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In model problems involving the “decay” of discrete states into electron and photon continua
there is frequently a final-state coupling between the two continua which must be considered.
Armstrong, Theodosiou, and Wall have shown that this coupling can change the relative decay
probabilities into the two channels. We examine and interpret this continuum-continuum coupling
further, paying particular attention to questions of unitarity violation and the validity of the pole or
Markov approximation for the continuum-continuum coupling. We also examine unitarity violation
and the pole approximation in a more general context, and discuss criteria under which the approxi-
mation can be made in sequential diagonalizations. Finally, we interpret the square of the Fano ¢
value as the ratio of two rates in the pole approximation.

I. INTRODUCTION

In a 1978 paper, Armstrong, Theodosiou, and Wall'
(ATW) considered several model problems involving the
“decay” of discrete states into coupled free-electron and
photon continua. In the simplest case they considered, a
single discrete state (for example, an autoionizing state)
lies embedded in a free-electron continuum, and both the
discrete state and the continuum are assumed to be cou-
pled to some (stable) final atomic state, and correspond-
ingly to a photon continuum, by the vacuum fluctuations
of the radiation field. For such a system, ATW showed
that the continuum-continuum coupling can strongly af-
fect the relative probabilities for obtaining an asymptotic
electron or photon.

ATW also considered systems in which more than one
discrete state was involved, and such model systems have
recently been studied again by numerous authors in the
context of laser-induced autoionization (hereafter LIA).2
In particular Agarwal, Haan, Burnett, and Cooper,3'4
Crance and Armstrong,5 and Lewenstein, Haus, and Rza-
zewski® have all examined spontaneous radiative decay in
LIA, and consequently within this context it is important
to understand the nature and importance of spontaneous
radiative decay from the electron continuum. The pur-
pose of this work is to examine physical aspects of this
continuum-continuum coupling and, more generally, to
consider unitarity violation and the pole approximation.

II. EXACT SOLUTION
FOR THE TWO-CONTINUUM SYSTEM

ATW denoted the eigenstates of the Hamiltonian H°
describing the free-electron and photon continua by
{lie)} and {|fw)}, respectively; e and w represent the
relevant energies of the decay product. The two continua
are coupled by the matrix element (ie |V |fw)=H,,
representing spontaneous radiative decay. ATW “diago-
nalize” the two-continuum system using the reaction or K
matrix, which they define in an integral equation. How-
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ever, a closed-form solution for the diagonalized continua
can be obtained if one writes the continuum-continuum
coupling in a separable form such as

Hemzf‘(e)g((l)) (1)

for some f(e) depending on electron energy and some
g(w) depending on photon frequency. For spontaneous
radiative decay in the usual electric dipole approximation,
f(e) is essentially a dipole matrix element between the
electron continuum and the final atomic state, while g (o)
includes the familiar ©3/2 factor and multiplicative alge-
braic factors.’

One method of diagonalization involves the Mgiler
operator (_ of scattering theory.* Q_ provides an
isometric and invertible transformation from the continu-
um eigenstates of some Hamiltonian H° to the continuum
eigenstates of the Hamiltonian H =H°+ ¥, provided the
potential ¥V satisfies the usual asymptotic conditions of
scattering theory.® If |e} and |®} denote the diagonal-
ized electron and photon continua, then’

le}=Q_|ie),
|0} =Q_|fo).

(2)

The Mgller operator can in turn be expressed in terms of
the Green’s operator, or resolvent,

G(z)=(z—H)™!

to obtain
le}=[14+G(e —ie)V]]ie),
|lo}=[1+G(o—ie)V]| fw),

where the “ie” indicates the lime|0 is to be taken. Linear
equations coupling the matrix elements of the resolvent
can be obtained from the equation

(z—H%G(z)=14+VG(z) . (4)

These equations are easily solved for the coupling (1), and
formal expressions for |e} and | @} can then be obtained.

(3)
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One finds
|e}=|ie)+ fda) | folg™@) _fle)

e—ie—w tYle—ie)

, |ie")f*(e') 38(e —ie)f(e)
+ [T We—ie) 0
. * a
lo}= lfco)+fdeJle)f (e) glw)
w—ie—e Plwo—ie)
, | fo')g* (@) 3w—ie)g(w)
+fda) 0o—ie—a' Yow—ie) ’
where
Wz)=1—3(z2)38z) , (5b)

3(z) denotes matrix “self-energies”

2
3()= [ael L (6a)

zZ—e
2
39(:)= [do-E2L (6b)

If some discrete state |a ) is coupled to these continua
by an interaction V, then

ag(, _:
("|V|e}=(a|V|ie)+_2__(e_L)f(L)

