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We present a new method for obtaining local, energy-dependent, single-channel or multichannel

optical potentials. The optical potential is obtained by calculating and smoothing a potential that

yields the correct scattering matrix for a sequence of truncated interaction-potential matrices. The

new method is illustrated by applications to electron —hydrogen-atom scattering in a truncated Hil-

bert space. The resulting optical potentials accurately reproduce the original close-coupling calcula-

tions in the same Hilbert space, and they show clearly the effects of charge polarization and flux ab-

sorption. The coordinate dependence and energy dependence of the smoothed optical potentials are

compared to models in the literature.

I. INTRODUCTION

The inclusion of virtual and real charge-polarization ef-

fects is the hardest part of electron scattering theory and

the most difficult effect to include in computations. The
three most standard approaches are (i) inclusion of a suffi-

cient number of excited electronic states or pseudostates of
the target in a coupled-channel treatment of the dynam-

ics, ' (ii) calculation of a nonlocal optical potential by
Green's-function theory, perturbation theory, or the Fesh-

bach projection-operator formalism, ' (iii) use of local,
energy-dependent effective potentials obtained by high-

energy, low-energy, or semiclassical approximations, or
from models. ' Approaches (i) and (ii) are more

rigorous than (iii), but they are expensive to converge and

not as easily interpreted as approach (iii). In approach (iii)

the real part of the optical potential is usually based on a

static-exchange potential plus a "polarization" term based

on the adiabatic approximation, with or without nonadia-

batic corrections. In phenornenological models, the polar-

ization potential contains an empirical parameter adjusted

to experimental scattering data, but this is not neces-

sary. ' ' The imaginary part, or "absorption" term, is

harder to model and is often based on simply motivated

functional forms with empirical parameters. ' The

eikonal optical model, the dispersion relation for the ab-

sorption potential, and a quasifree scattering model

have also been used to obtain the imaginary part of the

optical potential without empirical parameters, and the

dispersion relation has also been used with empirical

imaginary parts to obtain the form of the polarization

part. These methods have their merits, but it is still not

completely clear which forms are best for the polarization
and absorption terms in the optical potential.

A fourth approach that does not fit into the above clas-
sification is (iv) the matrix effective-potential method.
This method may be thought of as an attempt to bridge
classes (i) and (iii) since it is a coupled-channels method,
but the input is obtained from an adiabatic model rather
than from excited-state or pseudostate wave functions.
The final results of the matrix effective-potential method
show energy-dependent nonadiabatic polarization effects

where V~~ (r) is the first element of the static-exchange

potential matrix, r is the coordinate of the scattering par-

ticle, and Qt~(r) is an optical-correction potential. Com-

paring this to the usual effective-potential notation

V' (r)= V&f(r)+ V (r)+iV"(r),

where V (r) is the polarization potential and V"(r) is the

absorption potential, shows that

Qtt(r)= V (r)+t V"(r) . (3)

Note that every term in Eqs. (I)—(3) is also a function of
energy. In this article we will also consider n X n

generalized-optical-potential matrices V't" ( r ), in which

case V'~'(r) is Vt'P(r).
One way to illustrate the relationship between the ap-

proaches and to use approaches of class (i) to gain more

insight about the terms in Eq. (3) is to use approach (i) for
tractable cases and find numerically exact local optical po-
tentials that reproduce submatrices of the scattering ma-

trix of the full calculations for a given energy. ' We have

tried this, and, as we show in this paper, the resulting nu-

merical optical potentials contain many poles, and they

are not easy to interpret. The method would be more use-

ful if we could obtain smooth, local optical potentials that
still reproduce or almost reproduce the results of the full

calculation. We will show in this paper that this can be
achieved by smoothing the original numerical optical po-
tentials. Our procedures yield a local, energy-dependent,
smoothed optical potential that is essentially exact. We

hope that this kind of potential, which contains no semi-

empirical parameters and which presupposes no function-

al form, will be useful for illustrating the features that a
physically correct model potential should have.

