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A two-photon laser is modeled as X two-level atoms interacting via a two-photon transi-
tion with a single resonant-cavity field mode. The quadratic form of this interaction makes
such a system a candidate to exhibit reduced quantum fluctuations (squeezing) in one quad-
rature of the output field. A Fokker-Planck equation containing all leading quantum noise
terms is derived following the method of Haken. A linearized Auctuation analysis reveals
that there is no squeezing in a two-photon laser with injected signal. A small amount of
squeezing may be present in two-photon optical bistability. Our calculations confirm the
results of Lugiato and Strini, who adopted a factorization of moment equations.

I. INTRODUCTION

Minimum uncertainty states of the single-mode
radiation field which show unequal uncertainties in
the two components of the complex field amplitude
are known as squeezed states. ' These states are
potentially useful in optical communication sys-
tems and also in detection systems for very
weak forces, such as gravitational waves. ' As yet,
however, there has been no experimental realization
of a squeezed state, although several optical devices
have been proposed which may produce them.
Theoretically, a parametric amplifier with a classi-
cal pump field will produce ideal squeezed
states. However, recent work on parametric
oscillators with the pump mode quantized shows
that the amount of squeezing is considerably re-
duced. " ' Squeezing has also been predicted to
occur in resonance fluorescence and the free-
electron laser. '

Since a squeezed state is generated via a quadratic
interaction of the electromagnetic field, it has been
proposed that a two-photon laser may generate
squeezed states. ' A first experimental realization
of a two-photon laser has recently been reported.
Previous analyses ' of the two-photon laser ei-
ther have assumed thermal fluctuations to be dom-
inant over quantum fluctuations or the derivation
has been in terms of a photon number distribution.
Thus, they have not been able to address the ques-
tion as to whether or not squeezing is present.
Squeezing, like photon antibunching, is a manifesta-
tion of the quantum nature of the electromagnet
field and for this reason a theoretical treatment of
the two-photon laser investigating squeezing must

treat quantum noise effects fully. Recently, a
quantum-statistical analysis of the two-photon
emission process has shown that a squeezed state is
not produced. Nonclassical photon correlations in
a two-mode, two-photon laser have been studied by
Zubairy.

In this paper we derive a quantum-mechanical
master equation for the two-photon laser which is
transformed to an approximate Fokker-Planck
equation following the method of Haken. A
linearized fluctuation analysis allows us to test for
squeezing in the two-photon laser. The equations
also con, tain the results concerning the quantum
fluctuations in two-photon optical bistability. This
phenomenon has recently been experimentally ob-
served. Most previous theoretical analyses have ei-
ther been deterministic or treated only thermal
fluctuations.

Recently, an analysis of the quantum fluctuations
in a two-photon laser and two-photon optical bista-
bi»ty has been given by Lugiato and Strini, who
used a method of Gaussian factorization of the mo-
ment equations. The method which we use relies on
the linearization of the stochastic differential equa-
tions corresponding to the Fokker-Planck equation,
is entirely equivalent to the Gaussian factorization
of moments and gives results which are in exact
agreement with those obtained by Lugiato and
Strini.

The two-photon laser is modeled as X two-level
atoms in an optical cavity interacting with a single
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resonant-cavity field mode, whose spatial variation
is neglected. The two-photon interaction with the
atoms is represented by an effective Hamiltonian
where a summation over intermediate states is im-
plicit. In the rotating wave and electric-dipole ap-
proximations we write the total Hamiltonian as

H, =ficoata+fico g o„,

H2 i' g ——(gat o.„e " ga o—qe . "),
p, =1

H =i%(S'ate ' ' —5'+ae'"'),

H4=I Fa +I F+a,

The operators a, a are the boson field operators
while o&,o&+,o& are the Pauli spin operators for the
p'" atom. The term 8' describes an external
resonant driving field, if present, and co is the cavity
and atomic resonance frequencies. The reservoirs
are described by I F for the field mode and I, and
I" for the atoms. I ~ describes phase-damping pro-
cesses while I', describes radiative decay or spon-
taneous emission. The coupling parameter g is the
dipole matrix element for the two-photon transition
with the intermediate states summed over.

