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Universal stationary-phase treatment of far-wing and excimer spectral line shapes
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When two atoms are in proximity, their resonance lines are broadened because of the formation

of molecular potentials, between which photon transitions can occur. The level of experimental re-

finement in measuring excimer and collisional far-wing spectra calls for interpretive theoretical

methods that accurately treat the observed structure in line shapes. Of particular interest are satel-

lites and undulations, for they can give much information on intermolecular potentials. We derive

an expression for T-matrix elements, based on JWKB wave functions and stationary-phase tech-

niques, that is universally applicable to situations with one, two, or more Condon points. Each tran-

sition point is treated individually, with effects of potential shape, wave-function phases, and in-

terference separately highlighted. The expression is tested against quantum-mechanical line shapes

of the red and blue wings of the Rb D lines broadened by Xe perturbers. Agreement is quite good

for both the red-wing undulations and the blue-wing satellite-supernumerary structure.

I. INTRODUCTION

A number of interesting spectral features have been ob-

served in excimer spectra and in the far wings of collision-

ally broadened atomic lines, particularly undulations and
satellite peaks. ' Such structure is particularly evident

in the experimental line shapes obtained by Sayer et al.. for
collisionally induced dipole absorption in the far wings of
the dipole-forbidden 6S&&2~ 5D&&z line of Cs. Very

analogous structures have been observed in the energy

spectra of electrons ejected in Penning ionization. These
can be understood in the context of free-free, free-bound,

or bound-free transitions between the molecular or quasi-

static potentials. Advanced stationary-phase tech-

niques, ' based on JWKB wave functions, have been

used to explain the existence of these features through an

analysis of the distorted-wave integral for the T-matrix

element

Tf;(e) = f pf(R)t(R)g;(R)dR .

Here, a=hv is the energy of the photon, R is the internu-

cle;:tr separation of the colliding atoms, the gt(R) and

ff(R) are initial and final distorted radial wave functions,
and t(R) is the electronic transitional coupling amplitude.
[In the case of collisional far-wing line broadening, t(R) is

the transition dipole moment. ] The integrand in Eq. (1)
generally oscillates rapidly, and little contribution occurs.
The main contributions to the integral arise where the in-

tegrand is slowly varying. This occurs at stationary-phase
points, which correspond to the Condon points for vertical
transitions in the simple semiclassical description.
Quantum-mechanical computations have explicitly
demonstrated that the major contributions to Tf; come
froin values of R near a Condon point. ' '

Experimental work is at a level of refinement that
calls for interpretive, utilitarian theories that accurately
account for the positions and amplitudes of the peaks and
undulations in far-wing line shapes. Quantum-mechanical

computations can produce accurate line shapes for known

potentials. However, it is difficult to determine potentials

from experimental spectra when the separate causes for
far-wing structure are buried in quantal numerics. What

is desired is a theoretical expression that is quantitatively

accurate, yet qualitatively sorts out the effects of initial

and final wave-function phases at the transition points,

shapes of intermolecular potentials, and interference

among Condon points. This paper develops and tests such

an expression, obtained from stationary-phase techniques.

It can be applied to situations with one, two, or even more

Condon points.

II. Rb +Xe AS AN ILLUSTRATIVE SYSTEM

To illustrate and examine the phenomena described
above, we will consider the emission spectra in the far
wings of the Rb D lines broadened by Xe perturbers. The
wings are produced by photon-emitting electronic transi-
tions that occur between the quasistatic potentials that
form during a collision. The wing-emission line shape (to-
tal emission rate of photon energy per unit frequency in-

terval per unit densities of the colliding species) is

I„= =(1024tr pc/3A'k;)A, g(21+1)
~
Tf;

~dv
(2)

where v is the frequency of a photon and A, its wavelength.

p is the reduced mass of the colliding atoms, k; is the
wave number of their initial relative motion, and I is the
quantum number of the Ith partial wave. Interesting
structure has been experimentally resolved in these
wings. ' The red wing of the Rb D

&
line

(5 Ptr2~ 5 Str2, 7947 A) is produced by transitions from
the 3 H~&z excited-state potential to the X X&&z ground-
state potential. The blue wing of the Dz line
(5 P3/2~ 5 S~~2, 7800 A) is caused by transitions from
the 8 X&&z state to the X X&&z state. Figure 1 schemati-
cally illustrates the general form of these potentials. Fig-
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FIG. 1. Schematic diagram of the quasistatic potentials asso-
ciated with the broadening of the Rb D lines by Xe perturbers.
(An A H3/2 state is not shown. )