In this paper we give all numerical values in Hartree

atomic units, in which the energy unit is 1 hartree

implicitly.
The single-channel effective-potential approaches and

the optical-potential approach can be cast in a unified no-

tation by defining the optical potential as

V'~'(r ) =—
Vf f(r )+Q)) (r ),
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= 1E~ ——27.2116 eV =4.359 81 X 10 ' J, and the length
unit is 1 bohr = lao =0.529 177 A.

TABLE I. Radial parts and eigenvalues of the eigenstates
and pseudostates used in the close-coupling calculations.

State R («)'
E,

(Ep )

(EO EO)

(Ej, )

II. EXAMPLE

All numerical examples in this article are for
electron —hydrogen-atom scattering with zero total angu-
lar momentum and neglecting exchange. Higher angular
momenta and inclusion of exchange will have quantitative
effects on the results, but the example considered here is
sufficient to illustrate the new method and the energy
dependence of the optical potential. We expand the
scattering wave function in terms of five eigenstates and
pseudostates of the target: Is, 2s, 2p, 3s, and 3d. For total
angular momentum zero, there is one channel per state,
and we will use these state designations as the channel in-
dices. The pseudostates 2p and 3d are those of Temkin,
and Damburg and Karule, and, respectively, they take
full account of the long-range dipole and quadrupole po-
larizabilities of the ground state. The 3s state was taken
from Burke and Mitchell, and it accounts for short-
range radial correlation effects. The radial parts and
eigenvalues of the eigenstates and pseudostates are given
in Table I. The last column of Table I gives the threshold
energies.

1$ 2e
1

2

2$

2p

3s

3d

( —)' '(1 ——«)e2 2«

( 129 ) «(1+ 2 «)e

[(
30O )1/2 (

5&9 )1/2 + (
3 )1/2 2] r/2—

( )' '«'( —+«/3)e

7
86

5

456
13+ 214

0.00000

0.375 00

0.418 60

0.489 04

0.560 75

'In atomic units. The normalization is dr r
~

R (r)
~

=1.
0

III. METHODS

The construction of the optical potential involves three
steps. First, it is necessary to solve the many-channel
close-coupling equations for the scattering wave function.
The next step is the calculation of the exact optical poten-
tial using the method of Wolken. ' Finally, the exact op-
tical potential is smoothed to remove its poles.

We consider electron-atom scattering, neglecting ex-
change. The close-coupling equations for total angular
momentum zero are

d2

Qr

l&,(l +1)
+k,' f«(r)=, QV«(r)f~~ (r), a,a'=1, . . . , N

a'
(4a)

k =(2p//fi )E„& (4b)

Erel, a =E —Ea ~ (4c)

V (r)=
ja Ja'

I ImI ——laml = I 'mj Jam = —j ~a J a

(I mij~mj
l
I& 00)(l mijn m~

~

l j 00)

X fdr 'dr Yi, (r)YJ (r ')R„ i (r')

X Yi, (r)Y , (r ')R„,i,(r'), .

2

r' —r/

2

(4d)

where I is the orbital angular quantum number of relative motion in channel a, n and j are principal and orbital
quantum numbers of internal motion in channel a, ( .

~

.
) is a Clebsch-Gordan coefficient, Yi is a spherical har-

monic, p is the reduced mass, E is the total energy, ao specifies the boundary conditions, E„,& is the impact energy in
channel a, and E~ is the internal energy of the state or pseudostate a. In the rest of this article we reset the overall zero
of energy such that E i ——0 and E =E„i i.

In general, there will be a total of N channels, No of which are open. The N coupled equations (4a) were solved nu-
merically by a modified version of our Numerov code. This code starts integrating at r =ro, where ro, is sufficiently
small so that f (ro)=0 for all a and ao. We used ro ——10 'zao. In the asymptotic region, where the potential term of
Eq. (4a) is negligible,

f«(r)=$ (r)A ~ +D (r)B

where
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5 ~k~ rji (k~r), k~&0
$«(r)=.