The master equation for the density operator p of
the system is derived by tracing over the reservoir

operators and using the Markovian assumption3~ ~"

p 1
[H, +H, +H, ,p]+ p

t i t

N

Hg ——g (I qo„+I,cl„++I,+o~ ) .
p, =1 where the dissipative term for the atoms is

(2)

Bp ([cd,pop]+'[cd p, cd ])+ ([cd,pcs~ ]+[ATTN p, op ])

+ ( [oppycrp] + [cT qpcl ] )

and, for the field mode, a,a+= =a, a
N

V~S = g o.&e
'" 'p, ,

@=1

+2', h [[a,p],a t] .

The parameter K is the cavity damping rate and n, h

is the mean thermal photon number for the field
reservoir. The term co 2i is the transition rate,
caused by the atomic reservoirs, from level 2 to 1,
while coi2 is that from 1 to 2 and allows for the
description of incoherent pumping. y~ is the rate of
collision-induced phase decay of the atoms.

To convert the master equation into a Fokker-
Planck equation for the distribution function f in
atomic and field c-number variables we use a stand-
ard technique developed by Haker for nornial laser
theory. ' A correspondence between complex c
numbers and system operators is defined as follows: X=Tr(Op), (4)

V+ g+ g a+el k f+p
@=1
N

D~2S, = g o'„.
@=1

Since the resulting equation would not in general
have a positive-definite diffusion matrix when using
the standard representation, it is necessary to defme
a representation in a complex phase space. This
means that a and a+, V and V+, are not complex
conjugate and that D may be complex. Thus we are
defining a distribution function on a five-
dimensional complex space C, not R as in the
laser case. The appropriate normally ordered
characteristic function is



334 MARGARET D. REID AND DANIEL F. WALLS 28

where

+@+ EQS lGS Ep+0 ~
cg =e e e e

and fhe distribution function f is the Fourier transform of X

j'(a,a+, V, V+,D)= f J exp —i Ve+V E +P—+~P+~ P
D

g(p, g+, g,P, /3+)d edg d P

briefl, the method34 involves deriving the equation of motion for X from the master equation by using opera-
tor rules, and then taking the Fourier transform to obtain an equation of motion for f. The resulting equation
is written

L =L„+Lp+L„p,
a a + a' aa' ax*

Lp I(. ——a+ a+ +2ICn, h + +aa+ aa aa a aa

—2(B/BD) V+
CX

a2 aV+ Da
av

+ cz-
aa+

V+ — '(B/BD) V — V++ D (a+)
a( v+)' a v+

N (
—2(B/B» 1)+N 2(B/BD) a4 2

vav'a(v+)' avav+ av avav+ + '

+ a
2

a2
+2e —2(B/BD)

1 V+ 2 (e —2(B/BD) 1 )e2(B/BD)
av+ avav+

a' D
av a(v+)

N (ez(B/BD) 1 ) + V + V+ +2( 2(B/BD)
1 )

DazB BD

av av+ '
2

+y V+ V++ e 2(B/B» +N a
e 2(B/BD)a a

av+ avav+
'

2
+

avav+
'

n, [c+(c'—1)'/'], c) 1

la I'= 'no[c —(c'—1)'"], c)1
0, c)0

where
r

gDo

2K y)

" 1/2

no —— y/fy).

4g 2

1/2

To justify ignoring higher derivatives, a scaling
argument is used. We look first at the two-photon
laser, where ro(2 is nonzero to describe incoherent
pumping and 5' is zero. The steady-state deter-
ministic solutions (stable, unstable, and stable,
respectively), which ignore fluctuations, are '

l

and we have defined

y~~ =ro)z troz) i

+yp2

(~&z —~z) )
Do N——

(o) &2+o)z) )

y~ ~

and y) are the longitudinal and transverse
damping rates, respectively, and Do is the unsa-
turated inversion for all atoms. A first-order phase
transition is observed at C = 1. If a small noise lim-
it can be justified the transition will be very sharp
and the intensities will very closely follow the upper
stable branch above threshold. It is the upper
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branch that we consider. Here the c-number vari-
ables are of the order described below:

[a ['=np,

We consider K' as fixed, but N, the number of
atoms, very large. Hence, the scalings with regard
to N are as follows:

Dp

2

1/2
N=K' ' V~N, la I

~N (10)

r

N
=gK

1/2

It is thus possible to write the generalized equation
(6) as an expansion in 1/N. Truncating terms of or-
der greater than 1/N, a Fokker-Planck equation is
obtained as follows (E =8'/K):

at
[K(E—a)+2ga+ V]—

aa
( yiv—+gDa )— yll D —Dp) —2g[V+a + V(a+) ]I+c.c.