Yle —ie)
af —i i
+ > (e 16)288(.8 ie)f(e) ’ (7a)
Ple —ie€)
_ 3w —ie)g(w)
(a|V]w}=(a|V|fo)+ Wo—ie)
3%w—ie)3 w—ie)g(w)
Pw—ie) ’ (70)
where
2“3(2)=fdw (a|V|fo)g*(w) ,
Z—o
. *
E“f(z)=fde (a |V ]ie)f*(e) .
z—e

If desired one can make the Markov or pole approxima-
tion (PA) on the self-energies by using

1

= FinS(E —E' 8
F_E tic P Fims( ) (8)

1
E—E'
and keeping only the 8 function part of each integral in
the self-energy definitions. This approximation should be
valid over a wide range of the continua if {a |V | fw),
(a |V |ie), f(e), and g(w) vary slowly and smoothly with
energy; the approximation would clearly be invalid close
to threshold or very far into the continuum where the in-

tegrand of the principal-value integral is very asymmetric
about E =E'.

III. BRANCHING RATIOS AND UNITARITY

In a problem involving the decay of a single discrete
state |a) into the coupled continua |ie) and |fw), |e}
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and |} represent orthogonal free-electron and photon
channels into which the state can decay. Each |e} and
| @} is a linear combination of the |ie) and | fw) over a
range of energies. The diagonalization of the two con-
tinua is a unitary transformation, and completeness re-
quires
(a| V¥ |a)= [de{a|V |e}{e|V |a)
+ [do(a |V |w}{e]|V]|a) (92)
= [de|(a|V|ie)|?
+ [do|(a|V|fo)|?.
(9b)

However, because the diagonalization mixes states of dif-
ferent energies, in general

[<a|V]e}|’+[(a|V]w}|?

#|{a|V]ie)|®>+|(a|V|fo)|?. (10)
In the PA, in fact, one obtains
[<a|V]e}|*+|(a|V|w}|?
=l—1ﬁ—[|(a|V|ie)|2+|(a|V|fa))|2], (11)

where 1 can be obtained by making the PA in (5b); one
finds

'/}=1+772|Hew|2'

Since Eq. (11) is just 1/27 the decay rate of state | a ), the
continuum-continuum coupling slows the decay of |a)
throughout the range of the continua where the PA is
valid. Contrary to implications of ATW it is not a mea-
sure of unitarity violation: Unitarity is violated only if
one integrates (11) over all continuum energies, but this
violation simply means that the PA is not valid over the
entire continua. Indeed, one can prove explicitly that (9a)
equals (9b) by using Eqs. (5) for |e} and |w} and using
the known analytic properties of the self-energies. (The
techniques which can be used are illustrated in Sec. IV.)

It is worthwhile to analyze the branching ratios into the
continua | E} and | w} in the PA, as ATW have done. In
this approximation all but the lowest order term in
ATW:’s integral equation for the K matrix are identically
zero (independent of field strength), and the branching ra-
tios of ATW are identical to those which can be obtained
from (5) in the PA on the { |ie)} and { | fo)} continua.
One obtains the decay rates and branching ratios

_ 14+y%/T%g}?
F +v qf

=FT— , (12a)
_ 14+1/g}
=Y (12b)

where T'=27|(a |V |ie)|% y=2m|(a |V |fw)|? and
where g, denotes the Fano g value,



28 UNITARITY, THE POLE APPROXIMATION, AND . ..

__Ka|V|fw)

= . (13)
U= |V |ie)H,,
The decay probabilities for the new channels are
r r 1 v’
Piy=——7=—7"— |1+ , (14a)
T4y T+r v | 1}
Pph=——7—~=——z—il +5 1, (14b)

where ¢=1+7%|H,,|?=147/q/T. Note that the
continuum-continuum coupling always acts to enhance
the weaker process. These probabilities were first given by
ATW, but are more general than they claimed: The only
approximation made in their evaluation is the PA on the
original continua. No weak-coupling approximations are
needed, and these results do not violate unitarity.

]

fde|(a vV e”2+fdw|(a V]w}|?

E +ie—e E+ie—ow

aa . 1
=3%%E +ie)+ WE +ie)

+3%(E +i€)S(E +i€)38%E +i€)+ZY(E +i€)Z%(E +i€)S/*(E +ie)] ,

where

. 2 2

E+ie—o

E +ie—e

If one now makes the PA in the self-energies on the
right-hand side of (16a), one obtains

fa'el(a Vv e§|2+fdm|(a V]w}]?

E +ie—e E+tie—o
~—Y _L(riy). (16c)
vgy 2 7

This result would not have been obtained, however, if the
PA were made in the integrands of (16a) before integrat-
ing. [The real part of (16c) represents a shift of the decay-
ing state |a ), and the imaginary part half its decay rate.]