5«exp[
~
k~

~

(r ry—)], k &0
(6)

D«(r)=

1/2
—5«rhea "(k~r), k~ &0

CX

[exp[
~
k~

~

(r rI)] —i—exp[ —
~
k~

~

(r —i )]J, k &0

ji and hi" are spherical Bessel functions of the first and
third kind, respectively, r~ is a constant chosen to avoid
overflow problems, and A I and B are elements of theaao 0

constant matrices A and B. The generalized N)(N T ma-
trix is then given by

d2

dF

1 (1 +1)
+k~ G«(r)

r a aao

N &(N matrix A. As a consequence

T=BA (8) +[V (r)+Q (r)]G ~ (r), a,a'=1, . . . , n

and, if No & N, the transition matrix will be the upper left

No XNo submatrix of T. It is clear that if C is any non-

singular N XN constant matrix, then the transformation and

(18)

f(r) =f(r)C (9) G(r)-S (r)+D (r)T as r~00 . (19)

will give a new set of channel functions with

f,(r) =S (r)A +D (r)B

and

(10)

T=BA

f(r) =f(r)[f(r')] (12)

for all r & r'. Our program saves the f(r) at each integra-
tion point as well as the set of r' values where any
transformations were made. Once we know T, this allows
us to calculate a new solution matrix F(r) that is a con-
tinuous function of r and satisfies

When No &N, we use this fact to avoid linear dependence
of the columns of f by periodically making the transfor-
mation

V (r)=~V(r)+Q (r) (21)

0.010

We will call Q ~(r) the optical-correction potential. Q (r}
is then given by

Q (r)=[V (r)F(r)]„[F(r)] ' V„(r) . — (20)

Q (r) will be complex if No, the number of open channels
in the original calculation, is greater than n; otherwise

Q ~(r) will be real.
Although V' '(ir) as defined by Eqs. (16) and (20) repro-

duces T„(r) exactly, it has the undesirable property that it
has a pole whenever the determinant of F~(r) is zero. To
obtain a more convenient effective potential we define a
smoothed potential

F(r)-S(r)+D(r)T as r~ oo . (13)

It is useful to define an r-dependent NXN T-matrix
function by 0.005

T

T(r) =2i f dr' S(r') Vs(r')F(r') .

By Green's theorem

T=T(oo) .

(14)

(15)

0000
(

&(

For n &N, Wolken ' showed how to find an n Xn local
optical-potential matrix with elements

-0.005

V ~'(r}=V«(r)+Q (r), a,a'=1, . . . , n (16) -0.050

that generates a new nXn solution matrix G(r) that
reproduces the n Xn upper-left subblock of T(r) for each
value of r. By this we mean

T „(r)=2i f dr'S „(r')[V„(r')+Q (r')]G(r'), (17)

where A „means the upper-left n &n subblock of the

8
"(ao)

FIG. 1. Real part of the (1,1) element of the optical-

correction potential (in E~) as a function of r (in ao) for n =1,
E =4', . In all figures, the symbols mark the [ri J used to gen-

erate Q0. , Q; ———and X, Q
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FIG. 2. Same as Fig. 1, except n =2.

in terms of a smsmoothed optical-correction potential ~ (r)
such that Qo(r )=Q ~ r; =Q (r; ) for r; an element of the set I r;,
where Ir; I contains points where Q ~(r) has no

n =, t e set Ir; j was chosen to contain the
values o r where

~
F„(r)

~

has a local maximum, and ro,
the starting point of the integration of Eq. (4a). This
means we have a point about halfway between each singu-
larity. Figure 1 shows ReQ ( ) d R Q (ii r an eQii(r) for the ex-

ample problem of Sec. II with N =5 n =1
E =4E Thee behavior of the imaginary part
similar.

pa s is quite

For n =2, we used an extension of the above rule. The
extension is motivated by the fact that, for the example

airs see Fi
ies o Q r) occur in

of detF r
p ', ee Fig. 2. This happens becaus th l le e oca maxima

e woint eet „r occur in pairs, with one of th t
pair much bigger than the other. The extended rule is as
ollows. If the local maxima f ~~d F„(