+g ~ V+g ~
V +2Kn, i, +g Va +g V (a ) —2 coi2

aa a(a+) aa aa+ aV a(V+)
2

+ [¹oi2+yp(D+N)]+ 2 Icoi2(N D)+to—pi(N+D) —2g[V a + V(a+) ]I f,avav+ aD

where c.c. means the complex conjugate of the pre-
vious expression. The second-derivative terms,
which are ignored in the deterministic approach, are
of order 1/N while the major drift or first-
derivative terr@is are of order zero. Thus, the effect
of noise will be small in the large N limit and our
approach is consistent. A small injected signal E
has been included in Eq. (11). Such a small signal
does not affect the two-photon laser deterministic
curve appreciably but allows the lower stable branch
to assume nonzero values and lowers the threshold
value slightly. '

The generalized equation (6) can be reduced in
another important physical limit. Allowing 5' to be
variable and the transition rate coi2 to be zero, the
equation describes two-photon absorptive optical
bistability. ' For this situation, the parame-
ters of Eq. (8) simplify as follows:

gN
2K yi

1/2

(13)

The steady-state deterministic solution is '

2 (x['
1+/x/

where the scaled variables are defined as

CK

np np

I

Since there is no pumping, the total unsaturated in-
version Dp is negative. For this reason, we redefine
C for the special case of two-photon optical bistabil-
ity as follows:

yll =tpzi

Dp= —N,

+yp .

(12)

For C ~ 2.71, absorptive bistability is observed.
Considering C as fixed and N large, the scalings (10)
are arrived at. The generalized Fokker-Planck
equation for the two-photon optical bistability,
truncated to first order in 1/N, becomes

[K(E—a)+2ga+ V]—
aa ( yiv+gDa ) —

I
—yll(D+N—) 2g [V+a + V(a—+) ]I+c.c.

D

a+g V+g V +2Kn, h +g Va +g V (a ) + yp(D+N)aa' a(a+)' ' aa aa+ av' a(v+)' avav+

Iy (N+D) 2g[V+a +V(a+) ]I f—.
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This equation is just the special case co &q
——0 of Eq.

(11) for the two-photon laser and the two different
physical systems are treated simultaneously in Sec.
III.

It is important to note at this stage the origin of
the various noise terms in Eq. (11) and to compare
them with those derived for the one-photon laser
and bistability ' by the same method. Present in
the two-photon process but not in the one-photon
process is

a =K(E —a )+2ga+ V+ I
4

V= —y V+gao. +r (23)

D= —r~~(D Do—) —2g[V+a + V(a+) ]+I n,
where for optical bistability Do ———N. The nonzero
correlations of the stochastic functions r. ,r„r~
are obtained from the nonzero components of the
diffusion matrix of Eqs. (11) or (16). Since we are
using a generalized representation, standard
methods of Ito calculus are applied to obtain

and its conjugate. This term is a direct consequence
of the quadratic nature of the interaction Hamil-
tonian H2 of Eq. (1). Also resulting from H2 are

g Va

, [ V+a'+ V(a+)'],

although similar terms appear in the one-photon
equations. Resulting from the atom-reservoir in-
teraction are

y~(D +N),
BVBV+

2

aviv+ (21)

+2 [co )p(N D)+co2, (N +—D)] . (22)

Identical reservoir terms appear in the one-photon
equation. For the one-photon laser, however, the
transition is second order and suitable scaling shows
that the term (21) is dominant over other noise
terms, for large N. Since for one-photon optical
bistability co &z

——0, all second derivative terms
present must be considered.

(r (t)r (t')) =2Ãn, „6(t t'), —

(r (t)l (t')) =2gV5(t t'),—

(r +(t)l (t') =2g V+5(t t'), —

( rv+(t)rv(t ) ) [N~ 12+ rp(D +N)]5(t t')—

(rv(t)rp(t') ) =2gVa'6(t t'), —

(r v+(t)r~+(t') ) =2g V+(a+) 6(t t'), —

(r (t)r (t'))= —2 „v5(t t'), —

(r, (t)r (t')) = —2~„V+6(t —t'),

(1 g)(t)l g)(t')) = (to)2(N D)+co—2, (N+D)

(24)

—2g[V+a + V(a+) ]]6(t t') . —

Do ro 2g (a+ ) 2ga
Ilriir Ilriir

gDpo! gA I p+
r(~ riII

Without these fluctuating terms, the equations are
the Maxwell-Bloch equations for the two-photon
system. Such equations have been analyzed previ-
ously ' and the steady-state solutions deduced.

