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A simple model of electron scattering resonances near electronic excitation thresholds is dis-
cussed. The model consists of a single discrete electronic state coupled to several electronic con-
tinua. The vibrational dynamics in the resonance state is treated, taking proper account of non-
Born-Oppenheimer effects in near-threshold electron-molecule scattering. The effect of long-range
potentials is included via the threshold expansion of the partial decay widths of the resonance. The
analytic properties of the fixed-nuclei S matrix are analyzed in detail for two special cases (s-wave
scattering in the absence of long-range potentials and scattering from a strongly polar target mole-
cule). The dipole potential is shown to lead to a qualitatively new behavior of the trajectories of res-
onance poles near excitation thresholds. The model yields a qualitative description of the measured
excitation function of the 8 'X+ state of the CO molecule, where a strong and narrow threshold
peak is observed.

I. INTRODUCTION

For at least two decades the existence of electron
scattering resonances has been well established in atoms
and molecules. ' In molecules, resonances play an impor-
tant role in various processes involving a transfer of ener-

gy from low-energy electrons to the internal nuclear
motion and vice versa. Shape resonances supported by
the centrifugal barrier of the molecular potential are a
very common phenomenon in low-energy electron-
molecule scattering. The prototypical example is the 2.3-
eV shape resonance in e-Nz scattering. After a consider-
able theoretical and computational effort over the past de-
cade, vibrational excitation of N2 via the 2.3-eV resonance
is now well understood. ' The situation is less clear for
the resonances and threshold peaks observed by Rohr and
Linder in polar molecules such as HF, HC1, and HBr. ' '
Several theoretical explanations have been put for-
ward, ' ' but there is still no consensus on the basic na-
ture of the phenomenon, although it is generally believed
that the long-range dipole potential plays a decisive role.
As emphasized in Refs. 19 and 20, resonances near thresh-
old are nontrivially modified by long-range potentials act-
ing on the scattered electron.

In the present work we extend the model of Refs. 19
and 20 to describe resonances near electronic excitation
thresholds. The approach is largely phenomenological,
aiming at the analysis of the general features of such reso-
nances. The formalism is based on Feshbach's
projection-operator approach ' or Fano's theory of config-
uration interaction in the continuum, assuming a single
discrete electronic state interacting with several electronic
continua. The analytic structure of the multichannel S
matrix for electron scattering is analyzed, yielding a uni-
fied description of core-excited shape resonances and
Feshbach resonances near excitation thresholds. The ana-
lytic properties of the S matrix near threshold depend on

II. GENERAL THEORY

It is well known that resonances can be described as
discrete states embedded in and interacting with a continu-
um. ' ' In the present work we study electron
scattering resonances near the electronic excitation thresh-
old of a target molecule. We consider a very general and
simple model describing a single resonance coupled to
several electronic continua, including the vibrational
motion of the target molecule.

More specifically, we consider a discrete (localized) elec-
tronic state

~

d ) interacting with n continua k )
(a=1, . . . , n) ais the e. lectronic channel index. k')
and

~

k ) (a=2, . . . , n) are electronic continua associated
with the electronic ground state and the lowest (n —1) ex-
cited states with excitation energies E,„, respectively. An
appropriate model Hamiltonian can be written as

H=Hp+ V, (2.1)

HQ ——Ho+ yy ik )(E,„+Ek)(k + ~d)ed(d
~

a k

(2.2)

the angular momentum of the scattered electron and the
strength of possible long-range potentials. As specific ex-
amples, s-wave scattering by short-range potentials and
scattering in the presence of a "critical" dipole potential
are worked out in detail. Finally, the vibrational dynam-
ics in such core-excited resonances is treated exactly for a
simple model problem, yielding excitation functions for
electronic plus vibrational excitation by electron impact.
The model gives a qualitative explanation of the threshold
peaks observed in the excitation functions of several elec-
tronic states of the CO molecule.
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Hp ——T~+ Vp(R),

V= y y (
I

k ) V~ (d
I
+H. C. ) .

(2.3)

(2.4)

+N
der„~/dQ= 2'

with

kf
k I &f I

T
I

i & I' (2.7)

Here TN denotes the kinetic energy of vibrational motion
and Vp(R) is the electronic potential energy of the target
molecule. Hp is thus the vibrational Hamiltonian of the
target. For simplicity, we suppress the rotational degrees
of freedom and consider only one vibrational degree of
freedom. e~ is the energy of the discrete state and is a
function of the internuclear distance R. E,„ is the elec-
tronic excitation energy of the target molecule (we define

E,'„=0). ek is the energy of a continuum electron and
thus independent of R. The interaction V mixes the
discrete state

I
d ) with the continua k ) (a= 1, . . . , n)

and converts
I
d ) into a resonance. For simplicity, we as-

sume V~~ to be independent of R, although this restriction
can be easily relaxed.