I r; I. In addition, ro is included in I r; I. For the case con-

p p, = .5 and 0.9 gave the same resultssidered in this a er @=0
or r &14a and in h'this r range these choices corres ond

to includin one r bg; between every other singularity. This
resp on

-0.005
0 3 6 9 12

r(ao)
FIG. 3. Same as Fi . 1 e'g. , except only Re Q» for several ener-

gies. and 6, 1.0', ——and, 2.0E —- and

d&& gOZ

V '(r) =E;(r)—Ei —Vi)(r), (22)

where E i (r) is the lowest eigenvalue found by diagonaliz-

ing ' r) in the five-state basis used here V ( )
'

s atic potential which is defined in Eq. (4d), and

0E i E', (r = ao ——) . (23)

E =4E an e=
is shown in Fig. 2 for the real part of fo ~» or%=5, n=2,

~, an a=0.9. This rule, when applied with
@&09 to an of t

'e wi any

y of t"e n =1 cases considered in this article,
generates precisely the same r th
r. or either n =1 or n =2, to generate Q (r) for all r

'
-p

'
agrangian interpolation was used

with the values at the selected r th
In the disc

'r; ' as t e input set.
n t e iscussion to follow it will be interestin to com-

pa o Q»(r) to the adiabatic polarization
potential VP'(r). This is obtained as follows. ' If H'

the Hamiltonian for a hydroge t
'

h
ws. ' r)

an ele
n a om in t e presence of

an eectron fixed a distance r from th 1e nuc eus, then

TABLE II. Phase shifts (rad) in the 1s channel for n = 1

E (Eg) Np Exact'
Optical-correction potential

Smoothed" Smoothed' Adiabatic None'

0.2
0.4
1.0
2.0
4.0
8.0

1

2
5
5
5

1.780
0.6711+i0.0975
0.8080+ i0. 1177
0.6939+i0.0599
0.5883+i0.0299
0.4909+i0.0148

1.745
0.6710+i0.0974
0.8034+ i0. 1118
0.6939+i0.0589
0.5886+ i0.0297
0.4911+i0.0145

1.867
0.6796+ i0.0967
0.8060+ i0. 1150

1.776
1.435
1.137
0.9401
0.7691
0.6224

1.012
0.9356
0.8028
0.6949
0.5899
0.4919

'From Eq. (18) with n =
f' 1 1

oasono 11 r, .
'Based on six-point Lagrangian interpolation of Q i ~ (r; ). This is iven onl wh

f h 1
' f ' '

1

Obtained using VP'(r)= V~i(r)+ V '(r).
'Obtained using Vi['(r)= Vi~(r).
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-0.0a—
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FIG. 4. Same as Fig. 3, except V ' is also shown.

0, 0.2Eh., ——and o, 0.4E~, and - - -, V '.

12

and

-0.12

r(ao)
FIG. 6. V E X ImQ~~ (in Ep', ) for n =1 as a function of r {in

ao) for several energies E. The kind of symbol denotes the ener-

gy: 0 1Ea; o, 2'„' 0, 4EI, ; 6, 8'.
IV. RESULTS AND DISCUSSION

We now consider applying the methods of Sec. III to
the example of Sec. II. In all cases we use N =5.

Table II shows the phase shifts obtained by solving Eq.
(18) for n = 1 for three different optical-correction poten-
tials along with the results using no optical-correction po-
tential. For E & 2E~, the smoothed optical potential
reproduces the phase shifts of the full five-state calcula-
tion within 0 0003 . i 0 0—010 . At 0. .4—1.0Es, the differ-
ences are less than or equal to 0.008+i0.008. At the
lowest energy 0.2E~ the agreement is still excellent, with a
discrepancy of only 0.03 or 0.09, depending on the order
of interpolation. The larger discrepancies at lower ener-
gies are due to the smaller number of points used in the
smoothing procedure and the problem of interpolating be-
tween them. [Our algorithm involves fewer points at
lower energies because there are fewer poles of Q~(r)
there. ]

In contrast to Q»(r), the adiabatic polarization poten-
tial does quite poorly, except for the lowest energy where
No ——n. In fact, for the five highest energies considered
here, it would be better to use no optical-correction poten-
tials at all, rather than to use the adiabatic polarization
potential.

