field,

is neglected). Thus, if we retain only the second- and fourth-order terms in Vr and in these if we keep only terms with a

near resonance between
I
0 & and

I
1 &, we get

C„(r,E,t)=(i') f dti f dt2(E p I
Vri(r, ti)

I
1&&1

I
V„(r,t, )

I
0&

g t) t2 f3 A A A

+(iA) f dti f dt's f dt3 f dt4(E p I
Vri(r ti}

I
&& 1

I
Vri(r t2)Vri(r t3}Vri(r t4)10& .

In deriving this expression, the unit operator was inserted into Eq. (35) at the positions where
I

1& (1
I

appears in Eq.
(36). However, all other terms which result from the expansion of the unit operator are far off resonance and are negli-

gible as compared to the highly resonant contribution resulting from the
I

1 & ( 1
I

term. Thus, only the latter is retained.

Also, in the second-order term the product Vr i(t'}Vr 2(t") was neglected because it corresponds to absorbing a laser pho-

ton first so that no near resonance is achieved. We can rewrite Eq. (36) as
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T

Cz(r, E,t)=(i') ' f dt)(E,p I Vr)(r, t))
I

1& (il) ' f dt's(1 I
Vrz(r, t2)

I
0&

t( t2 t3 A A A
+ (iA') f dt2 f dt3 f dt4&1I Vri(r tz)Vr)(r t3)Vri(r t4)10&

(37)

For brevity we have given a word description of the matheinatical steps that lead from Eq. (36) to Eq. (37). As before,
the expression (37) has a simple physical picture which results from the steps just described. The first term inside the
parentheses corresponds to the amplitude for excitation from

I
0& to

I
1& by a TH photon; the second term represents

the amplitude for excitation of the same level by three laser photons; and the term multiplying the material in
parentheses leads to promotion by a single photon from

I
1& to the continuum

I
E,p &.

Each of the terms within the large parentheses was evaluated above in the analysis of Eq. (10). When b,k « 3k we ob-
tCll n

e ' exp[ 3kp —/b(1+2iz/b)]
p b,o( 1+2iz Ib )

)&(iA) ' f A3(p, p, t' Iz—
I
Ic)e '~" ~'~ 'e ' (Ep

I
Vr, (r, t')

I
1&I —, dt', (3g)

where, from the previous analysis,

2z Ak b

b
'

2

1 i ~b 2z 6kb
(1+2izlb) 2~O

(39)

and we had defined a =2m.
I
Mo ) I

co„N/Pic. We note here again that the first term in the expression (39) represents the
contribution to the continuum amplitude through three-photon excitation to the resonance level and the second term is
that from single-photon excitation by the TH field. The probability of ionizing an atom at r sometime during the laser
pulse is

pr(r) = g f dE
I
C&(r,E, oo )

I

2

exp[ gkp Ib(1+—4z Ib )] 1 2z b, kb
(1+4z /b ) 4g g2

X g f dE f 0 (3,ppt')e '~"'e ' M(E,p;l)E„(p,p, t')dt'

f1*(P P ~~) 4ig(t") ' e o Me(E .1)EO(0 P
0

(40)

where M(E,p;1)= (E,p I 4ry I
1 & is the dipole matrix element from

I

1 & to
I
E,p &, the continuum at E. Consider the

dE =A'dcoz integration. When co@—coo —4' is much larger than the laser bandwidth, the contribution adiabatically fol-
lows the laser field and gives no final-state contribution. Thus, the dcoz integral is carried out between
coo+4o) —5 &coE &coo+4co+5, where 5» laser bandwidth but is small compared with the frequency range over which
M(E,p;1) changes appreciably. Thus, if M(E,p;1) is slowly varying,

f dE IM(Es il)
I

exp[)'(~E ~0 4~)(t' t")]=&I&@4~+~0)) I~y I
1&

I f
=-2vrR

I (R(4co+ coo),p I ky I
1 & I

5(t"—t') .

This decreases sharply for (t —t')-ir/5. Thus, it behaves
like a Dirac delta function in time for functions like Q3
and

Eo(0,0, t') exp[4ig(t') ] .

Accordingly, we identify in Eq. (40) the conventional ex-
pression for the ionization rate yi" for photoionization
out of state

I

1 & by a single photon:

7,'"(O,O, t')

2R y I
())i(co)+co),)u

I
y I

1& I
'[E'(o,o t')]'

g I
&A(~+co)),p I ~, I

1& I
'~(p, p, t» (41)

C

where W(p, p, t) is the photon flux at the focal point and
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yt"(o, o, t') is the ionization rate of state
~
I) at the focal

point. Then, using the delta function property in the
above approximation where the continuum dipole matrix
element is a slowly varying function of E, we get

exp[ 8k—p Ib(1+4z Ib )]
(1+4z'/b')'

() 2
~ du 1

M (UR, us) =vR —~ (1+u ) (1+iu)

—
luRg (Q, UR +VS)

du 2
I ~AD+TH I (46)—"(1+u )

I 2z Ak b

b
'

2

2

n, o,o, t' 'y,"'
O, O, ~' dt'.

The number of ions per pulse is

(42)

All of the information about the line shape for the ioniza-

tion is contained in M' '(vR, us). Thus, we examine the
line-shape function in some detail.

Note that we have written the first term of the complex
function inside the absolute value signs as ML since it
coines from the three-photon process involving laser pho-

tons, and the second MTH, is contributed by the one-

photon excitation process involving the TH field. With

reference to Eq. (30) or (46) we see that neglecting the ef-

fect of the TH field is achieved by setting

UR g (u, uz +vs ) =0 in Eq. (46) which gives a function

Nt 2~N f—— dz f dppPt(r)

Nbw f"dt yl"(o,o, t)
~
n, ( ,0,0)t~

'
16go o

2

(m) 2 du
Mp (vR, us) —UR (1+&2)m+2

(2m +2)!
22m ~2 [(m +1)(]2

(47)

X
du 6kbI u,—"(I+u )

(43)

Nb

2

where u =2z!b. Equation (43) is easily generalized to the
case where two or more photons are required to ionize

~

I). Let yt '(O, o, t) be the ionization rate for
~
1) in the

case where m photons are required. Equation (43) in this
case (m-photon ionization) becomes

In our earliest treatment of this problem' we showed

that, as the resonance is approached (i.e., as vR becomes

very large), Nt becomes much smaller than would be ex-

pected if the effect of the TH field were neglected. Here

this property is much more explicit. Note again that

when
~
uR+us

~
&&1 we can repeatedly integrate Eq. (28)

by parts to get the asyinptotic expansion of Eq. (34).

