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An algebraic approach for evaluation of the bound-free transition form factor

(v
~
exp(iQ r)

~
n, l, m) between arbitrary hydrogenic initial states

~
n, l, m) and continuum final

states
~

v ) in the low-ve1ocity limit u &&Z/n is developed. This form factor determines the
initial-state dependence of the electron-loss-to-continuum (ELC) cusp in the Born approximation.
The method extends the well-known algebraic O(4,2) approach for bound-bound transitions to low-

lying continuum states by exploiting the continuity across the ionization limit. A correspondence
between scattering states and Rydberg bound states is established using the fact that the Runge-

Lenz vector A and the velocity vector v become collinear near the ionization threshold. The present
method takes explicitly into account the dynamical symmetry of the Coulomb field. We use the re-
sult for a systematic investigation of the doubly differential cross section and the shape of ELC
cusps as a function of the initial state, its binding energy, the target, and the projectile velocity (vp)

within the Born approximation. Comparison is made with recent experimental data from our labo-

ratory for highly charged projectiles. We find qualitative —and sometimes quantitative —agreement
with the data.

I. INTRODUCTION

Cross sections for electron emission in inelastic ion-
atom collisions show a strong enhancement at electron ve-
locities v, approximately equal to the projectile velocity
vz. This gives rise to a cusp in the experimentally ob-
served singly differential cross section (SDCS) do/dv, for
electron emission with velocities U, =vp into a narrow
cone of (semi)angle Ho centered about the foreward direc-
tion. Two different processes contribute to the cusp: tar-
get ionization [i.e., electron capture to continuum (ECC)]
and projectile ionization [i.e., electron loss to continuum
(ELC)]. In both cases, the final electronic state is a near-
zero velocity Coulomb wave

~

v ) in the rest frame of
the projectile. As first discussed by Salin' and Macek for
ECC, the cusp originates from the singularity in the low-
velocity limit of the Coulomb normalization factor (in
atomic units)

i
N(u)

i
=2rrri,

where 1=7Z / paund Zp denotes the (effective) charge of
the projectile. In a series of papers, Briggs, Drepper, and
Day have shown that a similar singularity occurs for
ELC. Their calculation in Born approximation for ioniza-
tion of a hydrogenic ls projectile state furthermore yields
an anisotropic electron distribution, deviating from an iso-
tropic 1/u behavior in the projectile rest frame predicted
by Eq. (1).

Recent experiments ' have measured the shape of the
ELC cusp, characterized by the width [full width at half
maximum (FWHM)], the forward-backward asymmetry
with respect to the cusp peak, and the total cusp cross sec-
tion integrated over an arbitrarily chosen interval

T(n, l m~v, Q)=(v
~

exp(iQ r )
~
n, l, m) (2)

using a group-theoretical method.
A first suggestion of the possibility of an algebraic

treatment of Coulomb excitation taking explicitly into ac-
count the dynamical symmetry of the Coulomb field dates
back to a paper of Biedenharn in 1961. Since then, rapid
progress has been made in calculating matrix elements be-
tween hydrogenic bound states for functions in the canon-
ical variables r and p. The algebraic method uses the fact
that the hydrogenic bound-state Hilbert space forms an ir-
reducible representation space of the O(4,2) noninvariance

(vp —0.5&v, &vp+0. 5). For highly charged projectiles
having relatively loosely bound L-shell electrons, we have
found an almost symmetric cusp with a narrow width in
the range I =0.25—0.3 a.u. nearly independent of up, Zp,
and the target. These results differ significantly from cor-
responding findings for ECC and a theoretical explanation
has heretofore not been available. A direct comparison
with the calculation for the ls state is not possible for
two reasons: In any experiment which does not detect the
final charge state of the outgoing projectile in coincidence,
the ELC contribution dominates the cusp only if suffi-
cient loosely bound n =2 electrons are available. Further-
more, the Born criterion Zp/nup «1 is in most cases
studied to date only marginally satisfied for the deeply
bound ls state. A systematic theoretical study of the ELC
cusp shape as a function of the initial state of the released
electron, its binding energy, the projectile velocity, and the
target structure was therefore initiated.

The previous calculation for ionization of the ls state
in the low-velocity limit has been generalized to arbitrary
hydrogenic initial states

~

nlm ) by evaluating the bound-
free transition form factor
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algebra. A comprehensive review of the method has been
given by Englefield. In this paper this technique is ex-
tended to a calculation of the bound-free transition form
factor for low-lying continuum states exploiting the con-
tinuity across the ionization limit. Beyond its interesting
formal aspects, the present method gives relatively simple
closed expressions for the small velocity limit of the tran-
sition form factor. For the general case of arbitrary ejec-
tion velocities, analytical expressions have been given pre-
viously by Omidvar in terms of a series expansion con-
taining an eightfold sum and by Belkic' in terms of Ap-
pell functions.

The plan of the paper is as following: In Sec. II we

briefly review the Born approximation for the triply
(TDCS) and doubly differential cross section (DDCS) for
projectile ionization in collisions with neutral targets. In
Sec. III we express the low-velocity limit of the continuum
wave function as a coherent superposition of parabolic
Rydberg states n', n i, num') incorporating the boundary
conditions for an incoming (outgoing) Coulomb wave.
This result is used in Sec. IV to calculate the bound-free
transition form factor as a Rydberg limit n'~co of the
bound-bound transition form factor. General symmetry
properties and the multipole expansion of the TDCS and
DDCS are investigated in Sec. V. In Sec. VI we discuss
numerical results for the DDCS and the cusp shape and
compare these results with recent experimental data for
ELC from our laboratory. In the Appendix, the O(4,2)
calculation for the bound-bound transition form factor in
hydrogen is briefly sketched. Atomic units are used
throughout the paper.