Thus it is clear that sequential diagonalizations are not
always valid if one makes the PA too early. However,
there are many situations where such a procedure would
be valid and simple. For example, for the two discrete-
state continuum system considered by Rzazewski and
Eberly? the states could be diagonalized into the continu-
um sequentially using the results of Fano.!® In the follow-
ing paragraphs we sketch the criteria one can use to deter-
mine if the PA can be made before integrating.

Consider an integral of the form

[azf(2)3(2),

where z =E —ie€ and the path of integration parallels the

an
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IV. UNITARITY VIOLATION IN THE POLE
APPROXIMATION

A. General considerations

As mentioned above, unitarity is violated in Eq. (9) if
one makes the PA in the self-energies before integrating.
Incorrect results can be obtained in other situations as well
if one makes the PA before integrating, as Fano showed in
his original paper!® in the context of completeness. One
place such difficulties can arise is in performing a sequen-
tial diagonalization of discrete state-coupled continua sys-
tems. If one first diagonalizes the two continua as above,
then in diagonalizing a discrete state |a ) into the system
one encounters self-energies such as

[aellalVlell® | g, alV al]®

zZ—e Z—w

(15)

These integrals can be evaluated exactly using the analytic
properties of the self-energies in the expressions for
|[{a|V]e}|? and |{a|V|®}]|?[Eq. (7). One obtains

[S%(E +i€)S%E +i€)+Z°/(E +i€)Z8(E +i€)

(16a)

(16b)

real axis. The self-energy (SE) =(z) is analytic (with no
poles) on the first Riemann sheet, but has a cut along the
positive real axis and poles on the second Riemann sheet.
3(z) can be treated as constant only if f(z) has poles
whose residues are much more important than the (second
sheet) residues of the poles of =(z).

Let us suppose a special form for f(z)2™(z) on the
second sheet. [We will denote the second sheet SE by
31(z).] We take

h(z)

[I:[(z —pi ] I;[(z —gq;)

f(2)Zz)= , (18)

where A (z) is entire, p; are the poles of f(z), and g; are the
poles of the SE. We will assume a “smooth continuum,”
i.e., that the poles of the SE are all isolated compared to
the poles of f(z):

|pi—qj | > | pi—pk | (19a)
and
(19b)

for all i, j, k, and I. The residue at a pole of the potential,
say at g;, is

|gi—q; | > |pk—p1|, i#j
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h(q;)
[IjI(qi—p,-)] L(I;[i)(qi—qj)] ’

and the residue at a pole p; of f(z) is

R(q;)= (20a)

R(p;)= h i) . (200)
H (Pi—Pj ] [H(Pi—‘Ij) }
(i) J
It is clear from (19) that
|R(g;)| << |R(p;)]| (21)

provided there are at least two poles p; of f(z). [If f(z)
has only one pole then we will not have any p; —p; terms.]
If these poles lie in both half planes, then the poles of the
potential can safely be neglected. If f(z) has poles in only
one half plane, then the residues at the poles can partially
cancel when added together; for this case one could not
neglect the poles of the potential, as is clearly shown by
the simple fact that one could close the contour in the oth-
er half plane. In such a situation, however, the overall in-
tegral would be very small.

This suggests that one can neglect the energy depen-
dence of 2(z) in an integral of the form (17) when f(z)
has at least two poles, one in each (upper and lower) half
plane. If f(z) has two poles, but they lie in the same half
plane, then the PA is not valid, but the overall integral
will be small.

Examining the integrals (9) and (15) using Eq. (7), we
see that the above criteria are not met, and consequently
the PA cannot be made before integrating. The matrix
elements (7) have no poles themselves other than those in
the self-energies or potentials; this is because (7) gives the
matrix elements to a diagonalized continuum-continuum
system. If we were to consider instead the matrix element
to a diagonalized continuum-discrete state system (a Fano
continuum), then there would be a pole because of the lo-
calization in energy of the original discrete state embedded
in the continuum. The matrix element coupling some
state |i) to a diagonalized |a)—{|E)} (Fano) system
| Ep) can be written as

(i |V|Ep)=(i|V|E)

[S4E —ie)+(i|V|a)]{a|V |E)
E —ie—E,—3%(E —ie)

+

b

(22a)
1
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where
ia (i|V|E)E|V|a)
ziz)= [ apt] 'Z_El a2

etc. An integral of the form deF | i |V |Eg)|? would
violate unitarity if the PA were made before integrating,
but integrals of the form

(22b)

. 2
deF |<’|V|EF)|

i E (23)

such as would be encountered in a sequential diagonaliza-
tion, could be evaluated making the PA before integrating.
Consequently, one can sequentially diagonalize discrete
states into a continuum, but one cannot make the PA be-
fore integrating self-energies in diagonalizing continuum-
continuum systems.