We now introduce the adiabatic or Born-Oppenheimer
(BO) approximation for the basis states. We assume that
the electronic wave functions of the discrete state and the
continuum states

T=V+V(E, H—p+iri) 'T

=V+V(E, H—,+iri) 'V-+ (2.8)

&f I
T li &=&u

I ~dk~(E~ ~) '~uk;
I

0&

where

(2.9a}

where E, =E; + (0
I
Hp

I
0) is the total energy and

E; =k; /2 is the kinetic energy of the incident electron. tl
is the usual positive infinitesimal and Qz is the normali-
zation volume which drops out of the final expressions.
Taking account of equation (2.5) we can integrate over the
electronic coordinates in each term arising from the ex-

pansion (2.8). The resulting infinite series, which still con-
tains vibrational operators, can be summed exactly, giving

4~(r, R }= (r
I
d ),

@k(r,R)=(r
I
k ),

where r denotes the electronic coordinates collectively, de-

pend sufficiently weakly on the internuclear distance such
that

1 gcF'=H +eg +6 (E —Hp ) — I' (E —Hp ),
2

5'(E)= gb (E)= g(2n) '& dE'
E—E'

r'(E)=gr (E)=/2 gv, „gE ek)V~

(2.9b)

(2.9c)

[T&,4~(r, R )] =[T~,@k(r,R)] =0 . (2.5) a a k

It should be stressed that the BO approximation is not
necessarily a good approximation for the resonance wave

function obtained by diagonalizing H Tz for each—R,
since the degree of mixing of the basis states

I
d) and

I

k ) may vary rapidly with internuclear distance. This
may happen, in particular, when the discrete state crosses
a threshold.

The initial and final asymptotic states are

i)= lk, ') lo'),
f&= kf &lv ) .

(2.6)

Here IO') and
I

v ) are the vibrational ground state of
the target molecule in its electronic ground state and the
uth excited vibrational state of the target molecule in the
ath excited electronic state, respectively. k; and kf are
the initial and final momenta of the scattered electron for
1~a electronic and 0—+v vibrational excitation. Here we
have assumed the BO factorization of the electronic and
vibrational parts of the wave function for the asymptotic
states. The BO approximation is an excellent approxima-
tion for the electronic ground state of the majority of mol-
ecules and is assumed here to be valid also for the excited
states under consideration.

The differential cross section for the excitation of the
vth vibrational level of the ath electronic state is given by
(in atomic units, iii=e=m, =1)

(2.9d)

The non-Hermitian Hamiltonian 4 describes the vibra-
tional motion in the resonance state. Here we have intro-
duced the level-shift functions b, (E) and the width func-
tions I (E). The partial electronic decay widths of the
resonance are given by I (E) and the level shift of the lo-
calized state is given by 6'(E). The decay widths (I ) and
level shifts (6 ) depend not only on the kinetic energy of
the scattered electron but also—via Hp —on the internu-
clear distance R and the momentum of nuclear motion.
The dependence of the resonance position and width on
the nuclear momentum is, by definition, a nonadiabatic ef-
fect.

The integral electronic and vibrational excitation func-
tions are

(E) I (Ef)1 '(E;)
I & I

(E —~)
l

(2.10)

Here v represents the spatial degeneracy of the discrete
state. Ef is the final kinetic energy of the electron. Equa-
tion (2.10) together with Eqs. 2.9(b)—2.9(d) represent the
exact formal solution of the multichannel problem of an
electronic resonance coupled to many electronic continua
and the vibrational motion.
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III. POTENTIAL-ENERGY CURVES,
FIXED-NUCLEI CROSS SECTIONS,

AND POLES OF THE S MATRIX

In this section we consider the electron-molecule
scattering problem in the fixed-nuclei limit. We shall con-
fine ourselves to the two-channel problem for the sake of
simplicity. The extension of the formalism to more than
two channels is absolutely straightforward.

A. General

In the fixed-nuclei limit, T&~0, the operator E, 00—
appearing in the argument of I ' and b, ' in Eq. (2.9b)
reduces to

T(E)=
E e——5+ii /2 Vfk Vdk I Vdk I'

(3.4)

Here we use g (ground state) and e (excited state) as the
electronic channel indices.

A criterion for the occurrence of a resonance in the
scattering cross section is an increase of the phase shift by
approximately m. The position of the resonance may be
defined as the energy where the K matrix has a singulari-
ty. ' ' The real Ematrix is given by

K(E)= mT( 1—i m T)—

E=E,—Vo(R), (3.1)
I ~Pi I Vdk ~la

E —ed —6 ~5k Vdk Vdk
(3.5)

where E, is the total energy which is conserved in the
scattering process and E is the kinetic energy of the in-
cident electron. In the fixed-nuclei limit the integral elec-
tronic excitation functions are E ed(R) —5'(E)=—0 . (3.6)

Obviously, the singularities of the K matrix are given by
the solutions of

o '(E) = I (E E,„)I'(E)—

1

(E e —S')'+—( r'/2)' (3.2)

When the complex level-shift function b, ' iI'/2 va—ries
slowly in the neighborhood of the resonance, the line shape
of the spectral function becomes approximately Lorentzi-
an. An expansion of b, ' —iI'/2 about the solution of Eq.
(3.6) yields

It is useful to rewrite Eq. (3.2) in terms of the spectral
function Ad(E) of the discrete state

Z(Ep )
Ad(E)=

rett/2

(E E )2+(rett/2)
(3.7)

I (E E,„)—
cr '(E) = A (E)I'(E),

r'(E)
(3 3a) with the effective width

tot(E) g a~i(E) (3.3b) r'"=z(E, )r'(E, ) (3.8)

where

Ad(E) =—1 I'/2
m (E e —S')'+(r'/2)'— (3.3c)

and

Z(E ) = 1 — 5'(E)
aE E=E

P

(3.9)

Here I'(E) and I' (E E,„) are the —partial widths for
entering the resonance from channel 1 and for leaving the
resonance into channel a, respectively. Apart from the
factors I'(E) and the inverse of the kinetic energy of the
incident electron, the total integral cross section cr'(E)
consists of a number of superimposed spectral functions
of the localized state

I

d ), weighted by the energy
dependent ratios of the partial decay widths to the total
width (I /I').