II. FORMULATION OF THE PROBLEM

f
v

f

=
/
v, —vp I

«Zp/n . (5)

Using the straight-line trajectory impact parameter (IP)
formulation, the TDCS for electron emission with velocity
v and for simultaneous scattering of the projectile into the
laboratory frame solid angle Qp =(Op, pp) is given in Born
approximation by '"

d2CJ

dQpd v

2

=4Mp g ~ ~

T(n, l, m~v, gk)
~

'Sk(Qk) .
k=1 Qk

(6)

We consider the ionization of a hydrogenic projectile P
in a collision with a neutral target atom T:

P ' +T~P ' +e+T(?) .(Zp —1)+ Zp +

Since the target final state is not detected in the experi-
ment a sum over all final states has to be performed. The
projectile velocity v p, parallel to the z axis in the laborato-
ry frame, is assumed to be large compared with the initial
orbital velocity of the electron

vp ~&Zp/n .

The velocity of the ejected electron in the laboratory
frame, v„ is assumed to match the projectile velocity in
both magnitude and direction so that the electron velocity
in the projectile rest frame, v, obeys the inequality

In Eq. (6), the transverse components q of the
momentum-transfer vector Qk =( q, yk) are given for
small Op « 1 in cylindrical coordinates by

q =(Mpvp8p, gp)

with Mp the projectile mass (in a.u. ). The longitudinal
momentum transfer is expressed in terms of the excitation
energy of the projectile (R and the target (ek) as

yk
— (e —+ek)/vp .

In Eq. (6) a closure approximation' has been introduced
by considering only two final states for the target. (a) The
target remains in its ground state (ek i

——0). Then
Si (Q i ) = [Zr —F(Q i )] describes the elastic scattering in
terms of the atomic form factor F and the charge of the
target Zz. '

, or (b) the target is excited with an average exci-
tation energy ek 2 (to be set equal to the ionization poten-
tial below). In this case, S2(Qz) is the incoherent scatter-
ing function of the target.

Because of the three approximations assumed in Eq. (6),
the following limitations apply to the validity of Eq. (6):
The IP method is equivalent to a quantal three-body treat-
ment up to corrections of order 1/p (p=10 a.u. the re-
duced mass of the colliding particles) and only for near-
forward scattering (Op «1) when the influence of the
Coulomb deflection on the electronic transition can be
neglected. ' Both requirements are well satisfied for
heavy projectiles in the MeV region. The validity of the
closure approximation for target-inelastic processes is
often questionable, in particular for describing emission of
energetic electrons. In the present case of low-velocity
emission, the closure approximation is less critical for two
reasons. For light targets, for which target-inelastic pro-
cesses dominate the projectile ionization, the closure ap-
proximation gives reasonable agreement with an explicit
summation over excited states in the limit v «1. For
heavier targets, the target-elastic channel dominates the
cross section and the closure approximation for target-
inelastic processes becomes less important. Finally, for
low-lying continuum states [Eq. (5)] and large projectile
velocities [Eq. (4)], the Born approximation is believed to
be a reasonable first-order approximation for ionization. '

In addition to Eq. (4), the Born approximation also re-
quires the interaction strength with the target nucleus to
be small, i.e.,

Zr/vp « 1 .

In fact, this requirement is too restrictive because of the
electronic screening of the target nucleus. The Born ap-
proximation should therefore be applicable to a broader
range of collision velocities unless small impact parame-
ters dominate the cross section.

In order to study the magnetic substate dependences, we
choose a space-fixed quantization axis along the beam axis
(vp =z ) in contrast to the rotational averaging performed
in previous ionization calculations for higher angular
momentum states. '

The DDCS is given by an integral over all transverse
momenta in Eq. (6):
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2 d2~
z g f 4 ~

T(n, l, m~v, Qk)
~

Sk(gk) .
dv vp k=i Qi

(10)

The DDCS is therefore rotationally symmetric with
respect to the z axis. Finally, the SDCS for electron emis-
sion with velocities u, =up into a narrow cone of semian-

gle 80 can be calculated from (10) by integrating the
DDCS over the cone solid angle

=u, f J sin8, d8, dg, . (11)
dv~ dv

In the experiment, electrons are collected lying in a (ap-
proximately) disk-shaped detection volume with diameter
-2vp80 and thickness 6v, determined by the energy reso-
lution of the analyzer. Because in most cases 5u, « 2up8,
the detected cusp shape is close to the singly differential
cross section [Eq. (11)] to which we will refer in the fol-

lowing.

III. ANALYTIC CONTINUATION OF THE WAVE
FUNCTION ACROSS THE IONIZATION LIMIT

electron ~

FIG. 1. Classical orbits for the Coulomb problem. For para-
bolic orbits near the ionization threshold (e=O), the asymptotic
velocity at large separations v becomes collinear with the
Runge-Lenz vector A.

The previous ELC cusp shape analysis for the Is state
was performed by calculating the u~O limit of the full
transition form factor (valid for arbitrary v). This pro-
cedure becomes increasingly complicated for higher prin-
cipal shells. Therefore, we use an alternative approach
based on the continuity across the ionization limit to cal-
culate the small-velocity limit of T (n, l, m ~v, Q ) directly
without referring to the full transition form factor. The
intimate relationship between the density of Rydberg
states, the cusp singularity in the low-lying continuum
and the continuity across the ionization limit was first dis-
cussed by Rudd and Macek. '

The key point of the present method is the explicit use
of the analyticity of the hydrogenic Schrodinger equation
in energy (or in n) to expand low-lying continuum states in
terms of high-lying Rydberg states. The expansion coeffi-
cients can be found most conveniently by taking into ac-
count the dynamical symmetry of the Coulomb field. The
O(4) symmetry is connected with an additional constant of
motion, the Runge-Lenz vector

limA,
~

v —) =+Zp
~

v ) .
U~O

(13)

It should be noted that only in the limit v~0, the scatter-
ing states

~

v
+—) are eigenstates of A„.