Thus, as the resonance is approached, where vz becomes

very large (vR is inversely proportional to the detuning

b,p), Eq. (34) can be used in Eq. (46) with the immediate

result that the two contributions to the ionization signal

cancel exactly to first order in 1/(vR+us), and

du Ak b
—"(1+ii') M' '(uR, vs )~ vs

vz+ vs

'2

MI) (UR, vs)

2'IrNlv M(pg)( )
(m +3)bi(:

X f dt () 't (0 0 t)
~

II3(0.0 t)
I

') (45)

where

In the discussion of Sec. II B we explored the behavior of
the expression l(2z/b, bk bl2) of Eq. (39). Here we ex-
tend this discussion to see in more detail what the line
shape for MPI should be in the presence of the cancella-
tion effect involving the TH field. In terms of the re-
duced variables vR =Kb/26p and vs ——(b.kpb)I2, intro-
duced earlier, we write the number of ions per pulse as

r

3
4(1—vs) m+ 2

X l+
vs2 m +2

(48)

We see that the reduction in the ionization signal due to
the TH field can be very large indeed. Note that

vz ——~b/2ho is proportional to the gas number density N
through ~. Thus, at low pressure the asymptotic expan-
sion (34) will not be well represented by the first terms and
the cancellation is not very effective. However, as N in-

creases, the cancellation between the two terms that con-
tribute to the ionization becomes more and more effective.
In the region which is relevant to the experimental studies
on xenon,

~
uR+ us

~
&&1, and the line shape (i.e., number

of ions at detuning b,p) for an (m +3) photon ionization
signal takes the form
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Mp (uii us)us 4(1 us) m + 2
(m) 2

1V 1+
(m + 3)ba-' (uR+ v, )' m +2

f"dt() ~™(o,o, t)
I
n, (o,o, t) I')

3
+Niv b(2m +2)! m+ —,

22m+2 3 i p p us+4(1 vs)
2

dt(yt '(o, o, t)
I Q, (o,o, t)

I ) (49)

Typically, for a strong transition, x(cm ') —10' P, where
P is the partial pressure in Torr of the atomic species
which exhibits the three-photon resonance. If b =0.2 cm,
a pressure of P & 0.2 Torr may be required in order for the
limit in Eq. (48) to be approached before hp becomes too
small for our treatment of the resonance to be valid. This
conclusion is arrived at by noting that

I
u~+us

I
&20 is

required for Eq. (34) to be valid [Eq. (34) uses only the
first term in the asymptotic series]. Thus, b/2 must be
large enough for

I uii+vs
I

&20 to be achieved while

I
bp

I

&5X!0"/sec. As we described above, Nt is greatly
reduced near the resonance because E(r, t) (the laser field)
and E3„(r,t) (the TH field) are driving the transition with
equal Rabi frequencies, but the effects are of opposite
sign, i.e., 180' out of phase. A nonperturbation extension
of these results is required to generalize such a statement
to exact resonance.

In our earlier theoretical studies on this subject, we
described the suppression of the resonant enhancement of
the ionization process as a cooperative effect' ' since (a)
individual atoms are coupled together by the radiation
field with a long-range r ' functional form, (b) the effect
builds coherently with number density N, and (c) this
language provided a connection with superfluorescence
and other similar phenomena in which strong interatomic
interactions influence the physical process of interest. We
use the term cancellation effect here simply because the
physical picture is better described by this choice. Jackson
and Wynne have chosen to call it an interference. ' We
will return to this point in our final comments.

To facilitate tracing of the line-shape function
M' '(u~, us), we note that analytic function theory can be
used to derive a nuinber of useful properties of g(u, v).
We have demonstrated some of these properties in Appen-
dix B. Equations (46) and (49) tell us that Nz is strongly
suppressed on either side of the resonance. On the ho &0
side of the line as one moves away from resonance, NI al-
ways decreases as

I
bp

I
becomes larger. However, on the

4p & 0 side of the line Nt initially increases as
I

b,p I
be-

comes larger. The function M' '(vz, vs)/vii is bounded
above for any vx or vs. Consequently, for large

I

b,p I
the

value of M™(uz,us) approaches zero for either sign of
uti. The fact that NI initially increases as vx decreases
from a very large value, while still approaching zero as
vR~O, implies that M' '(vii, us) has a peak on the blue
side of the resonance.

For completeness we note that a similar expression for
the number of TH photons that exit the system (at large z)
can be obtained if we note that the number of photons per
(cm sec) is equal to cE 3„/(4m5r&, ) and we use Eq. (27) for
Eq+ (r, t), where Ei„(r,t)= —,'(E3+„+E3„). This gives zero
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FIG. 1. Ionization line shape M"'(vz, vz) vs vz
' ——250lab for

vq ——0. This would correspond to a situation where there was no
buffer gas and the pressure of the target species is relatively low.
The phase-matching curve for the corresponding third-harmonic
signal is shown for reference and is normalized to have the same
peak height as M"' so that an easy comparison can be made.
This is also done in Figs. 2 and 3. Ionization near its maximum
is totally dominated by absorption of one third-harmonic photon
plus added photons to ionize, but M'" peaks at smaller ho due
to the fact that even though E3„ is larger at increased h0, the de-
tuning from resonance is also larger and the signal is corre-
spondingly depressed.

for vti & 0 and for uz & 0,
2 3

I u~ I

'
I
ut'i+ us

I
e

6)c

03 OpO, t dt (50)

where Nr is the total number of TH photons per pulse.
We will apply the results of the present analysis to cal-

culate line shapes for four-photon ionization near a three-
photon resonance, and the line shape for the TH photon
output. First, we note a feature of the above treatment
that was mentioned in the course of the discussion.
Namely, the addition of a positively dispersive buffer gas,
which is very nonresonant for frequencies ru or 3', will

simply modify X(co) and X(3cp). Note particularly that in
Eqs. (31a) and (31b) the presence of a buffer gas will
modify the bko term but will leave ~ unchanged. Thus,
the theory is applicable directly to the situation involving
a nonabsorbing buffer gas, with apporpriate modification
of the reduced variable vs.