In the case of the two-channel problem, the fixed-nuclei
T matrix which leads to the cross section (3.3a) can be
written as

Here Ez is the solution of Eq. (3.6) and Z(Ez) is the re-
normalization factor, which is essentially the residue of
the pole of the K matrix. It shows how much of the origi-
nal unperturbed strength remains in the resonance peak at
E=E&. Note that the main resonance peak at Ez not only
becomes reduced in strength due to Z(Ez), but also in
width.

An alternative possibility in looking for resonances is to
continue analytically the S matrix into the complex
momentum or energy plane and to search for poles of the
S matrix. ' ' For the present problem, the S matrix is
given by

S=]L—2m.i T

1
E ed '+i'(

I
Vdk —

I

——
I Vfq I

) —2~i Vdk Vlk

E—e —6'+ t I'/2 E—&d —~'+&~(
I

Vgk I

' —
I Vdk

I
'), (3.10)
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The poles of the S matrix are given by the solutions of

z —eg —b, '(z) +—I'(z) =0,
2

(3.11)

where z denotes the complex energy variable. It is con-
venient to introduce the complex channel momentum
variables k;=u;+iv; which are related to the complex
channel energies z; via z; =(k;) /2. The channel momen-
tum k2 is defined by

k2 = [(k i ) —2E,„]' (3.12)

In a two-channel problem, the energy plane is a four-
sheeted Riemann surface. 3 ' In terms of the channel
momenta, the sheets are defined as follows: physical sheet
(p),

v~&0, v2&0;

first unphysical sheet (U 1),

v~&0, v2&0;

second unphysical sheet (U2),

v&&0, v2&0;

third unphysical sheet (U3),

v»0, v2&0.

(3.13a)

(3.13b)

(3.13c}

(3.13d)

In the present case we shall consider the Ul and U2 sheets
for the analysis. These are the relevant sheets to describe
resonances in the vicinity of the electronic excitation
threshold.

To find the poles of the analytically continued S matrix,
we define

E'(E)
2~ z2 —E

We then have for zz on the real axis, z2 E2+irI, ——

ReF'(E2+irl) =5'(E2),

Im F( E+2i r)I=+I'(E )22/.

(3.14a)

(3.14b)

(3.14c)

F'( —k2)=F'(k2) (3.14d}

F '(z2 ) is thus the analytic continuation of
b;(E2)—il'(E2)/2 into the upper half of the energy

plane. When considered as a function on the complex k2

plane, F'(k2} satisfies the symmetry requirement

eral theory of threshold laws ' we know that the thresh-
old onset of I' is determined by the centrifugal potential in

the absence of other long-range potentials. Introducing a
partial-wave representation of the continuum, the width
function can be written as

I'(E')= g I i(E'),
1=0

(3.16)

where E'=E E,„—and E is the kinetic energy of the in-
cident electron. The threshold energy dependence of
I i(E' ) is given by

I E(E' ) (E' )C2i+i I~2 (3.17)

It is thus clear that the lowest angular momentum allowed

by the symmetry selection rules dominates the energy
dependence of the width at threshold. A simple parame-
trization of the width function which is in accord with the
threshold law is given by

I'(E ') =A(E'/8) (2 —E'/8) (3.18)

rz(E) =I =const,

hs(E) =0
(3.19)

in the energy region close to the threshold. Throughout
the present work we choose I 0——0.5 eV.

B. s-wave scattering from short-range potentials

Putting a = —,
'

in Eq. (3.18), the width function reads

where A, 8, and a are free parameters. The threshold ex-
ponent a is equal to (21+1)/2 in the absence of long-
range potentials and takes non-half-integral values in the
presence of a (subcritical) dipole potential. " A is the
maximum value of the width and 28 determines the ener-

gy range for which I'(E) is different from zero. I'(E')
has to vanish at high energies to guarantee the existence of
the Hilbert transform in Eq. (2.9c). The detailed shape of
I'(E') at high energies is irrelevant for the scattering near
threshold and we choose the simple symmetric form (3.18)
for convenience.

Being interested in resonances near the electronic exci-
tation threshold, the form of the decay width associated
with the electronic ground state of the target is not of
relevance for the results. For simplicity we assume

Analogously defining Fz(ki), Eq. (3.11) for the poles of
the S matrix becomes

I"(E' ) =A [(E'/B)(2 E'/8)]'i— (3.20)

—,'k2+E,„—ed(R) —F'(k2) —Fs(ki)=0 .
and exhibits the threshold behavior I (E')-(E')'~2 ap-

(3.15) propriate for s-wave scattering. The level-shift function
follows from (3.20) with the use of (2.9c):

The solutions of Eq. (3.15) are associated with different
sheets of the energy plane according to the definition
(3.13).

To construct the analytic function F's(k) according to
Eq. (3.14a), we have to know the energy dependence of the
width function I 's(E). Being interested in resonances
close to the threshold of an electronic channel, we may
represent I'(E) by its threshold expansion. From the gen-

6'(E' ) = 2A IE'/8 —1+a[(E'/8)(E'/8 —2)]'~2j,

(3.21)

where a = 1 for E' & 0 and a =0 for 0 & E' & 28.
We obtain the singularities of the K matrix by solving

Eq. (3.6). The dependence of the poles of the K matrix on
the internuclear distance R is determined by the energy



28 THEORY OF RESONANCE ANDD THRESHOLD EFFECTS IN THE. . . 3319
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to V,„. However, this bound state can decay into the con-
tinuum associated with the electronic ground state of the
target molecule. This state thus becomes a resonance —a
so-called Feshbach resonant state. For R (0.07 A there
is a solution of Eq. (3.6) above the threshold V,„. This
state can decay into the continua associated with both the
electronic excited and the ground state of the target mole-
cule. This state is a so-called core-excited shape resonant
state. Note that the two resonances join continuously at
the threshold.