Since parabolic bound states are eigenstates of a set
with

n2 —n&
A,

~

n', n'i, nz, m') =Zp I In, n), n2, m /, (14)

lim
~

v )=e' lim n', n'i =n' —1, n2 ——0 m'=0)
l f)~l oo n ~oo

the expansion of the continuum state in terms of parabolic
Rydberg states can be found in a simple heuristic way:
Comparison of Eqs. (13) and (14) shows that in a coordi-
nate frame X, with z„parallel to v, the incoming
Coulomb wave

~

v) can be approximated by parabolic
states with quantum numbers n'& /n'=l and n 2/n'=0 for
n' » 1. We therefore choose

A= —,(pXL —LXp ) —Zp (12) (15)

with p the linear and L the angular momentum. In a
classical picture, A points from the nucleus to the
perihelion of the electronic orbit and determines the orien-
tation the principal axis of the orbit (Fig. 1).

~

A
~

is pro-
portional to the eccentricity. Cusp states near the ioniza-
tion limit correspond, classically, to parabolic orbits as the
limit of both hyperbolas (continuum states) and ellipses
(bound states). As is obvious from Fig. 1, the Runge-Lenz
vector is either parallel or antiparallel to the asymptotic
velocity of the cusp electron at large separations from the
nucleus. More precisely, we find for the v component of
the Runge-Lenz operator the eigenvalue equation

in order to minimize the error in the eigenvalue of the
Runge-Lenz operator. The choice of the azimuthal quan-
tum number m'=0 follows from

L.v =0 (16)

for scattering states.
In Eq. (15) we have rewritten the v~O limit in a more

symmetric form by using the analytic continuation of the
principal quantum number, n, to the imaginary axis, ig.
Projecting the complex n' plane onto a Rieman sphere of
complex numbers, ' it can be easily seen that the limits
n'~ oo and igni oo both converge to the north pole of
the sphere where the cusp singularity is located.
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The corresponding zero-velocity limit for an outgoing
Coulomb wave follows from Eq. (15) by interchanging n '~

and n2. The Rydberg limit of the parabolic wave func-
tion' can be obtained by an asymptotic expansion of the
Laguerre polynomials' in the limit of large indices
(n'& ~ oo) and small arguments (Z~r/n'~0) as

1/2
Zp

lim (r
~

v)=e' lim
i'/~i oo m(n')

XJo[4Z&r(1+cos8)]'~ . (17)

In Eq. (17) Jo denotes the Bessel function of zeroth order
and 8=cos '(r v). With the use of the standard defini-
tion of the parabolic wave functions the relative phase in

Eqs. (15) and (17) has to be chosen as 5=arg[I (1+ii))]
We express the normalization factor of the Rydberg state
in a form better suited for continuation across the ioniza-

tion limit by introducing density of bound states near the
ionization threshold D(e~O ):

Z3
lim

ir(n')

' 1/2 1/2
P

mD(e=O )

cos8 =cos8,cos8„+sin8, sin8, cos(P„—P„) (19)

and Eq. (17) becomes with the help of the addition
theorem for Bessel functions,

Notice that the proper density of hydrogenic bound states
which correspond to scattering states in the Rydberg limit
is proportional to (n') rather than -(n') for the total
density of states because of the constraint (16).

Equation (17) can now be transformed to an arbitrarily
oriented coordinate frame X. If we denote the spherical
angles of r with respect to X by (8„,$„) and those of v by
(8„,$„),we find

lim (r~v )=
i'g~ oo

Zp

AD (0 )

1/2

J~[4Zpr(1+cos8, )cos (8„/2)]' J~[4Z&r(1+cos8„)sin (8„/2)]'~ e
m= —oo

Comparison with the Rydberg limit of parabolic wave
functions shows that Eq. (20) can be rewritten as

n
&
In'=cos (8„/2),

ni /n'=sin (8„/2) .

(22a)

In Eqs. (22a) and (22b) as in Eq. (15) the identification of
the parabolic quantum numbers is accurate only up to
corrections of the order 1/n'. Equation (21) is the desired
expansion for the low-velocity continuum function in
terms of parabolic Rydberg states.

Only a single combination of parabolic quantum num-
bers appears determined by the emission angle of the elec-
tron [Eq. (22)]. This particularly simple expansion in
terms of parabolic states rather than spherical states is an
obvious consequence of Wigner's threshold law for an at-
tractive Coulomb field. ' The wave function immediately
above the ionization threshold is a coherent superposition
of all partial waves. The wave function [Eq. (21)] con-
tains the leading term of the cusp singularity (-v '~

)

according to Eq. (1), as can be seen from the continuation
of the normalization factor across the ionization limit
(e~O+)

1/2
P

D(e = 0+). (23)

In Eq. (23) D(e=O+) denotes the density of low-lying
continuum states. Notice, however, that Eq. (21) does not
include higher-order terms in a v expansion
[-v ' (1+cv+ )] exploited in the fitting parameter
approach used by Meckbach et al. The small-velocity

lim
~

v ) =e' lim g ~

n' n'i n2 m)e " (21)
l'g~l oo n' oo m=—

with

(20)

I

limit is therefore expected to be valid only in the immedi-
ate vicinity of the cusp singularity. Deviations must be
expected in the tails of the cusp shape.