Figures 3—8 show various aspects of the optical-
correction potentials used for the calculations in Table II.
Figures 3 and 4 show the short-range real part of g»(r)
at the energies studied along with the adiabatic polariza-
tion potential. For the four highest energies, shown in
Fig. 3, Reg»(r) is quite small and is positive near the ori-
gin, but it goes to zero, or slightly negative, at the origin.
In the important small-r region, as the energy is increased,
Reg»(r) gets smaller and the position of the positive
maximum moves to larger r. As an interesting conse-
quence, Reg»(r) is positive over most of the range illus-
trated in Fig. 3. The quantitative results, of course, de-

0.00 0.2

-0.03 0.1

g -o.oe "-',
a

()

-O.O9 -/ -0.1

-0.12 -0.2
20 35 50 65

r (ao)
80 as

FIG. 5. Same as Fig. 3, except only ImQ~& for several ener-
gies. and 6, 0.4', ——and 0, 1.0', —- and 0, 2.0EI„
- - - and Q', 4 OEI„and ———.and X, 8.0EI, .

FIG. 7. ReQ&& and ImQ» (in 10 'El, ) as functions of r (in
bohrs) for n =1, E =2'. In this r region, the [r;j occur at
about every 0.8ao. , Re; ——,Im.
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TABLE III. Parameters for the fits [ V '(r) or
Q~~(r)]= —(~I2r")exp[i(8r+c)], for m =1.
E (E$ ) ~ (E/g & 0 )

-2

-4
adiabatic

0.2
0.4
1.0
2.0
40
8.0

4.57'
4.40

35.4
0.496
0.226
0.140
0.103

4.00
3.99
3.97
2.02
1.94
1.94
2.00

0.0
0.0

—0.664
—0.337
—0.223
—0.152
—0.105

0.0
0.0
4.417
3.372
3.260
3.135
3.048

LLI 6
O

'+
O
c= -8

'~ is not equal to 4.50Eqa~p here because the quadrupole polar-
izability contributes a r term, and, for consistency, this row is
based on a least-squares fit over the range (20—80) ao using the
same set of r; as for the next row.

2

In ( r/ao )

FIG. g. ln
~
Q, i ~

(with Q~~ in 10 i') as a function of lnr

(with r in bohrs) for n =1,E =2'.

and is smaller than would begredicted from the other en-

ergies. This is because IrnQii must go to zero at the 2s
threshold of 0.375E&.

Figures 7 and 8 show the long-range part of Qii for an

energy of 2Es. In Fig. 7 we see that Qii oscillates with
the real and imaginary parts out of phase by about ~/2.
Figure 8 shows that ln

~ Q» ~

is a very smooth function of
r without oscillations. This is typical behavior for all of
the energies studied here above the 2s threshold. In fact,
the long-range part of Q i i can be fitted quite well by

Q ii(r) = (a/2r—~)exp[i (8r +c)] . (24)

Values of the parameters ~, 8, c, and& for each energy
studied here are given in Table III. These are the best
values in the least-squares sense which fit Qii(r;) for
20&r; &80ac. For energies greater than 1Es, p is very
close to 2, while for lower energies, p is close to 4. The
coefficient u decreases with increasing energy for energies
greater than 0.4EI„and for the lowest energy where
n =TO, u is slightly lower than the value for the adiabatic
polarization potential. The factors 8 and c are zero for
the lowest energy since the optical-correction potential is
real. For higher energy, the magnitudes of 8 and c de-

pend on the procedure we have used to smooth Q (r).
Thus, it is significant that the shape of ReQ»(r) does not

change radically as a function of energy; this lends further

support to the reasonableness of the smoothing method.
For the lower energies, Fig. 4 shows ReQii along with the
adiabatic polarization gotential. Here, the shape is dif-