In Figs. 1—3 we show graphs of the ionization line-

shape function M"'(vx, vs) as a function of vii
' and the

(normalized) curve for the corresponding TH signal for
three different values of us ——(bkp b)I2. Here us ——0 cor-
responds to no buffer gas, vs ———1 corresponds to a mix-
ture of target gas plus a proper amount of positively
dispersive buffer gas to yield the corresponding hkp value,
and finally vs ———2 corresponds to even higher number
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FIG. 2. Ionization line-shape function M" '(u~, vq) vs

vg =26plKb for vz ———1. Here vz ———1 corresponds to adding
a proper amount of positively dispersive buffer gas which
enhances the third-harmonic signal and moves its peak to small-
er hp, thus enhancing M"'(u&, u&) by almost a factor of 3 over
the vq ——0 case.
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density of a positively dispersive buffer gas.
In order to understand the shape of M' '(U~, vq), we

note that Eqs. (B6) and (B8) determine g(O, v). Since
&u(u' —u)d

g(u, u)=g(O, U)+ J (1+iu')
we can write for

l
u

l
«1, (1+iu') =exp( —2iu').

Thus, for small
l

u l,

g(u, v)=g(O, v) ie "—"(e'" '"—1)/(v —2) .

When 0 & U & 3,
l g (u, v)

l
increases nearly linearly as u in-

creases; while, when u &0,
l
g(u, v)

l
initially decreases

linearly and approaches a small value by u = —1. Station-
ary phase occurs for U =2, and the relationship
g(u, 2)=g(0,2)+u remains fairly accurate at positive v

for
l

u
l

&0.5. When
l

u
l

& 1 and 0&v &3, the value of
l g(u, v)

l
is close to

l g ( ao, U)
l

= 2m. u exp( —v)

and the effect of the TH field is larger than the three-
photon term but no longer 180 out of phase, as is the case
near the resonance. Consequently, M' '(Uz, us) has a v~
dependence somewhat similar to that of the TH signal.

When a substantial amount of a positively dispersive
buffer gas is added so that with a long focal length lens

l
Us l

»1 but Us &0, the shifts and widths become small-
er, the reduction in signal is much less due to the smaller
shifts and a resulting enhancement in E3, and the ioniza-
tion signal starts to have a line shape that looks even more
like the phase-matching curve for the TH signal. In par-
ticular, in the latter case, if F, the focal length, is in-
creased sufficiently the ionization signal becomes sharp-
ly peaked with a cutoff for b,o = —Kb /2Us
=2~

l
Po~

l
co,N/(ficbko) (independent of F). An exam-

ple of this type will be discussed in Sec. IV.
In Sec. III we show that within the type of dominant

resonance treatment given here there is no residual peak at
the unperturbed resonance when ~b/2 && laser bandwidth
or a.c. Stark shift. However, the nonlinear susceptibility
has a small contribution from further off-resonance levels
which has been ignored here, and this contributes an un-
cancelled contribution to E3 which may leave a small
residual peak at the resonance. Thus, e.g., as compared to
the xenon 6s study, a residual peak might be more likely
to appear if the effect were studied for the 4s level in ar-
gon where the fine-structure constant is smaller and the
uncancelled part of E3„ is more significant.

The cancellation of the effects of E3 and three-photon
excitation on the resonance at first seems strange since no
TH light exits from the cell. However, one must
remember that at z =0, E3 for small b,o is large, but at
larger z the m. phase change associated with focusing the
light leads to destructive interference. In fact, in the focal
region, E3„ is also significant for b,o &0 (i.e., the red side
of the resonance) and could contribute to the ionization of
an impurity with a one-photon resonance on the red side
of the resonance. On the blue side of the resonance, im-
purities with a one-photon resonance which can be ionized
by a single additional photon from the laser should exhibit
a phenomenal enhancement in resonance ionization signal
due to two-photon ionization involving one TH photon
and a laser photon. Such effects are presently under
theoretical and experimental investigation by the present
authors and some colleagues. '

FIG. 3. Ionization line-shape funtion M' "(v&, uq) vs
vg =25p/Kb for uz ———2. Here M'"(u~, v~) is enhanced by al-
most a factor of 10 over the vq ——0 case and the shape of the ion-
ization function is much closer to that for the third-harmonic
phase-matching curve. With vq & —2, the third-harmonic signal
will be enhanced even more than a factor of 10 and will peak at
even smaller values of 2hp/~b, thereby yielding even larger
enhancements to the ionization signal.

III. HIGHER-ORDER APPROXIMATION
TO INCLUDE EXACT RESONANCE

In Sec. II we derived the line shape for the TH field and
for the n-photon ionization signal, but we carefully avoid-
ed application of the perturbation method in the region of
zero detuning from three-photon resonance. Indeed, one
cannot argue for the appropriateness of a formulation in-
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volving the nonlinear susceptibility on resonance, and it is
not evident that strong coupling effects can be handled by
replacing denominators by terms involving a complex
width. ' Our initial short treatment of the present prob-
lem' did not involve the perturbation limitation of Sec.
II, though the geometry was treated approximately and
the analysis was limited to concentrations where

l
kkp b/2

l

=
l

Us l
« 1. Nevertheless, the result for the

number of excited atoms at time t [Eq. (9) of Ref. 12] did
approach zero as

l bp
l
~0. Our subsequent more de-

tailed Bloch equation treatment of the problem for un-
focused beams, ' with proper account of the geometry and
pulse characteristics, again gave complete cancellation on
resonance. In this section we also follow a Bloch equation
approach to analyze the present focused Gaussian beam
problem. We generalize the earlier treatment and solve
the focused geometry problem in an ab initio manner to
allow the line-shape determination to pass through the
resonance. We include not only the effect of a buffer gas,
but we also deal with the linewidth and shift effect in the
region near the resonance.

We follow along lines similar to those in Ref. 14 to
derive equations of motion for the amplitudes ap(r, t) and
a&(r, t), though here we make the conventional choice of
defining

Z(p, z, t) =ap(p, z, t)a~(p, z, t)

and obtaining an equation for Z(p, z, t) which contains an
integral over the TH source term.