It should be remarked that the expansion (21) can also
be derived in a more rigorous way by using the
SU(2) X SU(2) pseudospin formulation of the hydrogenic
invariance group O(4) and the classical limit of the
Wigner rotation matrices.

IV. THE BOUND-FREE TRANSITION FORM FACTOR

With the use of the results of the preceding section, the
low-velocity limit of the bound-free transition form factor
[Eq. (2)] can be expressed as the Rydberg limit of the
bound-bound transition form factor

lim T(n, l, m~v, O)
i'g~l oo

=e Z, e
im'P„

Im = —oo

X lim (n', nI, n2, m'
~

e' ''
~
n, l, m ) .

n'~ oo

(24)

Notice that Eq. (24) contains the directional informa-
tion of three vectors (Fig. 2): the beam velocity v~ defines

the quantization axis of the initial state
~
n, l, m ), Q de-

scribes the orientation of the momentum transfer vector
during the collision and determines in the present case of
small-angle scattering the projectile scattering angle ac-
cording to Eq. (7), and finally, v defines the direction of
the emitted electron [compare Eq. (24)]. For an investiga-
tion of the magnetic substate dependence of the TDCS
and DDCS we have to keep track of all these angular
dependences in contrast to the rotational averaging em-

ployed in previous calculations for ionization of higher
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angular momentum states. ' The right-hand side of Eq.
(24) can be evaluated most conveniently in a coordinate

frame Xti with z& parallel to Q. The initial state can be
transformed into the X& frame with help of the rotational
matrix D25 I

1

)
n, l, m ) = g D ( —$~, 8~)

)
n, l,m") (25)

with Q~ ——(8&,P&) the spherical angle of Q as seen in the
space-fixed coordinate frame with the z axis parallel to
vp. The corresponding transformation for the final state
is given by Eqs. (21) and (22) with Q„(Q)=(8„(Q),P„(Q)}
the spherical angles of v in Xg (Fig. 2). Q„(Q) can be ex-

pressed in terms of the spherical angles of Q, Q~, and

u, Q„=(8„,$„) in the space-fixed frame with help of the
addition theorem for spherical angles [compare Eq. (19)].
Since exp(iQ r ) possesses rotational symmetry around the
zo axis, we can rewrite Eq. (24) as

FIG. 2. Geometric relationship between the projectile velocity

vp (chosen as the z axis of the space-fixed frame), the momen-

tum transfer vector Q in the x-z collision plane, and electron

velocity v. 8„(Q) is the polar angle of v in the rotated frame X~
with Q chosen as zii axis.

I
lim T(n, l, m~v, Q)=e ' g D ( —P&,8l2, —P„(Q)} lim (n', n' in'z, m"

~

e ~
~
n, l, m")

lg —+l co ~ I I n'~ ce
(26)

(27a)
n&, n2 ——0

with

with n'i /n'=cos [8,(Q)/2] and nz /n'=sin [8,(Q)/2].
For a further evaluation it is convenient to transform Eq. (26) into a representation involving only parabolic eigen-

functions by using the pseudospin coupling relation26

n —1 —/m"
J

&I,m" ~jjm, m2)( —1) '~n, n in 2m"}

and

m)+m2=m",

~] ~2=&] —n2

j=(n —1)/2,

(27b)

(27c)

(27d)

nl+n2+
~

m
~
+1

Inserting Eq. (27) in Eq. (26) gives

(27e)

I
lim T(n, l, m~ v, Q ) =e 's g Dr „(—p&, 8&, p„(Q))ig~in ce IIm = —I

n —1 —]m"
(

( —1) '(l, m"
~ jijimimz}

n, ,n, =o

X lim (n', n&, nz, m"
~

e
~
n, n ni, im} .n'~ oo

(28)

The p«blem is thus reduced to a calculation of the bound-bound transition form factor between arbitrary parabolic
states. As is well known, the latter can be calculated in a purely algebraic way exploiting the fact that hydrogenic bound
states form an irreducible representation space of the O(4,2) noninvariance algebra. A comprehensive discussion of this
approach can be found in Ref. 8. In the Appendix we briefly summarize the major results adopted to our present nota-
tion.

In the following we extend this approach to low-lying continuum final states by calculating the Rydberg limit of Eq.
(A4). We perform an asymptotic expansion for n', n'i, n2~ no subject to the constraint Eq. (22). The leading order
behaves as (n') as required by the continuity across the ionization limit [compare Eq. (18)]. After a lengthy but
straightforward calculation we arrive at
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(ni+
~

m"
~
}!(n2+

~

m"
~

)!

n )!n2!

K
2Zp[D(0)]'~ (

~

m" ~!) B

sin[8„(Q) ]
2

1+ 2

C +
~ ~exp ——

t 1+i cos[8„(Q)]Kn j

lim &n', ni, n2, m"
~

e
~
n, n i, nz, m")

8 —+oO

1+iKn
1 —iKn f [2Kn —2in cos[8„(Q)]+iB(ni n2)—J

X iFi( ni—, ~

m"
~
+1,Ccos [8„(Q)/2]) iFi( n2—, (

m"
~
+1,Csin [8„(Q)/2])

+iB[n2 iFi( ni —
I

m"
I
+1,Ccos [8,(Q)/2]) iF, ( —(n2 —1),

~

m"
~
+1,Csinz[8„(Q)/2])

—niiFi( —(ni —1),
(

m"
)
+1,Ccos [8„(Q)/2]}iFi( n2,—)

m"
( + I,Csinz[8, (Q)/2])]] .