To proceed with the adiabatic elimination, the as-
sumption that the atoms decay at a much faster rate
than the field, allows us to set V=D=0. Solving,
we find

III. ADIABATIC ELIMINATION
OF ATOMIC VARIABLES

1—rv 2g2/a
f

~

ri 2I2g cK

Since we are interested only in the field proper-
ties, we proceed to eliminate the atomic variables
under the assumption r&, y~~ &~X. This elimination
is most easily carried out in the equivalent Langevin
or Stochastic differential equation form of the
Fokker-Planck equation (11). These equations are

2gD /a/ a
o. =8' —Ka+—

, + 4g'
I

a I'
r//rl

where
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Ily y,

2
2g' fa

f

yllyi&

2ga+F=I
Yllyx+

The correlations of the stochastic force F,F+ are

&F(t)F«')& = «.(t)r. (t ) &+

4g'I a I'a'
I

IIy yi

&r,(t)r, (t )&+ -g'I
IIyll yi

2

(rD(t)rD(t') )

4g'
I
a

I

'a'
+ 2

Iiyll yi
(r, (t)r, (t'))—

Ylly 11

4ga+
yl

2g IaI a(I (t)I ( ))
y yll IIy yi

yllygll

Sg
I
a

I
a 2g I

a
I

a (r ( )r ( ))
yll yell IIyll yl

4 2

(F+(t)F(t'))= (r. (t)r.(t'))+, fa I' 1—
6

+ . . . Ia I" (r,(t)r„(t ))
11 yllyi

(26)

+», (rD(t)rD(t')) —,
I
a

I

'a' 1—4g'
I
a

I

' 8

y Iiy y fly'

8 4

I

2( + )4

ylly II
(r (t)r (t'))

yllyx

, , 3 I
a

I

'a' &rD(t)r„(t') &II 'y llyl

(r.(t)r. (t ))=

2g Do(a+)
( I (t)I (t') ) = 5(t t') =D, 5—(t t'), —

4g'
Ia Izaz 1

ylly,'11 y«y, ll+, I
I'( +)' 1 — —,g, , I

I'( +)' (r (t)r, (t )) .
yllyTII »l»" II'yllyi

Since the correlations (24) depend upon the atomic variables themselves, we approximate V and D by their
steady-state semiclassical values. Such an approximation is valid in the limit of large N where fluctuations are
small ~ The correlations become

2g Do
a~5(t t') =D 5(—t t'), —

(I +(t)I p(t')) = Nto)g+y~
Do

+N 5(t t')=D, 5(t ——t'),

Zg 'Do(r,(t)r, (t') ) = a'5(t t') =D 5(t t'), — —
yi&

2g Do
(rv (t)rv (t'))= (a+) 5(t —t')=D, , 5(t t'), —

)l
2M 12gDO a 5(t —t') =DyD5(t —t'),

4g'Do
, 2y,

I

a I' 5(t t')=D»5(t t')— —
Ily,'

DO
&rD(t)I D(t')) = 2yllN —2(co&z to&&)—

l

&r, (t)r (t )&=- 2& 12gao 2(a+)'5(t t') =D, 5(t t—'), —
y, ll
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for the two-photon laser and 2 X(I v(t)I v(t')) = — a 5(t t'—)
yi II

=D 5(t —t'), =Dvv5 (t t )—

(I (t)r, (t')) =—2 X (a+)'5(t t')— 16
&r (t)r (t ))= g ~a ~'5(t —t )

=D + +5(t t'), — =D»5(t t')—

for two-photon bistability. We have chosen to ig-
nore thermal noise n, h.

Defining the functions S and X as
=D 5(t t'), — (F(t)F(t') ) =2Xa'5(t t'), —

(F+(t)F(t') ) =S
~

a
~

'5(t t'), — (29)

=D + +5(t t')—,
and the Fokker-Planck equation equivalent to the
Langevin equation, (25) is written as

dP
2%Ca

/

a

np 1+
tjp

2 2 2

a Ba B(a+)2

(30)

Note that S and X are real functions of
~

a ~, and
that only P contains the unique two-photon term.