Without belaboring the details of a standard procedure,
we note that within the usual rotating-wave approxima-
tion and with the inclusion of terms through third order
in E but only first order in E3„, we get equations of
motion for ao and a

&
in a two-state plus ionization contin-

uum model' as was done earlier. ' Substitution of the ex-
panded form of P (t) from Eq. (8) into the time-

dependent Schrodinger equation gives

H 3 ( r, t)= e&X~(3')E3 (r, t)

+ e ' '
Mp ~Z(p, z, t)+c.c.

where

(&)= e&X~(3c)Ep3 (r, t)+ H3 (r, t), (54)

b,
' (t —z/c)=(iA) f (n

l
Vti(r, t)Vtt(r t )

l

n)dt'.

(53)

The spontaneous emission rate out of state
l

I ) is y, p.

In these equations VI2 is the perturbation due to the TH
field which again must be derived from the spatially dis-
tributed polarization H(r, t). However, since we want to
consider the resonant situation, it is not feasible to write
the polarization in the same manner as in Eqs. (15)
through (18), since the j=1 term for X(3tp) of Eq. (18)
diverges as hp~0. In Sec. II, a&(p, z, t) was broken into
one part due to three-photon excitation by the laser field
and a second part due to one-photon excitation by E3 .
The part due to E3„was incorporated into X(3to)E3„(r,t)
and contributed to the phase velocity v in Maxwell's equa-
tions. But in the present situation we cannot write

a~(p, z, t) as a term proportional to E3„plus a second sirn-
ple term. Instead we leave all of the contribution to the
polarizability involving a

~ (p,z, t) as a source term by
separating off the j=1 term in the expression for X(3tp).
That is, we omit the term

2N
l
Mp i l

(cp& —cop)/IR[(tp, —cop) —(3') ] )

from Eq. (18) and define X&(3') as the sum of the remain-
ing nonresonant terms. Thus we now write the 3~ fre-
quency component of the polarizability in a manner
analogous to Eq. (20a), but here we subdivide the contri-
butions into a form

at
—ap(r, t)=(i') '(I

l
Vt2(r, t)

l
0)a~(r, t) Z(p, z, t)=ap(p, z, t)a&(p, z, t) . (55)

and

+(iA') —'(l
l
V„(r,t) l0)

+i b,p(t z/c)a p( r, t)—
ihot+ie Q3( r, t —z/c)a

~ ( r, t) (51)

Thus, we treat the contributions to 9 (r, t) from all states
except l0) and

l
1) just as they were done in Sec. II.

Here Xt(3') can also have added to it a nonresonant con-
tribution from a buffer gas.

We let U, =c [1+4~X&(3')] ' and again solve
Maxwell's equations as was done in Sec. II. Source terms~ (&) ~ (1)
now become p= —V. &3 and J =a&3 /at. This re-
sults in an equation for E3 similar to Eq. (21). In the
paraxial approximation we have, as before,

at
—a~(r, t)=(iR) '(I

l
Vt2(r, t)

l
0)ap(r, t)

+(ig)-'(l
l
V„(r,t)

l
0&

+[id, ', (t z/c) (y& +y]p)/—2]a (r—, t)

+i 03(r, t —z/c)ap(r, t), (52)

where the a.c. Stark shift 6'„which we will take to be in-
dependent of p and z, is defined as

2

E3 (rt)=
z Jc lr —r'l

Thus, if we again define

E3 (r, t)= —,[E3+ (r, t)+E3 (r, t)],
then in the present case

U(

(56)
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2
eyNco, Mp )

E3+„(r,t) =
C2

in which case Eq. (57) for E3„can be reduced to

e&2vrico, NMo i

/

r —r'/
Z p', z', t— /

r —r'[

Xexp i ( co, —coo ) t—
U)

(57)

g exp —3' t— 3p

w (1+2iz/b)

with E3 the coinplex conjugate of (57).
If we neglect the p and z dependence of the a.c. Stark

shifts b, '„, the solution to equation of motion for Z(p, z, t),
which follows from Eqs. (51) and (52), can be written as a
product of a p- and a z-dependent function. That is, we

can write

1
Z(p, z, t) =

(1+2izlb)

Y z', t—
Iz —z

X exp[3iz'(k —oi/v, )]dz' . (59)

From Eqs. (51) and (52) one readily obtains an equation

for Z(p, z, t) containing a matrix element for Vi2 (i.e., the
TH field). We utilize the result of Eq. (57) in this matrix
element and convert the product

Xexp i (3kz b,ot)— 3p

w (1+2iz/b)

X Y(z, t) (58)

(i') '(1
~

V (r, t)
~

0)Z(r, t)

into an integral expression as was done in Ref. 14. The
resultant equation for Z(p, z, t) can be made independent

of p, by the substitution of Eq. (58), to yield

BY(z, t) =i Ibo+I1s(0 0 t —z/c)+i [yo+yr (0,0, t —z /c)] 2/] Y(z, t)
~ (m)

z z —z I

z'exp —3i z —z' k —co vi Y z', t — +
OO U)

i 0'(0,0, t —z/c)e

(1+2iz/b)
(60)

Equation (60) is linearized in Q3 [i.e., we assume
~
Z(p, z, t)

~

&&1 and
~
ao(p, z, t)

~

=1], the identity of Eq. (26) was used

for Q3(r, t —z/c), and we have approximated 4' and yl
'

by their values at beam center. Also, we have defined

For three-photon transitions in inert gases, power densities ) 10" W/cm are required to cause a break-

down of the linearization approximation. The type of approximation involved in Eq. (60), which allows for either

three-photon excitation by the laser field or one-photon excitation by the TH field (i.e., the integral term) is described in

more detail in Ref. 14. The number of ions generated in an (m +3) photon ionization process is

NI( )=2~N dz dpp dt r(I )
O, o, t Z p,z, t 2 (61)

The neglect of the p and z dependence in the a.c. Stark
shift will not significantly modify the diffraction effects

in the propagation of E3 if

b,,(0,0, t z/c)b/2c « 1 .—
When the latter condition is strongly violated, Eq. (60) is
no longer a reasonable approximation and Y depends on
both p and z. It is important to note that for a given laser
output 6, varies as F, while b ~F . Therefore, chang-
ing to a longer focal length lens will not restore the validi-

ty of Eq. (60) if the laser output is too high for the origi-
nal lens. Three-photon transitions between the ground
state and the lowest s states of inert gases have
b,,(0,0,t)-(a, )Io, where 6, is in sec ', Io is the power
density at the focal point in W/cm, and a, —1 to 10.
Thus, for Io &5X10' W/cm we have b,,b/2c &( 0.8 to
8)b. Except for very long focal length lenses, the neglect
of p and z dependence does not affect propagation. For

five-photon ionization near three-photon resonances in

rare gases, the ionization comes from the regions of very

highest power where 6, is indeed nearly equal to
b,,(0,0, t —z/c). Consequently, we believe that the ap-
proximations involved in deriving Eq. (55) are sufficiently
good to warrant a careful studv of its solution.