III. STATIONARY-PHASE EVALUATION
OF THE T MATRIX

For a particular distorted-wave channel a, the simple
JWKB wave function associated with total energy E, is
given by

g, (R ~E, )=A, (R IE, )si [Pn, (R ~E, )],
where the amplitude, phase, and local wave number are

(3a)

ure 2 displays the results of a quantum-mechanical calcu-
lation for the contribution to the red-wing line shape from
a single representative collisional energy in the thermal
range. Figure 3 displays an analogous calculation for the
blue wing. The quantum-mechanical techniques for corn-

puting these line shapes are described elsewhere.
The potentials actually used to generate these line

shapes are modified versions of semiernpirical ' and ab
initio' potentials. The precise nature of the potentials
need not be reported here because the accuracy of
stationary-phase methods is to be tested, not the poten-
tials. The approximations should be tested against quan-
tal calculations using the same set of selected potentials,
and not compared to experimental results that requires
knowledge of the true potentials. (As it is, though, the
computed red wing is in good agreement with experiment,
and the blue wing is in fair agreement. ) In all calcula-
tions, the dipole transition moment was assumed to be
constant at all R to focus on the effects of potentials and
wave functions. This is why the intensity scale is arbi-
trary, though linear.

FIG. 2. Computed emission spectrum of the far red wing of
the Rb Dl line (7947 A) broadened by Xe perturbers for a col-
lisional energy of 0.01 eV. quantum mechanical; ———
stationary phase using F(y) =Bi(y) or F(y) = —

~ y ~

'~ Ai'(y) in

Eq. (10); . - stationary phase using F(y)=Gi(y) in Eq. (10).

A, (R iE, )=—k, (R iE, )

P, (R
~
E, )= f, k,'(r

~

E, )dr+ —„'w,

(3b)

(3c)

k,'(R ~Eg) = [E,—V, (R)]— (3d)

bp(R) =pf(R) —p;(R),

f(R)=t(R)A;(R)Af(R) .

(4b)

(4c)

f(R ) will usually vary much more slowly than

cos[bg(R)] in Tf;. The major contributions to Tf; will

come from values of R near the points of stationary phase
R, where the cosine factor is also slowly varying. These
satisfy b,P (R, )=0. This condition immediately implies
that the local nuclear kinetic energy and electronic ener-
gies are separately conserved at the Condon points, i.e.,
k;(R, )=kf(R, ) and e=hV(R, )= V(R, ) —Vf(R, ) where

V, (R) is the intermolecular potential, and R,'(E„l)is the
classical turning point defined by k, (R,'

~
E, )=0. The

parametric dependence of these functions on E, and col-
lisional angular momentum quantum number I will not be
explicitly indicated in the discussion below, but should be
implicitly understood.

Using Eqs. (1)—(3), we find

Tf((E)= , f f(R)cos[—hg(R)]dR, (4a)

where
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FIG. 3. Computed emission spectrum of the far blue wing of the Rb D& line (7800 A) broadened by Xe perturbers. quantum

mechanical; ———stationary phase using F(y)=Bi(y) in Eq. (10); . stationary phase using F(y)=Gi(y) in Eq. (10); X X X
straightforward Sando-Wormhoudt formula [Eq. (15)];——partial Sando-Wormhoudt technique [Eq. (16)].

e is the energy of the far-wing photon. Note that the
asymptotic value for the potential difference b, V(0c) is
the energy of the atomic resonance line.

