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It is shown that the field emitted by a free-electron laser oscillating on a single mode in

the no-gain regime can exhibit antibunching. The quantum-statistical properties of field are
also discussed.

I. INTRQDUCTION

The radiation emitted in many nonlinear optical
processes exhibits, under certain conditions, a nega-
tive Hanbury-Brown and Twiss (HBT) effect, i.e.,
photon antibunching or anticorrelation effects. '

When even anticorrelation or antibunching effects
occur, the field is characterized by a photon-
counting distribution narrower than the Poisson dis-
tribution, corresponding to a coherent state, and by
a negative intensity variance.

In the following we show that the nonlinear in-
teraction which pmduces radiation emission in the
FEL (free-electron laser)' can also give rise to anti-
bunching in the output laser mode. Single-mode
emission of a FEL amplifier is studied here in the
particular case of zero gain (or very small gain).
The statistical properties of radiation are also dis-
cussed, as shown by first- and second-order mo-
rnents.

We have employed the coherent state technique
and the tI-c number correspondence, starting fmm
the master equation and obtaining the generalized
Fokker-Planck equation for the antinormal quasidis-
tribution function. The solutions of the Fokker-
Planck equation provide the photon-counting distri-
bution and its factorial moments. In the following
we do not include losses. We confirm in this way
the results obtained by other authors using different
approaches, and show that antibunching can
arise; an effect which could not be predicted in the
calculation performed by Becker. '
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the following "effective Harniltonian" is found":

H;„,=g g fiK' 'c~„c~„0+cc.
P~P

(4)

We start from the quantum description of a FEL
in a moving frame in which the frequencies of laser
and Wiggler coincide (with the use of the
Weizsacker-Williams approximation).

The free radiation Hamiltonian is given by
2

H~~g = g flGJJaj aj )

j=1
where j=1=L (laser frequency), j=2= 8'(Wiggler
frequency), and a and a are creation and annihila-
tion field operators.

The free-electron system is described by the fol-
lowing Hamiltonian:

(2)
P, cT

where the sum ranges over the momentum and spin
values, c,c are fermion operators for the particle,
and d, d are fermion operators for the antiparticle.

It is possible to show' that starting fmm the in-
teraction Hamiltonian (in the nonrelativistic approx-
imation)
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where g„ is the sum on the particles, K' ' is the
coupling constant proportional to the transition ma-
trix element, and 0 contains the radiation field
operators.

We remember that in the effective Hamiltonian
the virtual electronic transitions are taken into ac-
count, and real transitions are neglected.

Statistical properties of the radiation-electron sys-
tem are described by the density operator p(t) which
satisfies the following equation of motion:

iA =[HT p]

where HT H«d ——+H„+H;„„ in the Schrodinger
picture (SP).

We are interested only in the radiation properties,
therefore, we eliminate the reservoir variable (elec-
tron system), obtaining the density operator for the
boson field alone: pR(t).

The motion equation for the density operator may
be described with the use of the Markoff approxima
tion and standard techniques. In our case the tem-
poral condition for the Markoff approximation is
given by

t, « t to «y——1

i e , the i.n.teraction time must be smaller than the ra-
diation damping time y and larger than the reser-
voir correlation time t, (t, is the time between elec-
tron collisions). Thus we obtain the master equation
for the reduced density operator in the interaction
picture (IP)':

Q)
&
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and the master equation finally becomes

apF
=K(gpFO ——,0 pg ——,pFg ), (1Q)

where

K=@;Ic . —

111. FGKKER-PLANCK EQUATIGN

Let us now introduce the following variables:

A& —— (aL +aii ), A2 — (aL —az ) . (11)
2 2

Using the q-c correspondence, we obtain the equa-
tion of motion for the quasidistribution (t)z related
to the antinornial ordering of field operators' ':

~'

ay„
2

Bt c)AiBA i

F; crrcRI r F~ Fi r

I- exp ~

'r= (t —t0 ), ACoe =CUR —COp~r ACOy —COL —~~
and f (p) represents the electron momentum distri-
bution, where in the very small gain limit
hco, =Aco~. Now, in the considered frame the fields
are at the same frequency, and the whole radiation
field gives rise to a stationary field (collinear struc-
ture of the laser and Wiggler). For a stationary field
we can write the operator 0 as

0=0 =(al. +a~)(aL, +am) (9)

2+Ai 2+cc
c)A i

(12)

&&[(O,.0~)~—0 P 0, )W;

—(0;pFOx pROtc 0; ) WR—; ],

(7)

where i (K)=1,2 because they refer to second order
in perturbation theory. Moreover, W;-~ are the
"reservoir spectral densities" which contain the elec-
tron system operators

W+» —gK' '(»„)frf dpdp'f(p)f(p')

X (Fg(w)F~)RI

where A i
——(aL +a~)/V 2 and A2 ——(al. —aii )/W2,

provided that aI and a~ are eigenvalues of aL, and
az. in the coherent state

l aL, aii ).
The quasidistribution is defined as

4~ =4~(IajI t)

where p" is the equivalent normal form of the densi-
ty matrix obtained with the help of the commuta-
tion rules; aj are eigenvalues of aj in the coherent
state

l I aj I ), and M represents the number of
modes. Performing the Fourier transforin

fCA((&) 1 ()
1

with
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where pr are conjugated to ar and using the vari-
ables yr that are conjugated to Ar.