Before proceeding to obtain properties of the solution to
Eq. (60) we note briefly that this equation is very similar
in form to that found in our first treatment of this prob-
lem, i.e., Eq. (3) of Ref. 12. In the latter equation,
I, /b =0 K, 4~ ——h„and 3coL —co, =Ap in the present
notation, and the transformation (58) above causes the
present definition of the dependent variable Y to differ by
(1+2iz/b) ' from the earlier form. " Thus, the equations
are the same but for the TH source term inside the in-

tegral of each integro-differential equation. These differ
due to the more approximate treatment of the beam
geometry in the earlier study. Note, however, that in the
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i((. =b 0+i y o/2 (62)

and

region of largest contribution to the integral, where z'=z,
the integrals in these two equations also become the same.
Since the physical content in the earlier treatment is the
same as in the present study, we expect this result. The
physical picture for the resulting diminution of the upper
state probability is clearer here where the cancellation ef-
fect was illustrated in Sec. II. We now consider solutions
of Eq. (60) above in a form which still exhibits the origin
of the cancellation, as was shown in Sec. II.

In order to solve Eq. (60) we let

g, (r z/—c)=b,,(0,0, t z—/c)+iyl '(0, 0, t —z/c)/2 .

We define the function R (z, t) by

Y(z, t) =e ' R (z, t),
where

(63)

(64)

t —z/e
g, (t z/c)= —f a, (i z/c—)dt'= f Ai(r)dr,

and in the last step we use b, ((r)=0 before the laser is
triggered (i.e., r~0). We note that go(t —z/c) has the
property that if we replace z by z' and t by t —(z —z')/v,
[we also use z'(1/c —1/vi ) =0], we get go(t —z/c) again.
We obtain

T

()R (z, t) 2
~ / / z z=ihR (z, t) —v exp[ 3i (—z —z')(k —(v/v()]R z', t — dz'

at 00 U)

03 (0,0, t z /c—) .&„, ,(( (, ,«}
(1+2iz/b)

(65)

We Fourier transform both sides of Eq. (65), letting

W(e)= e'"' ' '0 (0 0 t —z/c)e '~" ' 'e ' dt
0

and

Q(z, e)= f e'"R(z, t)dt .

Following the transform we differentiate both sides of the transformed equation with respect to z and obtain

(66)

(67)

()Q (z, e) llC g/(e) . 3(k —(v/v ( ) 4+3i(k —(v/v, ) Q(z, e)= i —e"* '
@+6 e+ 6 (1+2iz/b) b (1+2iz/b)

(68)

After integrating Eq. (68) and rearranging, we find Q. By carrying out the inverse transform,

R (z t) de ) (E(t —z/—c)8' e

2'
1 . orb/2

(1+2iz/b)'
eb 2z ab/2 eb

2 b' 2c
(69)

1 . ab/2
(1+2iz/b) e+ Z

where g (u, v) is the same function defined by Eq. (28). Thus,

igo(t —z/c)

Y(z, r) =- f de 'e
2'

eb 2z (rb /2 eb
g —+VS-

2c b '~+& 2c
(70)

The reader should note the similarity between the function
I(2z/b, ab/2) defined by Eq. (33a) and the quantity in
square brackets above. Indeed, we have a solution to the
integral equation which again exhibits the cancellation
property in an explicit form.

We now consider two limiting cases of Eq. (64). First,
note that w(e) has its peak location determined by the
magnitude of the a.c. Stark shift and that the width of
this peak is dictated by the largest of the a.c. Stark shift,
the laser bandwidth, and the ionization width. Our first
limit is

~

Z
~

&&
~
e» ~, where e,„ is the largest e for

which w(e) is appreciable. In this situation, everywhere
that e+b, appears, the e can be neglected. Also, if

~
e,„~ b /2c & 1 we obtain

Q3(0,0, t —z/c)
Y(z &)

' '
e 3ig(t —z/c—)

1 i~b/2 2z vb/2
X g, +VS

(1+2iz/b) g b

(71)

Combining Eqs. (59), (70), and (61), we obtain Eq. (45) as
we should since this is the adiabatic limit where our ear-
lier analysis is valid.

Our second limit is to show that once (rb/2 »
~
e~» ~,

as b,o +0 Eq. (A9) remains va—lid. Clearly, when
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~
kp

~

(
~
e~,„~ and Irb /2 &&

~
e~,„) the integral over e all

comes from regions where

ttb /2

a+6
If

~
vs

~

is not extremely large, we will also have

(rb /2 eb+vs — ))
(e+Q) 2c

and an asymptotic formula like Eq. (34) can be used for g.
Consequentially, as Ap~0 we obtain from the asymptotic
formula and Eq. (42)

m+3 b)~2

(2m +2)!
X 22m+2 [(m + l)(]2

m+ —,

Us+2( I —Us)
m +2

(72)

which is the U2(~ ao limit from Eqs. (32) and (A9). Note
that in this limit there is no peak at the position of the
three-photon resonance.

There are two approximations which we have made that

may result in a residual peak at the resonant frequency
even in this limit of )rb/2»

~

e,„~ . The first has to do

with neglecting all of the nonlinear susceptibility except

for the resonant terms. The part of E3„due to the

neglected part of the susceptibility is not cancelled, and

there is a residual, nonzero (but small), TH field in the fo-

cal region which can drive the transition. This residual

resonance will typically be several orders of magnitude

smaller than the signals seen by Glownia and Sander'

when the three-photon transition is pumped by counter-

propagating circularly polarized beams with excitation
only being possible (due to angular momentum selection
rules) by absorption of photons from each of the counter-

propagating beams. In the latter situation there is no TH
field, even in the focal region, to cancel out the three-

photon pumping of the resonance. It may also occur that
at very high-power densities where b.,(0,0,t)b/c » I, the
effect of the position-dependent phase of the atomic di-

poles due to the a.c. Stark shift will distort the propaga-

tion of E3 so that the one-photon Rabi frequency due to

E3 and the three-photon Rabi frequency due to the laser
do not tend to cancel on a point-by-point basis. Thus, at
power densities as high as Ip) 10 W/crn for F=5 cm
and d =0.1 crn, the resonance may be increased relative to
the ionization predicted in the phase-matched frequency
region. This power-dependent resurrection of the reso-
nance, if present at all, would persist for longer focal
length lenses as well since 5,(b/c) » I will also be true

for other focal lengths. However, such effects are expect-

ed to be very small as compared to that which occurs
when a counterpropagating beam is present. We discuss

this briefly below.