(29)

In Eq. (29), we have substituted the density of states [Eq.
(18)] and the following abbreviations:

&
—r ~n, l, m)=( —1)'&r ~n, l,m),

and consequently, for the transition form factor

(31b)

K =Q/Zp,

B =(1+n K ),
C =4n/B .

(30a)

(30b)

(30c)

&v ~e' '"
~n, l, m)=( —1)'& —v ~e

' '
~n, l, m) .

(32)

Equations (28) and (29) are the final results for the transi-
tion factor from arbitrary initial n, l, m to low-velocity
continuum states. Inserting Eqs. (28) and (29} into (6)
yields the TDCS in closed form. For the DDCS, a one-
dimensional numerical integration has to be performed ac-
cording to Eq. (10). The algebraic evaluation of the tran-
sition form factor yields a relatively compact and
transparent expression as compared to a direct integra-
tion in coordinate space. Furthermore, our expression
contains the full information about the relative orientation
of Q, v, and vz in contrast to rotational averaging in Ref.
9. The validity of the present approach is limited to the
low ejection velocity region. Deviations must be expected
when the characteristic wavelength of the initial and final
states become of comparable magnitude. We find there-
fore u &&Zpln [Eq. (5)] as a criterion for the applicability
of Eqs. (28) and (29). This criterion is fulfilled for experi-
mental ELC cusp shapes for highly charged ions and
low-lying n states with a typical half-width I /2=0. 15
a.u. in velocity space.

V. SYMMETRIES OF THE ELECTRON DISTRIBUTION

We investigate now the symmetry properties of the final
electron distribution. Most of the desired relations can be
derived without using the explicit expression Eq. (29).

Applying the parity operator P (r —+ —r ) to the initial
and final states we find

Therefore, both the TDCS and DDCS are invariant under
simultaneous inversion of v and Q because of

(
T(n, l,m~v, Q )

[
=

)
T(n, l,m~ —V, —Q ) ) (33)

~
n, i,m+)=-

[2(1+6 0)]'~

X[
~
n, l, m)+( —1)

~
n, l, m)]—(34)

(m+=0, 1, . . . , I;m =1,2, . . . , l). Inserting Eq. (34)
into Eq. (32) and using the reality of the u~0 continuum
state we find

This symmetry relation, which holds for arbitrary u, has
only little practical importance because it does not corre-
spond to a symmetry operation for the electronic distribu-
tion for a fixed beam direction.

More relevant symmetry relations can be derived by us-
ing the fact that the low-velocity limit of the continuum
wave function [Eq. (17)] is, except for the irrelevant phase
factor e', real.

We consider the TDCS first, for which the symmetry is
determined by

~
T(n, l, m~v, Q)

~

. We choose a x-z
scattering plane spanned bg Q and vz ($0——0, see Fig. 2).
The transition operator e' ~ ' ' is therefore invariant under
plane reflections II„:y~ —y. We furthermore choose as
initial states eigenstates of both II„and the complex con-
jugation operator E with eigenvalues + 1:
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(v
~

e'O'' num+-) =( —1)'( —v e ' '
~

n 1 m+-) =+(—1)'e ' (( —v e' ''
) n I m+-))' . (35)

Consequently, the TDCS is invariant under the transfor-
mation v ——v for a fixed momentum transfer Q, i.e.,

~
T(n, l, m —~—v, Q )

~

=
~

T(n, l, m-+~v, Q )
~

(36)

The transformation properties with respect to rotations
can be specified by a decomposition into spherical tensor
components p~. Explicit expressions can be found by ex-
panding the angular dependences in Eqs. (28) and (29) in
terms of spherical harmonics. We omit here the very
large expressions for p (n, l, m +-;q). The general feature
of the angular distribution can be determined very easily,
however, by noting that, except for an irrelevant phase
factor, the highest power in cos8, (or sin8„) in (29) is
given by n, irrespective of the quantum numbers (l, m).
Combining this with the symmetry relation [Eq. (36)], we
find for the triply differential cross section for ELC from
an initial state

~
n, l, m —) in Born approximation the ex-

pansion

d2 2n

pM+(n, l, m+ ;q) Yt (-8„$„)
dOpdv L =o ~+ o

(even)

(37)

2'
d ~ T nlm~v, (3&)

which possesses rotational symmetry with respect to the z
axis. In this case only M+ =0 components contribute and
the multipole expansion becomes

dv

1 2n

at (n, l,
~

m
~

)Pt (cos8„)
U L=0

(even)

(39)

with expansion coefficients aL depending only on the ab-
solute magnitude of m. In Eq. (39) we have explicitly
displayed the U dependence originating from the normali-
zation factor (23). In the following section, we will
present numerical results for the DDCS in terms of the
isotropic part ao and the anisotropic coefficients

PL al/a0. (40)

Within the Born approximation, for an arbitrary initial
state

~
n, l, m ) the low-velocity limit of the DDCS is sym-

with an x-z plane as scattering plane (Pp ——0). The expan-
sion coefficients pM depend on 8t via q [Eq. (7)]. The
spherical harmonics Yt (M+=0, 1, . . . , L) are defined
in accordance with Eq. (34). Only even L contribute to
Eq. (37) because of the even parity of the electron distribu-
tion.

As an important result we find that the maximum de-
gree of anisotropy L,„=2n is determined by the principal
quantum number rather than by the angular momentum l.
We note that terms in (37) with L —M+ odd are antisym-
metric with respect to 11,. The TDCS for ELC in Born
approximation is therefore, in general, forward-backward
asymmetric.