Much attention has been given to processes involving an
extremum in the difference potential b, V(R). This means
there can be two Condon points, R& and R2, which satisfy

I

e=d V(R, ). The ir caustic coalescence for photon ener-
gies near the extremum produces a satellite peak in a far-
wing line shape. ' Stationary-phase methods have been
developed to evaluate Tf; analytically in ways that remain
uniformly applicable whether R

~ and R2 are close to or
far from one another. ' ' They have the form

Tg;(e)=(rrl~2)p(R „R2) [(Pi+P2)cos(g(R „R2))Ai( p(R „Rz))—(—s&P&+s2Pz)sin(g(R „R2)}F( p(Rt, R~)}],—
(5a)

where

g(R ),R2) = , [bp(R ) )+bp(R2)]-,

p(R~, R2) =
I 4 [s~bp(R~)+s~hp(R2)]]

s, =hP "(R, ) b,P"(R, )
~

P, =f(R, ) ~~y" (R, )
~

(5b)

(5c)

(5d)

(5e)

Note s~ ———s2. Different analytic methods give related,
but different versions of F( —p). The possibilities are

Bi( —p), from Ref. 16, (6a)

F( —p) = Gi( —p), from Ref. 17, (6b)
—p

'~ Ai'( —p), from Ref. 18 . (6c)

Here, Ai( —p) is the regular homogeneous Airy function,
Bi( —p) is the irregular homogeneous Airy function, and
Gi( —p) is the regular inhomogeneous Airy function. '9

Tyj(c)=T, (R2)+T2(R)),
where

(7a)

I

All forms of F( —p) yield the same values for Tf; in limit-
ing cases of R~ and R2 either very close together or very
far apart. Which choice is numerically most accurate in
the more usual, intermediate situation will be examined in
Sec. EV.

Actual wing spectra may be associated with one, two, or
more Condon points (in cases, respectively, of difference
potentials with no, one, or more extrema). Thus, it
would be useful to have an expression that is universally
applicable for any number of stationary-phase points,
satisfying E= b, V(R, ). The approach we present below
treats each point individually rather than in pairs.

To convert Eq. (5) into an expression useful for indivi-
dual Condon points, we rearrange it into a form which be-
gins to highlight the different points separately:
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T,(R„)=(~/~2)P, p(R„R„)'~[cos(g(R„R„))Ai(p—(R„R„))—s,sin(g(R„R„))F( p—(R„R„))]. (7b)

The influence of each Condon point on one another is still
transmitted through g and p. This explicit mathematical
association can be broken in a uniform way by making a
cubic expansion of the phase change at each individual
Condon point R, . Noting that b,P,

' =0, we have

5$(R)=Et)), + —,(R —R, ) bP,"+—,(R —R, ) bP,"', (8)

where the subscript c implies evaluation of the derivatives
at R, . This expansion produces, for each R„anartificial,
second stationary-phase point R, that also satisfies
AP'(R, ) =0. This is located at R, =R, 2bg,'"/—bP,".
[R„R,I can be used as the pair of Condon points re-

quired to evaluate g and p in Eq. (6):

Tp(e)=Ti(Ri )+ T2(Ri) . (9)

The explicit dependence of the Condon points on each
other has been removed and each can be treated individu-
ally. Equations (5) and (9) agree when Ri and R2 are
close together because the cubic expansions about each
point will then be very nearly the same. When they are
far apart (g large), they attain the same asymptotic expres-
sion even though the artificial stationary-phase points
may not be near the actual ones. (This just means that the
points do not "communicate" when they are far apart. )

What we have done in Eq. (9) is determine the contribu-
tion from individual points of stationary phase when a cu-
bic fit is made to the phase change bg(R) at a Condon
point. We conclude that a general expression for T~; with
one or more Condon points can be obtained by simply
adding their individual contributions:

These relations clearly show how Eq. (10b) relates T
matrix structure (and, thereby, line-shape structure) to the
shape of intermolecular potentials through the derivatives
of hV(R). The phases of the wave function then only ap-
pear in u, . Thus, we have separated out the various
sources of line-shape structure.

Before turning to numerical tests of Eq. (10), we must
develop a way to handle transitions associated with a pair
of coinplex Condon points. Such situations occur when

the difference potential has an extremum, and we wish to
consider transitions that emit photons with energies in the
classically inaccessible dark side. Let R, be the internu-
clear separation of an extremum in b, V(R). e, —=5V(R, )

is often called the energy or "position" of the classical sa-
tellite. Near such a satellite, on its classically accessible
side, there will be two real roots, R i and R 2, of
b V(R, )=e. For energies e on the dark side, there will be
no real roots. However, we can determine dark side T-
matrix elements by analytic continuation from the classi-
cally allowed case. When R ~ and R2 are near coalescence
(E~Eg ),

uq ——u, =g(R i,Rq) =bP[ —,
' (R i+R2)]=bg(R„)=bP,

(12)

and

3'2 =3'&

Tg;(e)= Q T,'(e), (loa) —:y, (~), (13)

where

with

&& [cos(u, )Ai(y, ) —s, sin(u, )F(y, )] (lob)