In Figs. 1(c) and 1(d} we show the fixed-nuclei integral
elastic and inelastic cross sections calculated from Eq.
(3.2). When the resonance lies below the threshold E,„,
the elastic cross section shows a narrow resonance peak.
The width of this Feshbach resonance peak is given by

r,ff—Z(E&)l 0, where Z(E&) is defined in Eq. (3.9}. In-

spection of Eqs. (3.9) and (3.21) shows that Z(E~) de-

creases from approximately unity to zero as the resonance
approaches the threshold from below. The Feshbach reso-
nance peak thus becomes narrower as it moves closer to
threshold (with decreasing R ). Once the resonance is
above the threshold E,„, the width increases because decay
in the second channel is now possible. For a resonance
immediately at threshold, Eqs. (3.6)—(3.9) are not applic-
able since 5' and I ' are rapidly varying functions of ener-

gy. Correspondingly, the elastic and inelastic cross sec-
tions exhibit a non-Lorentzian profile in this case.

For certain values of the internuclear distance [e.g. ,
R =0.05 A, see Fig. 1(c)] the elastic cross section shows a
so-called Wigner cusp ' at the threshold E=E,„. This
cusp structure is associated with the strong and nearly
vertical onset of the inelastic cross section at threshold
[see Fig. 1(d)]. The existence of cusp structures reflects
the unitarity of the S matrix (3.10). The S matrix of the
present resonance model is unitary since we take full ac-
count of the energy dependence of the complex level-shift
function 6'—(i/2) I' near the excitation threshold.
Wigner cusps of this type are a well-known phenomenon
in electron-He scattering, ' for example.

As ed increases further (R decreases), both elastic and
inelastic scattering cross sections show a core-excited
shape resonance (see Fig. 1). The shape of the resonance
peak can be approximated by a Lorentzian profile and the
linewidth of the resonance peak can be well approximated
by I'(Ez) + I 0 where Ez is the position of the core-
excited shape resonance.

For a deeper understanding of the cross sections and a
proper mathematical description of resonances near exci-
tation thresholds we consider the poles of the S matrix.
For s-wave scattering from short-range potentials the
function F'(z) [see Eq. (3.14a)) becomes, in terms of the
channel momentum variable k2,

As we are particularly interested in the vicinity of the
threshold, u, is large and will not change sign within the
range of the values of k2 of interest. We may take the

sign of u
~

as positive. Figure 2 shows the resulting trajec-
tories of the poles of the S matrix in the complex k2 plane
in the vicinity of the origin, obtained as the solution of
Eq. (3.26). For comparison we show also the trajectories
of the poles of the S matrix in the limit of vanishing I 0
(i.e., the one-channel case) by the dashed lines.

In the single-channel case (I o ——0) there are two reso-
nance poles of the S matrix in the lower half of the ki
plane, situated symmetrically to the imaginary axis. With
increasing R the poles move inward essentially parallel to
the real axis and meet on the negative imaginary axis,
where a pair of virtual states is created. With further in-

creasing R one virtual-state pole moves down the

imaginary axis, while the other moves upwards and
crosses the origin to become a bound-state pole. These
pole trajectories are in full accord with the general results
of analytic S-matrix theory for single-channel s-wave

scattering.
When I o is nonzero there are, for each internuclear dis-

tance R, two resonance poles, in the right and left halves
of the k2 plane. In contrast to the single-channel case,
they are situated nonsymmetrically to the imaginary axis.
The resonance pole in the fourth quadrant moves inward
with increasing R and further away from the real axis.
approaches the negative imaginary axis for R~ao. The
resonance pole in the left half-plane moves from the third
quadrant into the second quadrant as R increases. It ap-
proaches the positive imaginary axis for R ~ oo.

0.3 Q 0.3

0 2 i(X 0.2

0

X o.i

0.1 X

0 -0.1
-X

0 -0.1

0.2 XX 0.2

physical relevance.
With Eq. (3.19), Eq. (3.15) reduces to

,
' k—2+E,„e—d(R) —F'(k2)+(i/2)I Osgn(u i ) =0 .

(3.26)

F'(k2) = — [2B—k2+ik2(4B —k2)'~ ] .
4B

(3.25)

This function is single-valued and analytic in the complex
k2 plane, cut along the real axis from +2M B to infinity.
The branch points at k2 ——+2V B are a consequence of the
artificial cutoff of I'(E' ) at E'=2B and are thus not of

FIG. 2. Trajectories of the poles of the fixed-nuclei S matrix
for s-wave scattering in the complex momentum plane. Num-

0

bers give the corresponding internuclear distance R (in A) to in-
dicate the movement of poles with E. Broken lines indicate the
trajectories of the poles in the case of 10——0 (single-channel
case).
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When the kz plane is mapped on to the complex energy
plane z i

——x i + iy i via zi ——k 2/2 + E,„, we obtain Fig. 3.
The energy plane shown is actually a two-sheeted
Riemann surface. The first unphysical (Ul) sheet corre-
sponds to the upper half of the k2 plane, the second un-

physical (U2) sheet to the lower half of the k2 plane. For
comparison we show the trajectories of the poles of the S
matrix in the limit of vanishing I o by the dashed lines. In
the case of I 0=0, poles on the physical sheet (v2 &0) are
indicated by circles, poles on the unphysical sheet (v2 &0)
by crosses. The resonance poles on the unphysical sheet
are situated symmetrically to the real axis and move to-
wards the axis with increasing R. They meet on the real
axis slightly below the threshold E,„. Then one pole
moves down the real axis and the other upwards, both be-
ing on the unphysical sheet. The latter pole moves onto
the physical sheet at the threshold and then moves down
the real axis on the physical sheet.