The symmetries of the DDCS are according to (10)
determined by the expression

I

metric with respect to both inversions ( v ~—v ) and
plane reflections (v, ~—v, ) and shows no forward-
backward asymmetry in contrast to the TDCS. As dis-
cussed in the next section, the singly differential cross sec-
tion do. /dv, shows a slight forward-backward asymmetry.
This is, however, only due to the kinematics of the
transformation to the laboratory frame.

In the special case n =1, Eq. (39) reveals the result pre-
viously given by Briggs and Day. The selection rule
L (2n is the origin of their findings that, although all
partial waves contribute to the scattering amplitude, only
zeroth- and second-order multipoles appear in the DDCS
for the 1s initial state.

It should be noted that the results presented in this sec-
tion were based on the well-defined parity of the spherical
states

~
n, l, m ). An analogous investigation for parabolic

initial states
~

n, n „nz, m ) yields also contributions with
L odd and consequently a forward-backward asymmetry
in the DDCS. This could have significance for convoy
electron production in solids when the emitted electron
originates from ELC for a coherently excited state (e.g. , a
parabolic state) near the surface.

VI. NUMERICAL RESULTS

In this section, we present numerical results for the
DDCS and the cusp shape in the SDCS, do /dv, . Of par-
ticular interest is the width I (FWHM) in velocity of the
cusp. We restrict ourselves in the following to initial
states of the projectile with n (2. For many-electron pro-
jectiles we have used hydrogenic wave functions with ef-
fective charges for the initial and the final states chosen
in accordance to the Slater screening parameters. In our
investigations of m-substance dependences, we consider
only orbital-angular-momentum states neglecting spin-
orbit mixing. Calculations have been made for three dif-
ferent targets (hydrogen, helium, and argon) in order to
study the influence of the target structure on the electron
distribution. For hydrogen, the scattering functions
F(gi) and Sz(gz) can be calculated exactly. ' For heli-
um, we use an analytical approximation reproducing the
results of a configuration interaction calculation tabulated
by Hubbell et al. within a few percent. For argon, we
take the tabulated data from a nonrelativistic Hartree-
Fock calculation.

A. DDCS

The results for the DDCS for ionization of He+(n, l, m)
on hydrogen are displayed in Figs. 3—5. The isotropic
term ao(n, i, m) (Fig. 3) is identical for all n =2 states
within the graphical accuracy of the logarithmic scale. A
weak l dependence has also been found by Omidvar and
Kyle ' for the total ionization cross section. The weak l
dependences emphasizes the influence of the dynamical
symmetry of the Coulomb field. For the deeply bound 1s
electron ao(ls) is almost 1 order of magnitude smaller.
The n dependence for ao is much stronger than for the to-
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2 4 6 /0
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FIG. 4. Second-order anisotropy coefficient Pi(n, l, m) for
ELC of He+(n, I, m) on H as a function of projectile velocity Up.

-2.5

Since L,„=2n for the n =2 states there are also
fourth-order anisotropy contributions p4 shown in Fig. 5.
The presence of p4 can introduce additional local minima
in the electron distributions near 8, =ir/4 and 8„=3m/4
As was the case for pz, values of p4 also differ significant-
ly for the 2po state from those for 2s and 2p+i. The en-
tirely different anisotropy for the 2po state can be traced
to its odd II, symmetry. For p4 the positive-definiteness
limit is given by —1 &P4 & —, .

82 6 /0

vp (a. u, )

FIG. 3. logao(n, l, m) for ELC of He+(n, l, m) on H as a func-
tion of projectile velocity vp. For all n =2 substates,

logao(2, l, m) is identical within the graphical ac"uracy.

4

tal ionization cross section. ' This result indicates that
loosely bound electrons, if available in the projectile,
strongly dominate the ELC cusp spectrum in agreement
with experimental data. The vz dependence of ao for
projectile velocities vp »1 scales roughly as vp in accor-
dance with the velocity dependence of the total ionization
cross section. The second-order anisotropy coefficients pq
are displayed in Fig. 4. At large Uz, for all n =2 states

~ pq
~

is considerably larger than for the Is state. L-shell
electrons are emitted highly anisotropically. For the 2s
and 2p+i states the energy dependence of pz is similar to
that of the 1s state describing an electron emission pre-
ferentially perpendicular to uz in the limit vp »1. An op-
posite behavior can be observed for the 2po initial state:
pq increases to large positive values & 1.7 approaching al-
most the positive-definiteness limit ( —1 &pq&2). The
emission takes place preferentially parallel or antiparallel
to vp.

0.8

Q6-

04-

0.2 2s

-0.2

-0.4-

Q6-
I

8 /02 6
v+ (a.u. )

FICx. 5. Fourth-order anisotropy coefficient P4(n, I, m) for
ELC of He+(n, I, m) on H as a function of projectile velocity Up.
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a drastic increase of I by a factor of 2.5 between

Z& ——1 and Zp ——8. For n =2 states, I is remarkably in-

sensitive with respect to a variation of the binding energy

within a factor 64. The width of the 2s and 2p+i states is

confined within the interval 0.2&I &0.3 and for the
n =2 average, not shown in Fig. 10, we find I 2&0.35.
This agrees, qualitatively, with experimental findings. It
is furthermore obvious from Figs. 9 and 10 that the target
structure has only little influence on I. The slight de-

crease of I for heavier targets (in particular, for the is
state and at large Zp) is in part due to the increasing im-

portance of the elastic channel which leads, in most cases,

to a narrowing of the cusp.
The projectile-velocity dependence of I is shown in

Figs. 11 and 12 for different projectile effective charges
Zp and for different targets. The cusp width I increases,
in general, considerably more slowly than -vz predicted
for the Dettmann shape. The increase of I with vp is, like
the apparent asymmetry, primarily a kinematic effect
originating from the increasing detection volume. The
enhanced transverse anisotropy for vp~ oo partially com-
pensates for the kinematic broadening. For the 2s state
(Fig. 12), I becomes almost velocity independent over a
wide range of velocities. Only the I 2~ increases almost
linearly with vp. The target structure as well as the bind-

ing energy have only little influence upon the projectile
velocity dependence of I .