(10c)

(lod)

where k~ =k(R, ) and AV,"=hV"(R, ). The branch of
the third-root in Eq. (13) is chosen such that it has the
same sign as b, V"(R, ), ensuring y &0 for classically ac-
cessible transitional energies e. To include dark-side tran-
sitions beyond the classical satellite, we just use Eq. (13) to
carry us there. Using the fact that si ———s2, we find that
a T-matrix element for a pair of Condon points associated
with either classically allowed or disallowed transitions
near the satellite is

and

b,P,"'= b, V,
"

A' k,

' 2/3

(6V' ) (2A V")
k

C C

C

(1 la)

(1 lb)

The bars over p and g indicate use of Eq. (8). This is the
primary derivational result of this paper. This formula
can be used no matter how many roots there are of
e=4 V(R, ). One excludes in Eq. (10a) any Condon point
that is within the collisionally forbidden region inward of
a turning point for higher values of angular momentum.

It can be shown that

p
&„&(&)=rrf, cos(b,P, )Ai(y, (e) ) . (14)

2 k,

This should be valid for situations in which
f(Ri)=f(R2)=f, and the difference potential is effec-
tively quadratic between R

&
and R2.

Equation (14) is the foundation of the Sando-
Wormhoudt formulas that have become popular means of
deducing excited-state potentials from experimental spec-
tra. ' ' ' Building upon this approximation, one concludes
that, for a thermal distribution, the satellite energy e„and
thus the extremum value in the difference potential
4V(R), is easily found on the dark side of the satellite
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peak at a position of 65% of the maximum intensity.
The exponential falloff of the intensity on the darkside
has been commonly used to determine hV»". ' Armed
with this information, one can construct the difference po-
tential near R» and, from that, determine an excited-state
potential if the lower one is known. In Sec. IV, we will

examine the validity of these assumptions.

IV. RED- AND BLUE-WING TESTS

As discussed in Sec. II, the red wing of the Rb D1 line

broadened by Xe perturbers is due to transitions between

A II&&2 and X Xi~i quasistatic potentials. The difference

potential in this case is a monotonic function of internu-

clear separation. Hence, there is only a single solution of
hv=b, V(R, ) for a given photon wavelength. The sum

over Condon points in Eq. (10a) reduces to one term,
given by Eq. (10b). This single Condon point produces no
satellite peak, although prominent undulations are super-

imposed on a monotonic base. Figure 2 displays the re-

sults of using the three different forms of F(y) from Eq.
(6) in Eq. (10). As can be seen, the choice F(y)=Gi(y)
does not do as well as one would like if the extrema in the
undulations are to be used in analyses. Fortunately, both

Bi(y) and —~y ~

'~ Ai'(y) do very well as F(y).
Unlike the difference potential between the A II&&z and

X 21~2 states, the one between the B 21~2 and X 21&2
states exhibits an extremum. For the numerical potentials
employed in this study, the wavelength of the classical sa-

tellite is A =hc/e, =7590 A. For wavelengths shorter
than the atomic D2 lines (7800 A), there are two Condon
points that satisfy hv=b, V(R, ). This double-point situa-

tion produces the blue-wing satellite shown in Fig. 3.
To compute the satellite line shape from the

stationary-phase approach represented by Eq. (10), we had
to consider the effects of collisional turning points on the
transitions. This was not a serious issue for the red-wing

calculation because the turning points were still far from
the Condon points when an outer centrifugal barrier ter-
minated the sum in Eq. (2) at 1=110. However, at the

higher energy used for the blue-wing calculation, such a
cutoff does not occur. Instead, the turning points move
outward as l increases, coming near and eventually con-
taining the Condon points. The simple JWKB amplitudes
and phases given by Eq. (3) are then no longer valid for
use in Eq. (10). As described elsewhere, uniform ampli-

tudes and phases can be employed for a Condon point that
is in a classically allowed region, but near a turning
point. ' When it slips inside the turning point at high l,
its contribution can be simply ignored in the sum over
Condon points in Eq. (10a) because its contribution will

be relatively small.
The results of using Eq. (10) to compute the blue-wing-

satellite line shape are shown in Fig. 3. Again, the selec-
tion of F(y) =Gi(y) is not satisfactory while F(y) =Bi(y)
does quite well. F(y) = —

~y ~

'~ Ai'(y) gives a line shape
of intermediate accuracy, and is not reported here. Be-
cause Bi(y) also did well for the red wing, we conclude
that F(y) =Bi(y) is the best choice for use in Eq. (10b).
This is the primary numerical conclusion of this paper.