The thermal noise in the field n, h has been set
equal to zero in Eq. (30). Thus, Eq. (30) represents
the best possible situation for squeezing and in any
practical device thermal fiuctuations would act as a
further counter to squeezing.

IV. STEADY-STATE SGLUTIGNS

Denoting

P(x) =exp[ —P(x)],
we wish to solve

1 ~DJk
=F1(x) .

(33)

We now look for steady-state solutions to Eq. (30)
using the method of potentials. In the steady state,
time derivatives are zero, and we wish to solve an
equation of the form

The system of equations can be solved by integra-
tion if the following "potential conditions" are sa-
tisfied:

(34)

(31)

This is satisfied if

D;J(x) lnP =2A;(x) — Dt~(x) .
XJ 8XJ.

—2;(x)P(x)+ — D;.(x)P(x) =0 .
2 Bx

A. E=O. Two-photon laser

fi(I)F = + f2(I)a+, I =a+a (35)

The first special case to consider is no injected
signal, F.=O. The two functions F~,F + are given
as follows:



28 QUANTUM FLUCTUATIONS IN THE TWO-PHOTON LASER 339

and F + is obtained by interchanging a and a+. f,
and f2 are functions of intensity I only and, for
brevity, are not written out explicitly. Potential
conditions are satisfied, since

=f') (I)+f2(I)+If2(I)=aa+
(36)

Thus, the potential solution found from integrating
the following exists:

(37)

To determine P, we need the following integrals:

o. +c.c.= I,(a+a ) fi(I)

2 0,'0! 0!+c.c.= 2 I
(38)

A close inspection reveals that P is a function of in-
tensity I only. Hence, one can say immediately that
no squeezing is possible.

B. E+0. Two-photon laser with injected
signal or two-photon optical bistability

4X@'

(4X —S )a
2S8'

(4X' —S')a +a (39)

and F + is obtained by interchanging a and a+.
The potential condition is not satisfied, except in
the limit for which X is independent of I and dom-
inates over S. However, this is a nonphysical limit
since terms (Sp and Xp), for example, of S and X
which are independent of I are related as follows:

Still in search of squeezing, an external phase is
introduced into the system in the form of an inject-
ed signal E. For this case,

f)(I)F = ~f,(I)a+

V. LINEARIZED ANALYSIS

A. Deterministic steady-state results

The deterniinistic steady-state solutions ' are
summarized: The deterministic equation, in which
all fluctuations are ignored, is written

a=I' —af(I), I=
~

a
~

f(I)=E 1—
np[1~(I~/n p)]

(41)

where the sign of C changes [in accordance with the
changed definition (13)] for the optical bistability
case. The steady-state solution, or state equation, is

8'=af(I) . (42)

The stability of the state equation is determined by
standard linearization procedure. We substitute
a =ap ~5a in Eq. (41), where ap satisfies (42). The
result is

a 5 a
5a+ — p 5a+= —A(ap)

If'(I)+f(I) a'f'(I)
(a+) f'(I) If'(I)if(I)

(43)

The conditions for stability are

Expressions for the statistics of the field in the
limit of small fluctuations may be obtained by
linearizing the Langevin equation (25) or the
Fokker-Planck equation (30). This procedure is jus-
tified since the original scaling (Sec. II) of variables
showed second-order derivative tenris of Eq. (11) to
be of order 1/N higher than the zeroth-order drift
teriiis. Thus, in the limit of a large number N of
atoms, the effect of noise will be small, and we may
expand about a stable steady-state deterministic
solution. The linear theory will apply only to re-
gions other than threshold.

Sp =4Xp+ 4g 2N TrA)0,
detA =f(I)[2If'(I)+f(I)])0 .

(44a)

(44b)

0
g'Dp

4g Ncp)2
0 (40) These criteria imply f(I))0, f(I)+2If'(I) )0, and

f(I)+If'(I))0. Note that for the laser (E =0),
detA =0 and the linear theory presented in Sec. V 8
diverges.

B. Linearized fluctuation analysis
It is still possible to obtain limited information re-
garding the Fokker-Planck equation (30) by linear-
izing about a stable semiclassical steady state.