IV. UNCANCELLED THREE-PHOTON
CONTRIBUTION TO RESONANCE EXCITATION

IN THE PRESENCE
OF A COUNTERPROPAGATING BEAM

V(r, t)= —8'~[E+(r, t)+E (r, t)+E3 (+)(r, t)

+E3 ( )(i', t)] (73)

where E+ is the laser field propagating in the positive z

direction and E is the laser field propagating in the neg-

ative z direction. E3 (+) is the TH field propagating in

the positive z direction and E3 ( ) propagates in the nega-

tive z direction. Let

V, (r, t)= k~[E+(r, t)+E —(r, t)] . ('74)

Now the three-photon Rabi frequency is given by' ' the
low-frequency part of the three-photon terms involving

V„, i.e.,

In an elegant experimental test of the effect of the pres-

ence or absence of a TH field on resonantly enhanced

five-photon ionization of xenon near three-photon reso-

nance between the ground-state and 6s levels, Glownia and

Sander' recently carried out an experiment in which

counterpropagating circularly polarized laser beams were

used to show that the three-photon resonance between the

ground state and 6s levels of xenon was readily apparent

in the absence of TH generation. The TH signal was

missing in the latter situation due to the necessity of ab-

sorbing from both beams in order to satisfy EJ=1, in the

J =0 to J=1 transition, and this precludes phase match-

ing. Their result was completely consistent with the

present theoretical picture. ' ' However, even more re-

cently, Jackson and Wynne' have found experimentally

that with counterpropagating plane-polarized beams the

same resonance is greatly enhanced relative to a single

beam with twice the laser power. This observation is also

precisely what is to be expected within the present model.

We give a brief description of this effect here. In a

separate study we obtain analytic results for the com-

plete line shape and signal strength for the counterpro-

pagating unfocused beam geometry of arbitary relative

beam intensities, with detailed comparison with unfocused

beam experimental results. '

To see the effect on the resonance counterpropagating
beam of the same frequency co as that of the original beam

(the original plane-polarized beam paritally or totally re-

flected back on itself), note that in the latter situation the

perturbation in Eq. (4) becomes

I

ie Q3(p, z, t z/c)=(iA') 3 f—dt' f dt" (0~ Vt((r, t)V ( tt')Vr(rt, t(")
~

I) . (75)
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But here,

Hoi'~~V
( )

'tt—oi/

that appears in the expression for Q3.
exp[i to(t + t'+t")] part of the term involving

E+ ( r, t)E+ ( r, t')E+ ( r, t" )

The

is all that contributes to E3 (+) and at the resonance the
corresponding part of 03 and the one-photon Rabi fre-
quency due to E3 (+) cancel each other. Correspondingly,
the part of 03 involving

E (r t)E (r t')E (r t )

is solely responsible for E3 ( ), and the part of the one-
photon Rabi frequency due to E3 ( ) again cancels with
the related part of 03 (these becoming equal but 180' out
of phase near the resonance). However, with counterpro-
pagating beams there are six terms in A3 which involve
the absorption of photons with both directions of propa-
gation which remain uncancelled, and a large portion of
the three-photon pumping of the resonance remains. That
is, these terms [e.g., E+ ( r, t)E+ ( r, t ')E ( r, t")] provide
an excitation route from

~

0) to
~
1) that is not offset by

a corresponding one-photon driving term involving the
TH field, leading to reappearance of the three-photon res-
onance in counterpropagating beam geometries. The
reader should note that some of the same type of effect is
present if the effect is studied with a single laser beam
having a beam divergence much larger than the diffrac-
tion limit. Thus, a laser with poor wave-front coherence,
so that it has a low conversion efficiency relative to the
power densities generated near the focus, could leave a sig-
nal at resonance which is disproportionatly large corn-
pared with the ionization signal predicted on the blue side
of resonance. We defer more quantitative treatment of the
uncancelled three-photon pumping component in a coun-
terpropagating geometry to later papers.

V. COMMENTS AND CONCLUSIONS

The strong influence that TH fields can have on near-
resonant three-photon excitation of an optically allowed
state and on MPI in regions of phase matching near such
resonances is quite dramatic with Surprising features in a
number of the aspects of the phenomenon. It is useful to
surnrnarize the results of the present and earlier theoreti-
cal studies of this problem taken in the context of avail-
able experimental results.

First we note a very important point about the cancella-
tion phenomenon. The effect involves a very exact cancel-
lation between two resonant or near-resonant pumping
terms, each of which can be rather large. Thus, small
inaccuracies in a description of the phenomenon might be
significant. In order to be able to make meaningful corn-

is made up of the sum of two terms, one due to E+, the
beam propagating in the positive z direction, and the other
due to E which propagates in the negative z direction.
Thus, there are eight terms in the product

Vt i( r, t) Vt, ( r, t') V»( r, t")

parisons with experiments, we have treated the problem
very generally. That is, we find that with a very nonideal-
ized pulsed laser having finite bandwidth, arbitrary time
dependence, and Gaussian spacial beam intensity, and
with a properly described spacial intensity profile through
the focal volume, the cancellation behavior still persists—
even at appreciable number density and/or in the presence
of a large buffer gas concentration. Thus, we have shown
that this is not one of those effects which, though strongly
present for an idealized laser, washes out in a realistic ex-
perirnental situation. This is in agreement with experi-
ments wherein no ionization signal is observed at three-
photon resonances in xenon, krypton, and argon studies,
focused and unfocused, with and without buffer gases,
and with dye lasers of vastly different performance (being
pumped in various instances by nitrogen, XeC1, and YAG
pumps)11, 15,20 —22