ferent. At 0.4Es, ReQ» has a positive peak at the origin,
but both ReQii at 0.2Es and V ' have negative peaks
there. Note also that ReQ i i is much larger in Fig. 4 than

in Fig. 3. In comparison to V ', ReQ i i for 0.2Es has two

points near the origin more negative than V '. This is

unexpected since physically V ' would be expected to be a

bound to the true polarization potential. The bound is not

rigorous, though, since the optical potential is not negative
everywhere. Note also that only the first two points of
ReQ i i at 0.2Es are more negative than V '; all others lie

above V ', and it is possible that an alternative smoothing
procedure would reverse the trend at the first two points.

Figure 5 shows the imaginary part of Qi i for all of the

energies used. ImQ» always has a negative peak at the
origin and is larger at small r than ReQ ii, except for the
lowest energy. In addition, if the lowest energy is exclud-

ed, ImQii changes very smoothly with energy. In fact,
Fig. 6, which combines the points for the range 1 8Es, —
shows that ~E X ImQ» is almost independent of energy.
At the lowest energy, ImQii has a slightly different shape

TABLE IV. T-matrix elements for n =2.

E
(EI, )

4.0

Transition

1s-1s
1s-2s
2$-2$

Exact'

—0.638+i0.870
0.170+i0.009

—1.545+ i0.725

Optical-correction potential
Smoothed Smoothed'

—0.639+i0.869
0.168+i0.009

—1.553+ i0.722

None'

—0.623+ i0.908
0.181+i0.022

—1.581+i0.793

0.4 1s-1s
1s-2s
2$-2$

—0.814+i0.801
—0.568+ i0.027
—1.109+i0.816

—1.036+i0.811
—0.600+ i0.066
—1.142+ i0.799

—0.881+i0.817
—0.581+i0.054
—1.268+ i0.782

—1.216+i0.822
—0.484+ i0.211
—0.251+i0.401

From Eq. (18) with n =2, X =5. This agrees to at least the number of significant figures given with

what is obtained from the full five-state calculation.
Based on four-point Lagrangian interpolation of Qo(r; ).

'Based on six-point Lagrangian interpolation of Q0(r;). This is given only when it differs significantly

from the results using four-point interpolation.
Based on two-channel calculation with V~i' = V~.
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crease with increasing energy, with 8 always negative. In
the high-energy limit, it appears that ~ and 8 go smoothly

to zero, while/i will reinain close to 2. The phase correc-
tion c is only determinable within an additive multiple of
2m. so it is uncertain what its limit is or if it has a limit.

As mentioned above, at sufficiently large r, ReQii(r)
for E equal to 0.2', may be fitted by u/2—r with ~
close to the value obtained from the large-r limit of the
adiabatic polarization potential. This is significant be-

cause for collision energies below the first electronic
threshold it can be rigorously established that' '

0.01

0.00

-0.01

-0.02

-0.03
-

/-0.04

I !3

V (r) ——e ai, »/2r as r~ao,P 2 4 (25)

where a~, &, is the static electric dipole polarizability
[which is a special case of Eq. (27) below]. Our agreement

with this form is an encouraging success for the present
method of localizing the optical potential. Since our
smoothing procedure yields the correct large-r limit below

the first electronic threshold, we have more confidence
that it may be useful in studying the energy dependence of
the absorption and polarization potentials at higher ener-

gies.
Table IV shows the 2X2 transition matrices found us-

ing Q
~ and Qo, along with no optical potential, for cases

with n =2, N =5 at two energies. These transition ma-

trices for the Qo calculations were found by matching to
the T matrix boundary conditions of Eq. (5) and sym-

metrizing the T matrix by taking the arithmetic average
of the off-diagonal elements. At E =4E~, the sym-
metrized T-matrix elements differ from the unsym-

rnetrized ones by 3% or less.
The agreement between the Qo calculation and the Q

~
calculation is quite good at the highest energy, but not as

good for the lowest energy where Qo is real. This is due
to the problem of interpolating between only a few points.
In spite of this, at the lowest energy using Qo is an im-

provement over using no optical-correction potential at
all.