B. Specific Example

To illustrate how the analytic properties of the self-
energy can be used to evaluate certain integrals, we will
consider f dE | (i |V |Ep)|? in detail. The explicit
form of the matrix element is given in Eq. (22a). The
self-energies S/%(E +i€) and Z/*(E —ie) are analytic'! in
the upper and lower half planes, respectively, but have un-
known poles in the opposite half planes. Similarly
[z—E,—Z2%(z)]"! is analytic in the upper or lower half
planes for z=E +ie or z=FE —ie. The matrix elements
(i |V |E) and (a |V | E) have poles in both half planes,
but their products can be written in terms of the self-
energies by

GIVIEXE|V| k):—Z%[Ej"(E _ie)—IME +ie)],

jk=ia. (24

Thus one obtains a fairly messy integral involving self-
energies evaluated at both sides of the real axis. One can
perform the integral exactly by separating the S/*(E +ie)
and 3%(E —ie) terms. After lengthy algebra one can
show that

1 [{i|V]a)+ZUE —ie)][{a|V]i)+ZUE —ie€)]

|G VIER) =1 | V]|E)|*+

2mi

E —E,—3°E —ie)

+LL(1’|V|a)+2i“(E+ie)][(a|V|i)+2“i(E+ie)]‘

2mi E —E,—3%(E +ie)

The second and third terms are analytic with no poles in
the lower and upper half planes, respectively, and can
easily be integrated by closing the contour and subtracting
the contribution of the semicircle at infinity. Each in-

(25)
|
tegral gives + | (i | ¥ | a) | % and therefore
JdE ||V |Ep)|?
= [de|Ci|VI|EY|*+|(i|V]a)|®. (6)
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V. INTERPRETATION OF THE
CONTINUUM-CONTINUUM COUPLING
AND THE FANO g VALUE

We conclude this paper with a short discussion of the
term “recombination” which ATW use to describe the
continuum-continuum coupling and of the Fano g value.
We restrict our attention to the problem of a single
discrete state |a ) decaying into the two coupled continua.

“Recombination” is certainly a physically meaningful
term in a scattering problem in which an incoming elec-
tron collides with an atom because the continuum-
continuum coupling allows the electron to be captured and
a photon to be ejected, even in the absence of the discrete
state |a). For our problem of interest, however, we do
not have an incoming wave packet. We instead start the
system in a discrete state at ¢t =0 and describe the subse-
quent decay. The continuum-continuum coupling is im-
portant in diagonalizing the total Hamiltonian, but in this
context the coupling does not imply the physical ejection
and subsequent reabsorption of an electron or photon.
The actual emission of an electron or photon would still
be Markovian (i.e., the emission is effectively instantane-
ous) for smooth continua. This result is clearly shown by
the results of Agarwal, Haan, Burnett, and Cooper® who
used the method of master equations. They allowed for
the continuum-continuum coupling but made the Markov
approximation at the outset on the photon continuum.
The results obtained in that way agree with the results ob-
tained using resolvents, even though the pole approxima-
tion is not made in the latter method until the model
problem has been solved exactly.

Our interpretation of the continuum-continuum cou-
pling is simply that what we normally think of as “free-
electron” and “free-photon” continua far from the atom
are modified near the atom by the coupling of the electron
continuum with the bound atomic state | f). Thus, elec-
trons are not physically ejected and then reabsorbed. One
must rediagonalize the continua to give the actual “elec-
tron” and “photon” continua near the atom.

One can obtain an interesting interpretation of the Fano
q value by considering the decay of a discrete state |a)
into the continua { |ie}} and { | fw}]} in the limits of no
direct coupling to one or the other of the original con-
tinua. In the limit {a | V | fw)—0, the electron and pho-
ton emission rates are, respectively,
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f= :/% , (27a)

~ —1
Y11= 7 r. (27b)

The photon and electron probabilities are
1

= —12; ) (27¢)
Pou= 5”—;i : 27d)

Thus #*|H,,|?=1—1¢ is the probability ratio of the
“newly opened” channel to the original channel. A simi-
lar analysis can be conducted in the limit (a | V |ie)—0.
The results for this case are

~ -1 - —1 1
F2=}£¢2_7, ‘}’2=‘53, Pel=_‘dl¢_’ PPh=E : (28)

The Fano g value is defined in the PA by Eq. (13). Be-
cause the radiative decay is due to the interaction between
the atom and the vacuum state of the radiation field for
decay from both the discrete state and the electronic con-
tinuum, this ratio is equal to the “usual” Fano g value

g
T Va E VEf
discussed in photoionization and autoionization. The ra-

tio of our two expressions (28) and (27b) for the decay
rates into the photon continuum is

2'3!

=q?, (29)
71

and therefore the square of the Fano q value is the ratio of
two rates: The rate for |a)— | f) transitions in the limit
(a|V |ie)>0 divided by the rate for |a)—{]ie)}
—> | ) transitions in the limit (a | V' | fw)—0.
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