Since we have formulated a rather general treatment of
the present problem, the analysis was unavoidably lengthy.
However, the treatment has revealed considerable detail
about the near-resonant MPI problem. The perturbation
treatment in Sec. II retained a clear physical picture of the
problem and clearly revealed the source and analytic
behavior of the cancellation effect as the resonance is ap-
proached, giving the ionization line shape and the TH line
shape with and without a positively dispersive buffer gas.
A more exact treatment of the proble~ at and near zero
detuning revealed the behavior in the strongly dispersive
on-resonance region. We also showed that the resulting
integral equation was similar to those obtained in our ear-
lier treatments of the focused and unfocused problem and,
moreover, that a solution to the integral equation could be
cast in a form which again clearly illustrated the cancella-
tion between two contributing terms. This feature was ap-
parent in our first treatment of the problem' only in the
bottom line—that is, the diminution of the number of ex-
cited states. It was explicit in our subsequent detailed
treatment of the unfocused beam geometry,

' but not as
transparent analytically. Also, we have earlier referred to
the phenomenon as a cooperative effect wherein the atoms
respond to the laser field and with each other through the
long-range interaction mediated by the TH field, involving
competition between excitation by three-photon and exci-
tation and deexcitation by one-photon processes. (In this
language the generation of TH light is a cooperative ef-
fect. ) Thus, we did not assume that the TH field, on reso-
nance, would be the same as that which would be generat-
ed in the absence of the strong coupling between the
three-photon and one-photon processes. As we have seen
here and in Ref. 14, the TH field itself is indeed the same
as it would be without the effect and, on resonance, it
drives the equation for a& in the direction exactly opposite
to that due to three-photon excitation, point by point every-
where within the focal region

We can also make some useful and fairly quantitative
comments about the line shape for ionization. Note that
the number of TH photons exiting the cell in the absence
of absorption (other than by the resonance) is given by Eq.
(50) when uz+us &0. If uii+us &0, then Nt ——0. The
line shape for Nl is rather similar to that of Nz. This re-
flects the fact that in the region of phase matching the
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~b l2 «b l2
1 —vs/2+ (I+vs/4)'i 1+

I
vs

I

(76)

In this limit of large negative vs we see that «b/2
~

vs
~

is
independent of focal length. Thus, with a buffer gas, in-

creasing the focal length of the lens does not change the
position of the maximum in Nt or Nr appreciably. This
effect has been demonstrated experimentally both qualita-
tively and quantitatively. '

In the absence of a buffer gas and at relatively low con-
centrations (n & 10' Icm ), the shape of Nt is given more

appropriately by Fig. 1. Thus, Nq peaks when

dominant ionization mechanism is the absorption of a TH
photon followed by absorption of further laser photons to
ionize. For

~
vs

~
& 1, Nt peaks at slightly smaller b,o than

N&, but when v& is negative due to a positively dispersive
buffer gas and

~

vs
~

&&1, the appearance of the line

shapes N& and NI become very similar, and the addition
of the buffer gas increases both. This behavior is demon-
strated in the figures. In any case, a study of the line

shape of Nr gives a good estimate of the expected line

shape of Nt. Since Eq. (52) is very simple, this observa-
tion is quite useful. From Eq. (50) we can estimate that
Nt will be small for

~
vs

~
&& 1 and vs &0 unless

Ap& Kb/(z
I vs I

)

Further, NI should peak near

Px.F

Thus, for F = 10 cm the resonance signal should stop in-

creasing proportional to Px, at pressures Px, & 1.5 g 10
Torr. With F =20 cm, the effects begin at 3X 10 Torr.
In experiments on noble gases the pressure region where

the effect first begins to dominate is difficult to observe

because the number density is low and the ionization sig-

nal is not easy to measure.
In the present treatment of the MPI problem we have

tried to be rather general in our formulation. However,
we have still neglected an important contribution to the
observed ionization when either N is large or when there is
a large concentration of a buffer gas. In this high concen-
tration limit there is often dimer absorption on the blue

wing of a resonance which can play a key role in deter-

mining the observed ionization signal. As a rather obvi-

ous example consider a mixture of xenon and krypton
with Px, ——2 Torr and PK, ——15 Torr. With the laser
tuned to 3880.4 A the TH light will be attenuated about
50% in 10 cm by dimer absorption. ' This absorption is
from a bound dimer state to a repulsive excited state of
xenon-krypton which dissociated to yield a xenon atom in
the 6s' state. Similar effects occur in mixtures of xenon
with argon, krypton, and neon near both the 6s and 6s'
resonances. If the absorption coefficient of the gas mix-

ture is 2P and the distance from the focal point to the cell

window is L, atoms in the resonance state are produced at
the rate

hp-0. 5mb /2 =0.05
2ir

l
~o, i l

'co, N n(tv)tv
3N 2

I
v~

I

'
I vii+ vs I

'
6]c

providing «b/2»
~
e,„~. Thus, with pure xenon gas at

room temperature, ir(cm ' sec )=2.4 X 10' Px„
Px, is the pressure in Torr. If d =0.1 cm and yx, =-4400

A, then for a diffraction-limited Gaussian beam,
b=3X10 F . Thus, «b/2=3. 6X10"Px,F, or in terms

of the detuning of the laser from resonance in angstroms,

(gg),„=—0.06Px,F' .

For instance, at Px, ——0.5 Torr and F=10 cm the peak
should occur about 3 A on the blue side of the resonance.
When «b/2» ~e,„~ and ~vs ~

&&1, the peak height
should decrease as Px,' as concentration is increased. The
drop in signal and the near vanishing of the on-resonance
signal should begin when «b/2=

~
e,„~ . In the very low

concentration the resonance has a width -0.3 A (i.e.,
~
e,„~ =1X 10' /sec), and we see that strong effects

should occur in xenon when

Xe ' ' /123(0, 0, t) /'. (77)

In particular, with long focal length lenses used near the
6s' state of xenon the power density remains high enough
to yield nearly 100% ionization of the resulting resonance
state population for several centimeters past the focal
point. This absorption-related contribution to the ioniza-
tion signal has a line shape determined by phase matching
and the wavelength dependence of P. This aspect of MPI
near a three-photon resonance will be quantitatively ex-

plored in a separate study.
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APPENDIX A

We want to evaluate the integral of Eq. (25) in cylindrical coordinates z,p, P where the laser field intensity is indepen-

dent of azimuthal angle P and where the three-photon Rabi frequency Q3(r, t) is given by Eq. (26). It is useful to employ
the identity
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e 3ia)v ~~ r —r'~