For the SDCS maximum [der/dv, ]„„akinematice v —vP

correction to the vz dependence in Born approximation
(vp ) can be expected. For the Dettmann shape the
correction factor is -vp. Figure 13 shows [do/dv, ],e ve =vp

as a function of 1/vz for the reaction He+(n, l, m)+H.
We find good agreement with a linear behavior for
1/v&~0 as predicted for an isotropic cusp although the

0.6

0.4

0,2: 2s

y (a u)

I

IO l2

FIG. 12. Cusp width I p, and I 2p as a function of the projec-
tile velocity for Zp ——6, notation as in Fig. 11.

angular distribution is in fact highly anisotropic.
The results for the cusp width hold, of course, only for

states showing a regular cusp (ls, 2s, 2p+i, 2p). For a 2po
initial state, we find with vp~ ao complete cusp inversion
and the electron distribution becomes very broad.

C. Comparison with experiment

A quantitative comparison of the present results with
the experiment is meaningful only if the following re-

0.8 .I5

2pi

0.6
2s

0.4~
4

.05

I

IO I2

FIG. 11. Cusp width I &, as a function of the projectile velo-

city Up for different Zp and targets:, hydrogen, ' ———,
helium; ——,argon; (Oo ——3 X 10 rad).

0
020 0,4

I /vp ~-" )

FIG. 13. Singly differential ELC cross section at the match-

ing velocity, (do/dv, )„v, for He+(n, l, m) on H as a function
e P

of the inverse projectile velocity; 80——3& 10 rad. Cross sec-

tions for 1s are multiplied by 10.
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quirements for the data are met:
(a) the projectile velocity is large compared to the orbi-

tal velocity of the released electron [Eq. (4)];
(b) the initial state can be approximated by a hydrogen-

ic wave function without serious error; and
(c) additional charge-transfer contributions (ECC) can

be neglected. Most of the data taken so far for highly
charged projectiles in our laboratory satisfy these require-
ments only marginally. An exceptional case are the cusp
data for 0 +. The large electron-loss cross section for the
loosely bound 2s electron permits an almost "pure" ELC
measurement without significant ECC contribution and
without the need for performing a coincidence experi-
ment. The 2s state of the Li-like configuration can be
described by a hydrogenic wave function with an effective
charge Zp, rr=6. 3 to a reasonable degree of approxima-
tion. The deviation from the asymptotic charge seen by
the ionized electron at large distances, Zp sy

——6 is only
=5%. For the experimental data in the region 7 & vp & 12
with vp/v „bi ~

&2 the Born approximation should give a
rough estimate for the ELC cross section.

Figure 14 displays the ELC cusp width for 0 + on ar-
gon. The calculation includes, besides the dominant 2s
cross section (=90%), the smaller contributions of the
two Is electrons (= 10%) also described by hydrogenic or-
bitals with the Slater value Zp d~

——7.65. The linewidth is
found to be much smaller than predicted for an isotropic
cusp, also shown in Fig. 14, and in good agreement with
our data. This result strongly emphasizes the importance
of the large transverse anisotropy as a source of the nar-
rowing and of the weak vp dependence of I observed in
ELC experiments for few-electron projectiles. A further
comparison can be made for the "total" cusp cross section
o " as determined by integration of do. /dv, between

vp —0.5 and vz + 0.5. Figure 15 shows the experimental
and theoretical o. for 0 + and 0 +. Although only
poorly justified in a Be-like configuration, we use a hydro-
genic approximation also for 0 +. The experimental en-

ergy dependence can be well reproduced for both systems
whereas the absolute magnitude of cr " is overestiinated

by a factor 1.5 or 2. The comparison of Figs. 14 and 15
suggest that the anisotropy (and therefore I ) is less sensi-
tive than the absolute cross section to both the simple ap-
proximation for the wave function and to the Born ap-
proximation a feature often observed in calculations for
bound-state excitation.

For collisions of hydrogenic 0 +( Is) projectiles, the cal-
culation has failed to reproduce experimental data for the
cusp shape at v~ ——7.07. The experimental width,
I pt (0.3, is much smaller than predicted by the calcula-
tion, I,i,„,——0.49 (a rough estimate for I at Zp ——8 and
vp ——7.07 can be taken from Figs. 9 and 11). More seri-
ously, the data show an asymmetric cusp skewed to the
low-velocity side similar to that for ECC. Since the data
were taken in coincidence with the outgoing charge state,
ECC should be ruled out as a major source of the asym-
metry. The failure of the Born approximation is not
surprising because of vz/v„b;„I (1 in this case. Further-
more, the ionization of the deeply bound 1s electron re-
quires close collisions where the interaction with the argon
nucleus is not small.

06-

0.4-

02

8
l

/0 /2

V+ (a.u.)

FIG. 14. ELC cusp width for 0'+ on argon (Oo ——3. 14)& 10
rad=1. 8') as a function of the projectile velocity;, present
calculation; ———,width for isotropic electron emission; % ex-

perimental data (Ref. 5).
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FIG. 15. Integrated absolute ELC cusp cross sections (see
text) for O~+ argon as function of the projectile velocity vp.