The effect of fluctuations can be estimated by
linearizing about a stable solution ap of the state
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equation (42). To first order we write for the fluc-
tuations 5a =a —ao,

T

d 5 a
5 a+ = —A(ao) 5 + +D'"(ao)&;(r),

(45)

where 8';(t) are delta-correlated random Gaussian
functions, A is the linearized drift as in Eq. (43),
which we abbreviate as

2Bap
A' '= B(a+)
B =f'(I), —A =If'(I)+f(I),
I=

I
ao

D(ao) is the diffusion array evaluated at ao..

2Xao S
~
ao

S iaoi 2X(ao )

(46)

where S and X, defined by Eq. (29), are functions of
I. The correlation matrix is deduced

&~') —&a)' (a"~)—
~

&a& ~'

(~'~) —
~
(~) ~' (~"&

—&a'&'
&(5a)'& (5a+ 5a )

&5a+ 5a & ((5a+)'&

D detA+[A ITrA]D[A—T I TrA]—
=2detA

2 TrA detA

( —2XA BSI)a o— SIA —2—XBIi

SIA 2XB—I ( ——2XA BSI)( a o+—) (47)

where stability demands detA ~0, —A ~0.
To first order, the intensity fluctuations g (0) are

calculated

g (0)—l= —&5 +5 &+R2 2 + . ((5a)')
I Ap

tions are stable '). The variances become

I(S+2X)
4[f(I)+2If'(I)] '

I (S —2X)
4f (I)

(50)

2X+S
f(I)+ 2If'(I) (48)

Since both f(I) and [f(I)+2If'(I)] are positive,
squeezing will exist if either S —2X or S+2X are
negative. If S+2X is negative, antibunching is also
present.

Of more immediate interest is the squeezing. De-
fining

a +Q
X) —— , X2 ——

2

the fluctuations in the quadratures are

(~, )'——,= 2(&."&
—("&&.))

+(( '& —
& &)'+(& "&—

& '&'),

C. Laser with injected signal

For the laser, an inversion exists and Do is posi-
tive. From Eqs. (26), (27), and (29), expressions for
S+2X and S —2X are derived. lt may be shown
that S+2X, and hence ~i and [g (0)—l], is al-
ways positive. S —2X simplified as follows:

(~ )' ——,
' = 2(( t ) —&~t) & &)

(49)
Daa

D 4g 4g (a+)
CX

UU y2 y2 2

—(&~'& —(~)')—((~ '& —&~')') .

Squeezing exists if one of the variances becomes less
than —,. We choose the coherent field E to be real.
This implies that ao is also real (only in-phase solu-

—2g Dp Dp 4g2+ &~»+&ri+r,yiII

2g Dp 4g2

rill ri
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The fluctuation D, which originated purely as a
result of the quadratic nature of the field-atom
Hamiltonian, has appeared as the first term of Eq.
(51). It is negative and by itself would produce a
squeezing in the imaginary direction Xz. Also neg-
ative, and thus tending to cause squeezing, is the
term proportional to Div. It has originated also
from the field-atom Hamiltonian but is not unique
to the multiphoton laser. In addition, there is the
term, which is positve and opposes squeezing, aris-
ing from the atom-reservoir interaction Hamiltoni-
an. There are two contributing parts. One is pro-
portional to coi2, the incoherent pumping rate, and
describes spontaneous emission. It is this noise
which is dominant, and thus destroys the possibility
of squeezing, in the one-photon laser. The second
term is proportional to yz, the rate of collisional
damping. Defining f=

y~
~

/2yi [and

yz ——yi(1 —f)], a value off=1 indicates pure radia-
tive damping and f=0 is the collisional limit. Ma-
nipulation of Eq. (51) reveals that the final result is
independent off

might otherwise have been present as a result of the
quadratic Hamiltonian. Expressing the result for
the variance in terms of the scaled variables of Eq.
(15) we find

Jx I2(2lx
I

+3)
2 4

4A, —(1+
I

x
I

4)
(53)

where

K
2' y((

This result is in exact agreement with the recent
work of Lugiato and Strini. The exact agreement
of the expressions is due to the linearized fluctua-
tion analysis used here which is equivalent to the
Cj'raussian factorization method used by Lugiato and
Strini. Where a potential solution can be found, as
for the two-photon laser without injected signal, the
Fokker-Planck method enables fluctuations to be
included to all orders.