When I o is nonzero, we obtain the trajectories given by
the full lines in Fig. 3. The lower trajectory on the U2
sheet (Fig. 3) corresponds to the resonance pole in the
second quadrant of the k2 plane. The resonance pole in
the upper half of the U2 plane corresponds to the reso-
nance pole in the third quadrant of the k2 plane. With in-
creasing R the resonance pole moves from the U2 sheet
onto the Ul sheet (i.e., yi goes through zero). The pole on
the U1 sheet is indicated by circles in Fig. 3. Note that
the two Feshbach resonance poles below the threshold E,„
are on different Riemann sheets. The pole trajectories
shown in Figs. 2 and 3 are a general result for multichan-
nel s-wave scattering in the absence of long-range poten-
tials.

The comparison of the present results with the case of
the one-channel problem (I 0

——0) shows that the trajec-
tories of the poles in the energy plane are shifted down-

ward by I g2 in the asymptotic limit R=+ ao. For large
R the Feshbach resonance pole on the U2 sheet describes
the sharp resonance peak in the elastic cross section below
threshold [see Fig. 1(c)). For small R, the core-excited
shape resonance pole in lower half U2 sheet describes the
"broad" resonance structure above threshold in the elastic
and inelastic cross sections [see Figs. 1(c) and 1(d)]. How-
ever, the above-mentioned non-Lorentzian profile for a
resonance very close to threshold cannot be described by
the complex poles of the S matrix.

The behavior of the poles of the S matrix near the exci-
tation threshold illustrated in Figs. 2 and 3 is known as
the "shadow pole" phenomenon. It has been discussed in
a different context (classification of meson-baryon reso-
nances by symmetry schemes which are partially violated)
in Refs. 42—44. It can be shown under rather general as-
sumptions about unitarity and analyticity that the ex-
istence of a resonance pole of the multichannel S matrix
requires the existence of shadow poles on other Riemann
sheets in the energy variable. In particular, the trajec-
tories of the poles representing the resonance above
threshold (in the fourth quadrant of the k2 plane) and the
resonance below threshold (in the second quadrant) are not
connected (see Fig. 2). This is in contrast to the single-
channel case, where the resonance pole trajectory is con-
nected with the bound-state pole trajectory (via a virtual-
state pole trajectory). A model similar to the present one
has been discussed by Ross ' for the case 1= 1, i.e., p-wave
scattering.

It is straightforward to extend the present analysis to
scattering in partial waves 1&0 as outlined in the single-
channel case in Ref. 20. For 1&0, I'(E) and 6'(E) are
smooth functions of energy at the threshold E,„. There-
fore, deviations from the Lorentzian line shape are weak
and threshold effects such as Wigner cusps are absent.

C. Scattering from polar molecules

—0.1
0
p

0.3 0.2
0 ——+ —-0- W —0

03 0
C

0.3 P "2

t i
I I I

5 qp Eex 15
Xg (eV)

FIG. 3. Trajectories of the poles of the fixed-nuclei S matrix
for s-wave scattering in the complex energy plane. Numbers
give the corresponding internuclear distance R (in A) to indicate
the movement of poles with R. Broken lines indicate the trajec-
tories of the poles in the case of l o ——O. Circles indicate poles on
the first unphysical (Ul) sheet, the crosses poles on the second
unphysical (U2) sheet.

It is well known that long-range potentials are of cru-
cial importance in electron-atom or electron-molecule
scattering near threshold. ' In particular, resonances
near threshold are affected by the modification of the
threshold onset of the width function I (E).' In this sec-
tion we present an example of the impact of a long-range
potential on a resonance near an electronic excitation
threshold. We consider a discrete state coupled to a con-
tinuum distorted by a critical dipole potential. A critical
dipole (D, =1.625 debye) is a dipole which is just not
strong enough to bind an electron. In the presence of a di-
pole potential, the threshold exponent of the width func-
tion (3.18) is a real number a with 0 &a & —, . Here, a= —,

corresponds to a vanishing dipole moment of the target
molecule, a =0 to the critical dipole moment.

Putting a =0 in Eq. (3.18) the width function reads

A, for 0&E' &28
3.270, elsewhere .

Thus the square-root onset of I'(E' ) in the case of pure
s-wave scattering is converted into a step-function onset
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when the dipole moment approaches the critical value.
The level-shift function reads

6'(E' ) = ln
2m 2B —E' (3.28)

The level-shift function is shown as the full curve in

Fig. 4(a). As in Sec. III B, we take 2=1.3 eV, B=10.0
eV, Ed(Ro) = —15.76 eV A ', and I z

——0.5 eV Fo. ur typi-
cal intersections with the straight line E ed(—R) are
shown in Fig. 4(a) to illustrate the graphical determination
of the singularities of the K matrix [Eq. (3.6)]. The level-

shift function possesses a logarithmic singularity at
threshold. As a consequence we find three intersection
points of b, '(E) with the straight line E—ed(R) when

ed(R) exceeds some critical value ed(R) (=11.9 eV), in

contrast to the case of pure s-wave scattering where a sin

gle solution of Eq. (3.6) is obtained for each R. One of
these intersection points occurs below threshold and the
other two intersection points are above threshold. When

ed(R) is below the critical value, only one intersection

point is obtained below threshold.