V. SANDO-WORMHOUDT TECHNIQUES

One can use Eq. (14) to compute the intensity on both
the bright side and dark side of a satellite. In keeping
with the usual application of the Sando-Wormhoudt tech-
nique described at the end of Sec. III, the sum over angu-
lar momenta in Eq. (2) was approximated by

I»

g (21+ 1)
(

Ty~g
)

= g (21+ 1)
(

T'„,(e) ), (15)
1 1=0

where I, is the maximum I for which the satellite's R, is
1»

collisionally accessible, i.e., k (R, ~E;)=0. For a range
of I just below I„bothCondon points are assumed to con-
tribute equally to the line shape, even though the inner one

may be inside a collisional turning point and actually con-
tributes little. The resulting line shape is shown in Fig. 3.
The maximum and width of the satellite peak do not agree
with quantal calculations. Furthermore, the first super-
numerary oscillation from Eq. (15) is not located at the
first undulation of the quantal results. This seriously calls
into question the efficacy of analyses based on a straight-
forward application of the Sando-Wormhoudt approach.

We have found that the cause of the discrepancy is not
Eq. (14) as such, but its indiscriminate use in Eq. (15).
For I (50, both Condon points associated with each wave-

length in Fig. 3 are collisionally accessible. Up to this l,
the numerical line shape obtained from Eq. (15) agrees
very well with the quantal partial sum. For higher I, the
turning points progressively pass the inner Condon points,
with those from the longer wavelengths going first. It is
for these higher I that the results from Eq. (15) begin to
deviate from quantal results. We might expect, then, that
one could use Eq. (14) when both Condon points are col-
lisionally accessible, and Eq. (10b) when only the outer of
the pair is. This means

1=0

where I, is the maximum I for which penetration to R, is
classically possible. As shown in Fig. 3, there are no sig-
nificant differences between the numerical results obtained
from this equation and those from Eq. (10).

VI. CONCLUSIONS

Using JWKB and stationary-phase methods, we have
derived an expression, Eqs. (10) with (6a), that can be used
to calculate accurately the T-matrix elements for spectral
transitions in the far wings of collisionally broadened
lines. Each Condon point is treated individually, and the
same formula can be used for cases of one, two, or more
transition points. This can help elucidate the undulatory
structure experimentally observed in far-wing line shapes.
It can also be used to determine more accurately the dif-
ferential absorption coefficients required in the analysis of
polarization in collisionally redistributed atomic fluores-
cence.
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The good agreement between Eq. (16) and quantal cal-
culations leads us to a number of conclusions of practical
interest. The difference potential is effectively quadratic
throughout the satellite and supernumerary regime. Be-
cause dark-side transitions are occurring semiclassically at
a single, coalesced Condon point R„the common practice
of determining the second derivative of the difference po-
tential hV," from the exponential decay of intensity is
valid. However, for a pair of separated Condon points as-
sociated with the bright side, the outer of the two can con-
tribute significantly to the line shape over a range of angu-
lar momentum that precludes collisional penetration to
the inner point. This tends to make the satellite peak sig-
nificantly broader than expected from a straightforward
Sando-Wormhoudt analysis. This could lead to an error
in determining the energy E„fothe classical satellite from

the 65% rule. Finally, not all of the prominent undula-

tions near the satellite peak are the supernumerary oscilla-

tions associated with coalescing Condon points for differ-

ence potentials with extrema. In Fig. 3, the first undula-

tory peak at 7645 A is due to single Condon points that
are collisionally accessible at higher l. This secondary
peak is then not a supernumerary as one might expect, but

is rather more akin to the undulations arising in the red

wing (Fig. 2) from a monotonic difference potential.
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