Present theory:, q =5; ——,q =4; experiment (Ref. 5): 0,
q=5; O, q=4.

/4

It is interesting to note the similarities and differences

of the forward-backward asymmetry for ECC and ELC.
As in the case of ECC (Ref. 34) we find that the asym-

metry of the DDCS is a signature of the presence of
higher-order Born terms. There is, however, a remarkable
difference: In the limit of asymptotic projectile velocitie",

vp »1 the DDCS asymmetry persists for ECC (Ref. 35)
because of the dominance of the second-order Born contri-
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bution whereas for ELC the DDCS should become sym-
metric because the first-order Born approximation is be-
lieved to be the leading term of the perturbation expansion
for large vt (Ref. 14) (although a conclusive proof is not
yet available).

One further aspect deserves attention for hydrogenic
projectiles: The 0 + beam contains, after leaving the
stripper foil, an admixture of metastable 0 +(2s) projec-
tiles. The detected cusp is then a superposition of ELC
contributions of the ls and 2s initial states. Our present
results emphasize the importance of even small admix-
tures of' metastables because of the large 2s ELC cross sec-
tion in the cusp region. Assuming an admixture of 3%
metastables we find under the same experimental condi-
tions as discussed above a reduction of the calculated
width from I =0.49 to 0.35. Therefore, more accurate
measurements of the ls ELC cusp shape should be per-
formed in future by quenching the 2s state before entering
the collision region.
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APPENDIX A

In this appendix we summarize the basic ideas and the
final result for the algebraic O(4,2) calculation of the
bound-bound transition form factor of hydrogen.

The method is based on the fact that the hydrogenic
Schrodinger equation in parabolic coordinates (e,rt, P) can
be transformed into a Schrodinger equation for two two-
dimensional harmonic oscillators with identical quantum-
number —dependent oscillator frequencies

COn =ZP/71 (Al)
VII. CONCLUSIONS

We have shown that a well-known group-theoretical
O(4,2) approach for calculating bound-bound transitions
in hydrogenic systems can be easily extended to bound-
free transitions in the limit of low-lying continuum states
using the continuity across the ionization limit. The
method yields a relatively simple closed expression for the
triply differential cross section for projectile ionization of
an arbitrary initial state

I
n, l, m ). The doubly differential

and the single differential cross section can be found by a
one-dimensional numerical integration over the transverse
momentum transfer. The angular distribution of the
DDCS or TDCS becomes increasingly anisotropic with
larger principal quantum number n.

The results have been used for a systematic investiga-
tion of the cusp shape for electron loss to continuum as a
function of the initial state of the released electron. We
have found a variety of possible shapes including a very
narrow cusp for a 2s state and an inverted cusp for a 2po
state. The strong dependence on the initial state contrasts
with a weak dependence on the projectile velocity, the
binding energy of the released electron, and the target.
The calculated cusp width shows good qualitative (and
!ometimes quantitative) agreement with data concerning
electron loss from the n =2 level of highly charged ions.
Discrepancies for I(:-shell ionization are very likely linked
with the failure of the Born approximation in the energy
region where projectile and orbital velocity are of the same
order of magnitude.

One can therefore establish a one-to-one correspondence
between the parabolic quantum numbers (n i, n q, m) and
those for the oscillators (s, m) and t, m):

=2nz

s+t =2n .

(A2)

(A3)

The Lie invariance algebra connected with the group de-
generacy within an n shell is O(4). In the oscillator rep-
resentation, transitions between states with different quan-
tum numbers (s~s' or t~t') can be described by the
usual oscillator creation or destruction operators. By in-
corporating quadratic forms of the oscillator shift opera-
tors, the O(4) algebra can be extended to the O(4,2) nonin-
variance algebra whose irreducible representation space is
the complete oscillator Hilbert space. The elements of
O(4,2) allow an algebraic description of transitions be-
tween all oscillator states. According to the correspon-
dence to the hydrogenic Schrodinger equation, the O(4,2)
algebra permits an algebraic description of n-changing
transitions in the physical bound-state Hilbert space pro-
vided we adjust the n dependent oscillator frequencies Isee
Eqs. (Al) and (A3)]. The rescaling of co„can be done
with help of a scaling operator S which is itself an element
of the group generated by exponentiation of the O(4,2) Lie
algebra. Consequently, bound-bound transitions can be
described in a completely algebraic way. We quote here
the final result for the transition form factor as given by
Englefield adopted to our present notation:

(n', n'i, nz, m
I

e' 'I n, n numi)
„,+„,K (n'i +

I
m

I
)'(n~+

I
m

I
)'«i+

I
m

I
)'(n~+

I
m

I
)'=( —1) '

2 71 )!7l21)i )!71p!

4nn'

(n +n') +K n (n')~

m f+Z , n, +n,' —i , n', +n, —i
(n n' iKnn') ' ' (—n— n'+iKnn') '—

I I

I

m I! (n+n' iKnn') ' —'(n+n'+iKnn') '



3290 BURGDORFER, BREINIG, ELSTON, AND SELLIN 28
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In (A4) we have introduced the following abbreviations:

K =g/Zp,

y = 4n—n'[(n —n') +K n (n') ]

(ASa)

(A5b)

It is important to note that the scaling operator maps the
complete oscillator Hilbert space into the subspace of hy-

drogenic bound states. Therefore, (A4) cannot directly be
applied to transitions into the hydrogenic continuum. An
extension is, however, possible via analytic continuation.
In Sec. IV, we discussed a very simple method for in-
clusion of low-lying continuum states by calculating the
Rydberg limit n'~ae of (A4) and using the continuity
across the ionization limit.
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