-0.05

r (ao)

12

FIG. 10. Same as Fig. 9, except now the imaginary part.

Figures 9—11 show the short-range part of the Qo ma-

trices used for Table IV. Figure 9 shows the real part of
Q at an energy of 4E~, Fig. 10 shows the imaginary part
of Qo at 4Eq, and Fig. 11 shows Qo at 0.4Ei, . As re-

quired to cause flux loss, Qo is non-Hermitian in both
cases. The figures show that the 2 X 2 optical-potential
elements have a more complicated r dependence than for
n =1. ReQo is much smaller at 4E~ than it is at 0.4', .
The long-range behavior of Qo is quite complicated. Ex-
amination of a larger r range than shown in the figures in-

dicates that the components of Q at 4Ei, come in pairs
which oscillate out of phase by ir/2. The pairs are

(ReQ», ReQ2i), (ImQ», ImQ2, ), (ReQ&z, ReQ22), and

(ImQ 12, ImQ22 ).
It is interesting to compare the optical-correction-

potential matrix elements for n =2 to the adiabatic
asymptotic limit of the matrix polarization potential
representing the effect of states not included in the n =2
pair. This is given by the electric dipole approximation
and second-order perturbation theory. For the present
case where the n =2 pair consists of s states, this yields

0.005 V (r)- —e a /(2r ) as r~cp, (26)

0.000

0.15

0.10

-0.005
0.05

-0.010
12

0.00

r (ao)
FIG. 9. Real parts of the smoothed optical-correction-

potential matrix elements (in Eq), labeled by a, a', as functions
of r (in ao) for n =2, E=4'. and 4, 1s 1s; ——and CI,

1s 2s; —- and 0, 2s 1s; - - - and Q, 2s 2s.

-0.05

r (ao)
12

FIG. 11. Same as Fig. 9, except E=0.4' at r =0—15ao.
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3
TABLE V. Static elecectric dipole transition polarizabilities (in

ap).
0.06

1s
1s
2$

2$

a'

1s
2$

1s
2$

aaa'

4.5
—6.9527

—66.746
103.126

0.04

0.02
lu

0.00

where

(27)

-O.O2— /-.

-0.04

-0.06

0.02

0.01

LLJ

0.00
O

V

«=
-0.01

-0.02
30 40 50

r(ao )
60 70

FIG. 12. Real artsp s of the smoothed optical-correction-
potential matrix elements Q~ and Q ('

E =0.4E as corn
ia s. or t e smoothed optical-correction poten-

ia s, t e curves are the smoothed res
or e ~r;~ used as in ut

results, and the symbols are
'

p to the smoothing algorithm.
21,

' - - -, —a~1/(2r ); —-, —a11/(2r )' d

11 ~

4, an

a~~ is the static electric dipole transitio 1
' ' "

y,
' '

n po ariza'i ity,

the initial
the sum is over the radial parts f 11s o a p states connected to

e initial and final state by a dipole transition, and

p~~ ej R——~(r)rR~(r)r dr,

where R r is the radial part of the target wave f t'wave unction
or the basis of Sec. II, the sum in E . (27)

consists of onl ony ne term involving the 2p state. Table V
gives the results.

Figures 12 and 13 show the long-range b h fe avior o Q
~ a ong with the adiabatic asymptotic limi .

s at Q» and Q2i oscillate out of phase b
a out m. with the maxima about 2 t 3

e y

the v
u o times greater than

13 we
e values calculated from Eq. (26) d T

0
an able V. In Fig.

we see that Q i2 is always positive and ~ a'

from this form; at these points Q d Q]2 an ~22 are less in

gagnitude than predicted by E . (26). F'
e sign o Q22 persists at all r and the sign fsign 0

30 40 50

r(a )

60 70

FIG. 13~ Same as Fi . 12ig. 2, except: —-, —a12/(2r )'an, Q, 2,
' ———and 0 22,

' - - -, —aq2/(2r ).

which is explained at large r by Fig. 13, persists to r=3a .

plain the detailed structure, does explain some of the en-

p ica -correction potentials, including
t e opposite signs of Q i2 and Q22 at large r.