Figure 4(b) shows the resulting fixed-nuclei potential-

energy curves. The parameters used are the same as in

Fig. 1(b). The dashed-dotted curve representing a singu-

larity of the K matrix does not simply cross the threshold,
as it does in the absence of long-range potentials. The
potential-energy curve of the resonance solution of Eq.
(3.6) "bends back" when approaching the threshold and
runs parallel and extremely close to the threshold for R
& 0 A. The solution below threshold exists over the whole

range of internuclear distances and lies extremely close to
the threshold for R &0 A. This unusual behavior of the
potential-energy curves is easily understood from the
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k2
F'(k&) = ln ~ 2,2n.

(3.29)

where

C =48.

graphical solution of Eq. (3.6) and is a consequence of a
long-range dipole potential. '

In Figs. 4(c) and 4(d) we show the elastic and inelastic
cross sections calculated from Eq. (3.2). Note that the
shape of the elastic and inelastic cross sections are identi-
cal for E & E,„. They are almost identical with that of the
spectral function of the localized state because of the
present simplified choice of the width functions (step
function for 1 ', constant for rg).

In the elastic scattering cross section there is a very
sharp and intense peak just below threshold. This peak is
due to the solution of Eq. (3.6) below threshold which al-

ways exists. The width of this peak becomes narrower as
ed increases (R decreases) F.or ed &E,„ this peak corre-
sponds to a Feshbach resonance state coupled to the elec-
tronic ground state of the target molecule by the decay
width 1 ' =Z(E )1 =I' .

For ed &E,„, this Feshbach resonance state is now a
state "split off" from the bottom of the continuum due to
mixing of the localized discrete state with the continuum.
Physically, this is a state supported mainly by the dipole
potential. ' ' For e~ &E,„,Z(E&) becomes much smaller
than 1 and approaches zero. The width of the Feshbach
resonance peak is then I' =Z(Er)1 o « I 0 [see Eq.
(3.8)], i.e., the Feshbach resonance becomes extremely nar-
row [see Fig. 4(d)]. Note that the renormalization factor
Z(E& ) becomes much smaller here than in the case of pure
s-wave scattering discussed in Sec. III B, where Z(E&)~0
only in a very narrow energy interval just below threshold.

For R (0 we observe a sharp threshold peak in the in-
elastic cross section which becomes smaller as ed in-
creases. This is certainly a new feature which is not ob-
served in the inelastic cross section for s-wave scattering
in the absence of long-range potentials. This peak reflects
the presence of a Feshbach resonance state supported by a
dipole potential just below threshold. This peak is thus in-
terpreted as a dipole-moment-induced threshold effect.

The other structure at higher energy is a "broad" reso-
nance structure which represents a core-excited shape res-
onance for large e~ (small R) as in the case of pure s-wave
scattering. This core-excited shape resonance can be ap-
proximated by a Lorentzian like spectral function and the
width can be approximated by I + I o. In contrast to the
case of pure s-wave scattering discussed in Sec. III.B a
core-excited shape resonance above threshold exists togeth
er with a Feshbach resonance below threshold for a range
of internuclear distances.

For a further understanding of the cross sections and a
more precise mathematical description of resonances, we
now look for poles of the analytically continued S matrix.
When I'(E) is given by the step function of Eq. (3.27), we
obtain from Eq. (3.14a)

10
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FIG. 5. Trajectories of the poles of the fixed-nuclei S matrix
for a critical dipole moment in the complex momentum plane.
Numbers give the values of the corresponding internuclear dis-

tance R to indicate the movement of the poles with R. Trajec-
tories obtained for I p=O (single-channel case) are given as
dashed lines.

F '(kz) has branch points at k2 ——+C and at k2 ——0. To ob-

tain a single-valued function we have to cut the kz plane

along the real axis for
i
k2

~
& C and along the negative

imaginary axis. The branch lines on the real axis are a
consequence of the unphysical cutting off of I"(E') at
E'=2B in Eq. (3.27) and thus of no physical signifi-

cance. ' The branch cut on the negative imaginary axis,
on the other hand, is a consequence of the steplike onset

of I'(E' ) at threshold and reflects the effect of the long-

range dipole potential. The symmetry of F'(kq) [Eq.
(3.14d)] implies that F'(k2) has to be real on the positive
imaginary axis, i.e., the argument of the logarithm is de-

fined as zero on the positive imaginary axis.
Figure 5 shows the resulting trajectories of the poles of

the S matrix in the complex k2 plane, obtained as the
solutions of Eq. (3.26). For illustrative purposes, the tra-
jectories of the poles of the S matrix in the limit of van-

ishing I 0 (single-channel case) are also shown as dashed
lines. For I 0

——0 we have, for each internuclear distance

R, a bound-state pole on the positive imaginary axis as
well as two resonance poles in the lower half-plane, situat-
ed symmetrically to the imaginary axis. The bound-state

pole starts at the origin for R= —00 and moves up the
positive imaginary axis with increasing R. The two reso-
nance poles below the real axis move inward with increas-

ing R and further away from the real axis. The nonvan-

ishing imaginary part of F(k2) on the negative imaginary
axis prevents them from reaching the axis, i.e., there exist
no virtual-state poles in this case. ' '

When I o is nonzero we have, for each internuclear dis-

tance R, three resonance poles. There is no resonance pole
in the first quadrant. In the second quadrant of the k2

plane, a Feshbach resonance pole starts at the origin (for
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R = —ao) and moves into the second quadrant at a certain

angle given by (for B »0)

QV
(3.30)

03 02
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W 0—————0—~~3—M

J
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0 -0.1

0

0.3 o.