It is possible to verify that a solution of Eq. (15) can
be20

(pr. +pw) (pr p—w)

vZ ' ' v2 (14) Cz(yi, yz, t)

we obtain the Fokker-Planck equation for the an-
tinormal function

g C.~(r~)rivi exp[ 2«(n —m)'],
n =Om =0

ac„
at a) 1 a) a1

+c.c. Cg . (15)

where C„(yz) are arbitrary functions of yi. If the
initial field is in a coherent state

I gr &
I
g'w &, a final

solution for the normal and antinorrnal characteris-
tic functions can be found in the form

Cx(Pr. Pw t)=C~(Pr. Pw t)eW( IPw I
+ IPr. I

=exp[ —,(pr, —pw)(gr. —g w) —c.c.]

„+, ,
(Pr. +Pw)"(Pr. +P w) (gr. +g w)"(gr. +gw) exp[ 2«—(n —m)'].

p~ p2 + n!m!

(17)

a C~([Pr f, t)
Wr

ap, a( pr ) (p,. )
—=o

& Ww&= ~(14i I'+ Ikw I') ——,(14i I' —Ilaw I')exp( —2«)

=—,(
I &L I

'+ 14w I
')+ —.(141'—

I kw I
')exp( —2«),

while the variance is given by
2a'c„([p, ),t)

ap, a( —p,") (t, ) =o

a'c„([p, ~, t)

(ap, )'a( —p,*)'
(p, )=o

((aw, )'&=((aw )'&= —(aw, aw &

= —,[14L I'+fowl' —(4i'4w+c c )]—4( flan I' —14wl')'e ' '

+ —,[(Iver. I' —fkw I')'+(CL4w —c c )']e ' ';

The statistical properties of radiation are obtained from the p derivatives of the Cz( [p. ), t) functions taken at
[pr j =0. Then the mean integrated intensity in each mode reads

the negative value of (5Wr 5 Ww & being connected
to the presence of anticorrelation between the modes
Wand L.

If the intensities are equal,

14i I
= l4w I

((aw)'&

=((6W ) &+((b,w ) &+2(bw AW &=0.
(21)

Moreover, if
I gw I

=0 we have

then ( Wr, & = ( Ww & =
I

g'
I

' and

((~w, )'&=((~w )'&=0,

(w, &= —,
'

lg, I'(1+ -' '),
((Awr ) &= —,

f
g'L

f
(1—e ~ ')~ .

(22)

i.e., the field turns out to be coherent at all times. In
general, the whole radiation field remains coherent
in the interaction: & Wr. &= —,( Ikr. I'+

I gw I'), (24)

Saturation values are (for
I gw I

&0 and t~~ )
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&(aw, )'&

[14'I
I

+ 14'w
I

The mode exhibits antibunching if 2PL —zpii ——z~n
because Eq. (26) becomes

-214'
I
'14~1'cos(ze. —2&~)] & (~w~ )'& =—«(14i I

' —
f 4 ~ f

')' . (27)

From these expressions we see that the statistics of
the laser mode differ from the Poissonian statistics
[with &(b, W) &=0]. This behavior depends upon
the values of initial phase fields.

We observe that the lowest value of Eq. (25) is

&(~wi)'& = —,(14L, I

' —14m I

')'
and, therefore, no antibunching is possible in the I.
mode at long time. Instead, in the small time limit
(i.e., 8Kt ( 1) from Eq. (20) we have

&(aw, )'& =
2 14~1'I k~ I'[1—cos(zy, —24~)1
—«( I41'+ Ikw. I')

+2Kt
I cl. I I kw I

'cos(241. —20'w)

(26)
where we have assumed

exp( —8Kt) —1 —8Kt,

exp( 4Kt) —1 . —

IV. CONCLUSIONS

By the use of the standard master equation ap-
proach, it is possible to obtain some information on
the statistical properties of a process involving the
interaction between radiation and free electrons.

It is interesting to observe that the coherence
properties, as expressed by the value of the variance
of the amplified laser mode, depend upon the phase
relation between the laser and the virtual Wiggler
mode. This is connected with the fact that emission
of real photons in the Wiggler modes, which contain
only virtual photons at time t =0 takes place due to
the scattering process.

With respect to previous treatments, ' ' our tech-
nique allows us to observe the presence of anti-
bunching of the emitted radiation as a function of
the values of the initial phase of the fields, and also
could be generalized in a straightforward way to the
multimode high-gain case.
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