2g Do 4g XS —2 =
'YilI 'Yi

(52)
D. Two-photon optical bistability

and for the two-photon laser (Do ——N) is clearly
positive and hence excludes the possibility of
squeezing. The spontaneous-emission noise propor-
tional to coiz has washed out any squeezing that

t

We consider co i2 ——0 and Do ———X the two-
photon absorptive bistability limit. Using the
scaled variables of Eq. (15), we find

S —27= (1+2 lx
I

),
STIES O

S+2X=
—2KC 4KC lx I

(1—2f) 8KC lx
I

(2f —1)
n, II n II no

+SKC lx
I

4KC lx I' (1—2f)
6O Pl 0

The linearized analysis predicts the following results for a real coherent driving field:

g (0)—1=- 2C( —1 4f fx I
+3 lx I'—)

n, (1+6C lx I'+3lx I'+4Clx I'+3lx I' —2C Ix I

"+ Ix

z ~ C ix I'( —1 —4f Ix I'+3lx I')
2(1+6C lx I'+3lx I'+4Clx I'+3lx I' —2Clx

I

"+ lx
C Ix I'(1+2lx I')

2(1+ lx I
+2C lx I')

Once again these results are identical to those ob-
tained by Lugiato and Strini. The expression for
the intensity fluctuations [g (0)—1] is inversely
proportional to no, which determines the photon
number within the cavity at the threshold of non-
linearity. For large enough no, fluctuations are
small and this is consistent with our approach.

It is evident that three can be no squeezing in the

imaginary direction Xz. However, squeezing is pos-
sible in the real direction Xi, for the same condi-
tions that antibunching exists. This is because the
spontaneous-emission noise proportional to co i2,
which drowned squeezing in the two-photon laser,
is no longer present. The teiiii originating due to
the quadratic nature of the Hamiltonian dominates
at low intensities. As intensity is increased, other
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quantum fluctuations become important and
squeezing (and antibunching) is destroyed . The
crossover point depends on f and is given by

~

x
i
—,[2f+(4f +3) ] (56)

As the linear theory described here cannot accurate-
ly predict the threshold region, Eq. (56) means, in

practice, that squeezing and antibunching exist at
low saturation (the lower branch) but not at high sa-
turations (the upper branch).

It is interesting to examine the behavior of Eq.
(30), (48), or (50) in the mathematical limit of zero
spontaneous emission, $=0 and

(57)

VI. CQNCLUSION

The two-photon laser has been modeled as N
two-level atoms in an optical cavity interacting, via
a simple two-photon transition, with a single
resonant-cavity mode. Following Haken's pro-
cedure for describing quantum-mechanical effects
in a one-photon laser, a Fokker-Planck equation for
the field alone is arrived at. The equation has

Since, for a laser, Do and hence X are positive, the
linearized analysis predicts squeezing in the ima-

ginary quadrature X2. Having chosen the coherent
excitation to be real, the direction of squeezing is
consistent with the prediction of photon bunch-
ing, ' g acting as a squeeze parameter. Allowing
X to change sign (Do ———X) and ignoring satura-
tion (

i
a

i
small) the equations describe a two-

photon absorber. The linearized analysis now
predicts photon antibunching and squeezing in the
real quadrature X&, for E real. This is in agreement
with exact steady-state statistics previously calculat-
ed, for an unsaturable two-photon absorber.

several leading noise terms. One originates from
the quadratic nature of the atom-field Hamiltonian,
while others result from the atom-reservoir interac-
tion and describe spontaneous emission. The
steady-state solution of the Fokker-Planck equation
in the two-photon laser limit is a function of inten-
sity only and can predict no squeezing. A phase
dependence is introduced into the system by inject-
ing a resonant coherent signal into the cavity. A
linearized analysis about a stable steady state reveals
that squeezing is possible only in a mathematical
limit where one can suitably neglect spontaneous
emission. Since the spontaneous emission is dom-
inant where there is a nonzero incoherent pumping
causing an inversion of atoms, our results predict
squeezing is not present in the present model of the
two-photon laser with injected signal. It should be
noted, however, that the effective two-level model is
an approximation to the three-level situation in an
actual two-photon laser. While the effective two-
level model is a good approximation for the inter-
mediate level well detuned from the laser transition,
the effect of the quantum fluctuations have not yet
been checked.

Our results indicate that for a two-photon ab-
sorber, where spontaneous emission is not present,
squeezing is possible at relatively low saturations,
that is, below the threshold of absorptive bistability.
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