I I ) I

5 &0 Eex
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FIG. 6. Trajectories of the poles of the fixed-nuclei S matrix

for a critical dipole moment in the complex energy plane. Cir-

cles indicate poles on the Ul sheet, the crosses poles on the U2

sheet. Trajectories obtained for I 0
——0 are given as dashed lines.
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Here P„„ is measured counterclockwise from the positive

imaginary axis. Note that the angle is determined by the

ratios of the partial decay widths. With increasing R, the

pole trajectory bends back and approaches the positive im-

aginary axis.
The two resonance poles in the lower half-plane are si-

tuated nonsymmetrically to the imaginary axis. The term

il g2 in Eq. (3.26) displaces the poles nonsymmetrically.

The resonance poles move inward with increasing R and,

at the same time, further away from the real axis. For
R ~ oo they approach the negative imaginary axis.

When the kq plane is mapped onto the Ul and U2
sheets of the complex energy plane zi ——xi + iy i via

z, =kz/2+ E,„, we obtain Fig. 6. For comparison, we

show the trajectories of the poles of the S matrix in the

single-channel case by the dashed lines.
In the limit of vanishing I o there is, for each R, a

bound-state pole of the S matrix on the negative real axis

of the Ul sheet as well as two resonance poles on the U2
sheet, situated symmetrically to the real axis. The bound-

state pole starts at the origin for R= —oo and moves

down the negative energy axis with increasing R. The res-

onance poles move from right to left with increasing R
and, at the same time, recede from the real axis.

In the case of nonzero I'0, the resonance pole in the

upper half of the kz plane is mapped on the Ul sheet and

is indicated by circles. The resonance poles in the lower

half of the kz plane are mapped on the U2 sheet and are

indicated by crosses. The Feshbach resonance pole on the

lower Ul sheet starts at the origin for R = —oo and leaves

the origin at a certain angle given by

~r,
4.» = (3.31)

IV. DYNAMICAL CALCULATIONS
OF CROSS SECTIONS

In the preceding sections resonances and threshold ef-
fects in electronically inelastic and elastic electron-
molecule scattering have been analyzed in the fixed-nuclei
limit. General results have been obtained which are of
relevance for the interpretation of experimental data.

Here P„» is measured in the counterclockwise sense from

the negative real axis. Asymptotically, the imaginary part

of the pole position approaches —I +2. In the limit

R =+ oo the trajectories of the poles are displaced by
—I'0/2 from the ones obtained for I O=O. Note that the

imaginary part of the pole position decreases very rapidly

with R in the region R (0.1 A.
This reflects the pronounced narrowing of the Feshbach

resonance peak below threshold in the elastic cross section

with decreasing R [see Fig. 3(d)]. The resonance pole in

the lower half of the U2 sheet describes the core-excited

shape resonance in the elastic and inelastic cross sections

for small R (see Fig. 3). We see explicitly in Fig. 6 that

the width is I =I 0+ I'. The resonance pole in the upper

half of the U2 sheet is physically irrelevant.

The above analysis of the poles of the S matrix gives an

analytic description of core-excited shape and Feshbach

resonances near threshold of electronic channels with a

strong dipole moment. In this description, the Feshbach

resonance state emerges naturally as a bound state sup-

ported mainly by the dipole potential with a finite width

for decay into lower-lying electronic channels. We have

seen that the width of this Feshbach resonance may be

much smaller than the zeroth-order width I 0 which de-

scribes the coupling of the discrete state to the lower-lying

continuum.
The present study should be considered merely as an il-

lustration of the impact of long-range potentials in

electron-molecule scattering near electronic excitation
thresholds. As discussed in Sec. IV, the model might be

suitable to describe near-threshold electron impact excita-

tion of certain Rydberg states of the CO molecule. How-

ever, strong long-range potentials are probably a very

common phenomenon in electron scattering from atoms
and molecules in electronically excited states, even for
symmetric molecules such as N2 where a permanent di-

pole moment is forbidden by symmetry. The well-known

isotropic dipole potential in electron scattering from the
excited H atom ' is probably only the simplest example
of correlation-induced long-range potentials.
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We have seen in Sec. II that the electronic and vibra-

tional motions are entangled in a complicated way since

the complex level-shift function depends not only on the

electronic energy E, but also—via Ho—on the momenta

of the nuclei —a nonadiabatic effect. This nonadiabatic

effect will be especially important near threshold where

the complex level-shift function varies rapidly.

When the vibrational Hamiltonians Ho and Hd

[=Ho + eq(R)] of the target state and the discrete state

are harmonic oscillators, Eq. (2.10) can be simply evaluat-

ed. The effective Hamiltonian P of (2.9b) is then tridi-

agonal in the representation of the target vibrational states

which leads to a continued-fraction expression for the ma-

trix elements of the resolvent operator (E,—4 )
' in Eq.

(2.10). For more details, see Ref. 45.
For s-wave scattering in the absence of long-range po-

tentials we have calculated the v=0~0 and U =0~1 in-

tegral vibrational excitation functions for the parameter

values introduced before. The resulting integral vibration-

al excitation functions are rather similar to the fixed-

nuclei cross sections calculated for R=O in Sec. IIIB.
There are no dramatic dynamical effects, and we omit a

detailed discussion of these results for the sake of brevity.

More interesting is the dipole potential case, discussed

in Sec. III C in the fixed-nuclei limit. We have calculated

the O~v integral vibrational excitation functions for the

parameter values introduced before, i.e., ed(RO)=1268
eV, ed(Ro) = —15.76 eV A, Vo'(Ro) = 119.4 eV A

3=1.3 eV, B=10 eV, and I o
——0.5 eV. Taking @=6.86

amu, which corresponds to the CO molecule, we obtain

co=0.27 eV and v= —0.53 eV for the vibrational frequen-

cy and the vibrational coupling constant, respectively.