I
r —r'I

T

—1 —1 t 2 1/2 —1, S dSe'"'~ & ' f J„(3cov 'ps)J„(3piv 'p's)exp[ —(s —I)'~ 3cov '
I

z —z'
I ]

1

+ i J. 3Nv-'ps J. 3&v-'p'sexp/ 1 s 3~v z z
2 1/2(1 s2)1/2

(A 1)

With this identity and Eq. (26) we get Eq. (2S) in the following form:

+ 2m'NMo, 1~r
E&+„(r,t)=

2

'
expI 3i [—pit+/(t —lz I

Ic)) j Qi(0, O, t —lz I
Ic)

C Vko

f e

"~'dz' —3kp'
p dp exp—~ (1+2iz'/b) b(1+2iz/b)

f"J,(3~v ips)Jp(3cov 'p')exp[ (s— 1—) '3~v 'I —z'll

1

+ f Jo 3Q)v ps Jo 3v p's
0

X exp[i(1 —s ) 3v lz —z
I
)] 2 iy2(1—s )'

(A2)

We must evaluate

00

exp —3p w l+p&z' b Jo 3~v 'p's p'dp'= 1+2iz' b exp
3w s N .z1+2i-

4V b
(A3)

L

where w =~/~d which equals the beam waist at the focus, and b =kw which equals the confocal pa~~~ete~.
w~/v is ve~ large, the integration over s comm from very small s. The integral over s from 1 to M is extremely small

and the integral from zero to unity can be replaced by an integral from 0 to M with the integral converging at such
small s values that (1—s 2)'~2-I —s 2/2. The s integration is of the same form as that in Eq. (A3), and we find

2mNMo 1m„v
Eq+„(r, t)= '

Q( i,0Ot —lz I
lc)

c ho

3ik ' 3i~~z —z'Ij jU —3 pXexpI 3i [t+P(t ——
I

z
I
Ic)]ji f exp, , dz'. (A4)

(1+2iz'/b) vb (1+2iz'lb +2i
I
z —z'

I
lb)

The contribution to the z' integral from z' & z is small for all co/v. Letting hk =3(k —tp/v), x'=2z'/b, and defining

x eiy (x' —x)
g(x,y)=f,dx'" (1+ix')

we can write

+ i~Nba Mp iv Q3(00 t lz I
Ic)

E3+„(r,t)= '
expI 3i [pit —kz+P(t —Iz I

—Ic)]j
C2g 1+2iz/b

(AS)

)& expI —3tpp [vb (1+2izlb)] jg
2 2z 5kb

b
'

2
(A6)

From our earlier definition

E3+„(r,t) =E3„(r,t)expI i [3tvt +8—(r, t)] j . (A7)

The TH field has the same confocal parameter as the laser field, but its beam waist is smaller by about a factor of i~3.
The equation for E3 ( r, t) is obvious from earlier work, but it is of extreme importance that the approximations made in
deriving this result be fully appreciated in evaluating the effect of Eq+„(r,t) on the resonantly enhanced MPI. The TH
field, from our original definition, is

Es„(r,t) = ,' [Ep+„(r,t)+Eg„(r,t—)]ey——eyE3„(r,t)cos[3pit+8(r, t)],
where E3„is the complex conjugate of Eq. (A2).
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APPENDIX B

It is useful to summarize some of the properites of
g(u, v) as defined by Eq. (28) and of M' '(us, vs) of Eq.
(46). Thus, we have

tv(u' —u)

g(u, v)= f—~ (I+iu')
and if H(x) =0 for x &0 and H(x) =1 for x &0, we have
for fu I

&0

g (u, v) = 2m vH (u)H (v)e ""+'"' ih—(u, v), (81)

where

Also, for very large
I

v
I

we have the asymptotic expan-
sion of Eq. (34):

i 1 2 1g(u u)=- ——
(1+iu)' u (1+iu)' (810)

2
VRM( )( )

m. (2m+2)!
(v —2)2 2 +2 [(m+1)']

{'

Pl+2
X us+4(1 —us )

tll +2

Using asymptotic relations like Eq. (86), we find that if
u =us+vR & —6, or if u &15,

e "dyh(u, u)=u
y —v 1+iu

and for all v and
I

u
I

& 0,

Ih(u, u)
I

&u Iu I

(82)

(83)
X us+4(1 —u, )

m+ —,

m+2

1=Mo (us, vs)
(v —2)

(811)

g(u, v)=2muH(v)e ""+'"'—g'( —u, v) . (84)

Consequently, the value of g (u, v) at negative u determines
through Eq. (38) the value at positive u. For v & 0 the fol-
lowing inequality holds for g (u, u)

1
I g(u, —

I
u

I
) I &

u 1+u
A more useful relationship which is valid for v & —3 is

(85)

1

(1+iu)[2+
I

v
I (1+iu)]

Some exact properties which help to visualize g (u, u) are

(86)

Thus, at large
I

u
I

the function g(u, u) approaches the
limit

2m
I

u
I
H(u)H(v)exp[ —

I
u

I
(1+i

I
u

I )] .
We can also prove the following relationship between
g (u, v) for positive u and g ( —u, v). For u & 0

Another important check on the numerical evaluation of
M' '( us, us) follows from Eq. (86):

M(~)( )
rr (2m +2)!

2' +' [(m+1)']'
2

X (1+I'g )'+ . (812)
2m + I

The easiest way to generate a table of M' '(u~, vs) may be
to note that

dg 1
(u, u) =

2
—ivg(u, v)(1+iu)

and to defineg(u, v)=R(u, v)+iJ(u, v) such that

dR (1—Q )
2 2+VJ,

du (1+u 2)2

dJ —2u —VR .(1+u')'
g(u, 0)=i/(I+iu),
g(0, fu f)=eve I I+a [I—fu fe

'—
I IE;(fv f)],

and

g(0, —fu
I
)=ie I" Ep(

I
u

I
) .

(87)

(89)

Thus, we can use an asymptotic formula to calculate
g (u, u) for large negative u. The solution of the simultane-
ous equations are then marched along in u, and
M' '(u~, vs) is evaluated by numerically integrating in Eq.
(46) as new values of g(u, u) =R (u, u)+iJ(u, u) are generat-
ed.
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