The resulting electronically elastic integral vibrational ex-

citation functions show a very sharp Feshbach resonance

peak below threshold as in the fixed-nuclei elastic cross

section for R =0 A in Fig. 4(d). Due to our assumption of
parallel thresholds, the potential-energy curve of the Fesh-

bach resonance is also approximately parallel to the

potential-energy curve of the target state. According to
the Franck-Condon principle, we observe only the U=O

level of the Feshbach resonance in the 0~0 cross section.

In the vibrationally inelastic cross sections (O~v) the in-

tensity of the Feshbach resonance peak is strongly reduced

due to unfavorable Franck-Condon factors.
In Figs. 7(a) and 7(b) we show the electronically inelas-

tic U=O~O and v=0~1 integral cross sections. Note
that the shape of the electronically elastic and inelastic
v=0~0 (and 1) integral vibrational excitation functions

are identical above threshold in the present model. For
comparison we show in Fig. 7(c) the electronically inelas-

tic cross section in the fixed-nuclei limit (for R=0). The
threshold peak already discussed in Sec. IIIC is more

clearly visible here than in Fig. 4(c). It is seen that the
0~0 dynamical cross section is similar in shape to the
fixed-nuclei cross section, except for the appearance of ad-

ditional fine structures. The fine structures can be associ-
ated with vibrational levels of the Feshbach resonance
below the electronic excitation threshold. These levels are
embedded in the shape-resonant continuum above the ex-

citation threshold and interact with this continuum via

V=O~O
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FIG. 7. Electronically inelastic dynamical (a) v=0~0 and

(b) v=0~1 vibrational excitation cross sections corresponding

to the fixed-nuclei potential-energy curves of Fig. 4(b) (critical

dipole moment). fixed-nuclei inelastic integral cross section for
R=O is shown in (c). Dots are experimental data of Mazeau

et a/. ' for the v=0~0 excitation function, measured at a

scattering angle of 40'. Experimental data are scaled by an arbi-

trary factor.

nonadiabatic couplings, leading to narrow resonances with

typical Fano line shapes. In the v=0~1 excitation func-

tion, the- threshold peak is reduced in height, whereas the
relative intensity of the fine-structure resonances has in-

creased compared to the v=0~0 excitation function.

Threshold peaks of the type shown in Fig. 7 have been

observed experimentally in the electronic excitation func-

tions of various diatomic molecules. ' ' We have

chosen the parameters of our model such as to reproduce

qualitatively the measured differential (scattering angle

40) v=0~0 excitation function of the B 'X+ (So~3s)
Rydberg state of the CO molecule. The experimental

data are included as dots in Figs. 7(a) and 7(c). Since the
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measured cross section is in arbitrary units, we have re-
scaled the experimental data arbitrarily. The most prom-

inent feature of the experimental data is a sharp threshold

peak at 10.78 eV. In addition, a broad resonance near 12

eV, superimposed by sharp fine-structure features is ob-

served. Qualitatively, these features are well reproduced

by the present calculation. As shown in Fig. 7(c), the
main features of the experiment can already be explained
in the fixed-nuclei limit.

The potential-energy curve of the B 'X+ state of CO is

nearly parallel with that of the X'X+ state. Therefore,
our assumption of parallel thresholds is reasonable for the

problem at hand. The dipole moment of the CO molecule

in the B 'X+ state is probably not known. However, re-

cent calculations of dipole moments of excited states of
CO predict large dipole moments for the states con-

sidered. Moreover, the X X+ state of CO+ has a large

dipole moment, ' which indicates that Rydberg states as-

sociated with the X X+ core should have significant di-

pole moments. Therefore, our assumption of a critical di-

pole moment (D=1.625 debye) for the B 'X+ state ap-

pears qualitatively reasonable.
Due to the simplifications introduced into the present

model [harmonic potential-energy curves for Vo, Vd, and

V,„, step function for I'(E)] one cannot expect that de-

tailed agreement between theory and experiment can be
obtained. However, most of the prominent features of the
experimental cross sections are qualitatively reproduced

by the present calculation. We interpret the sharp peak at
threshold as a dipole-moment-induced threshold effect.
This peak is due to the presence of a Feshbach resonance
state just below threshold, supported by the dipole poten-
tial. The maximum on the higher-energy side is interpret-

ed as a core-excited shape resonance. The present dynam-

ical calculations explain the fine structures in the cross
section near threshold qualitatively in terms of vibrational

levels of a Feshbach resonance embedded in the shape-

resonant continuum. However, the present calculation
cannot explain all fine structures, especially the dips on
the higher-energy side of the shape resonance. These may
be attributed to Feshbach resonances associated with

higher excited states, e.g. , the C'X+ (5tr~3pcr) state
(threshold at 11.4 eV).

Further experimental studies of electronically elastic
and inelastic scattering from molecules are necessary to
gain a deeper understanding of Feshbach resonances and

the associated vibrational levels. The present calculations
are of model character due to the oversimplified form of
the width function 1 (E) and the harmonic approximation
for the potential-energy curves of CO and the discrete
state of CO . With the inclusion of more electronic
channels, more accurate potential-energy curves, and real-

istic width functions, a quantitative description of the ex-

periment should be possible. Further experimental and
theoretical studies of the long-range potentials in electron

scattering from electronically excited target molecules are
necessary to identify the correct threshold behavior of the
width functions.
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