V. CONCLUSIONS

We have developed a simple smoothin ding proce ure for
p ica potentials such that the smoothed

'
1

tials still re
moo e optical poten-

s i reasonably accurately reproduce a b
the full scatterin m

e a su matrix o
sca ering matrix of a larger calculation. Th 1

and ima ina
e rea

correc
'

g' ry parts of the resulting smooth d t' 1

ection potentials may be con d d d
e optica-

si ere as ynamically
accurate, nonempirical version f hs o t e po arization and
a sorption terms of the effective-potential a roach to
electron scattering.

a approac to

'
g aspect of the present results is thatThe most strikin a

t e accurate polarization potentials look very different

er de
from those for the usual methods' the hs; ey s ow a strong en-

' ~ ~

ergy ependence, and except at very loow energy t ey are
in ao o t e nucleus.

e and above they are even positive in the 3—5ao
intermediate-r re ion. It wg' . would be very interesting to test
t e e ect of introducing this kind of b ho e avior into the
rno e potentials that are widely used fo 1'e or app ications.

The adiabatic asymptotic limit of the oli o t e poarization po-
en ia is given by Eq. (26), and it is well known to be a

rigorous result onl below ty w t"e first electronic excitation
t reshold. ' Our results confirm this form at 1a ow

zation
gy, a high energy they yield an oscill t 1ci a ory po ari-
n potential whose envelope scales with e

distance as E ' r
es wi energy and

There is very little known about the r and E de dan ependence

models di
q

'
or an accurate absorption potenti 1 A '1ia . vai able

iffer even for the question of wheth h
tential shhould peak at the nucleus or not. Th b

w e ersuc apo-

p
'

yielded by the eikonal optical model eotential
no . e a sorption

h 1, b hu e empirical absorption potentials of
c arthy and Green and coworkerr ers ' an the
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dispersion-relation absorption potential based on the
energy-dependent polarization potential of Onda and one
of the authors peak at nonzero r T. he absorption poten-
tial yielded by the quasifree scattering model peaks away
from the nucleus at the energies considered in the present
paper, but the peak moves to the nucleus at very high en-
ergy. In contrast, Figs. 5, 6, and 10 show that the accu-
rate dynamical absorption potential of the present work
peaks at the nucleus. In Green's empirical absorption po-
tential the peak position is independent of energy, but in
the other cases where the absorption potential peaks away
from the nucleus, the peak position moves in as the energy
increases. Figures 5 and 6 show that, except near thresh-
old, the present absorption potential becomes weaker at Rll

r as the energy is increased and retains its shape as a func-
tion of f. Th1S qualltRt1vc chalactcr1stlc 1s 1n good Rgrcc-
ment with the phenomenological approach of Green
et a/. who assume that V"(r) factors into a function of E
times a function of r. Their limiting E dependence is
E 'InE, which is steeper than the E '~ found here.

Although the concepts of elastic optical potential, po-
larization potential, and absorpt1on potential are widely
used, there has been much less work on off-diagonal (in-
elastic) elements of the generalized-optical potential. Lo-

cal approximations to the off-diagonal elements have,
however, been studied by Feshbach theory, perturbation
theory, and models. ' The adiabatic asymptotic lim-
it is given by Eq. (26). We find that even for an energy at
which the 2p state is closed, the adiabatic asymptotic hmit
provides a poor representation of the exact dynamical
optical-correction potential. This indicates that an expan-
sion approach in which the first term is the adiabatic ap-
proximation and higher terms are nonadiabatic correc-
tions is more slowly convergent for the inelastic optical-
correction potential than for the elastic one. This agrees
with the conclusion of Mittleman, ' based on a more qual-
itative analysis, and with the conclusion of Rice et al. ,
based on a semiernpirical analysis of experimental data. It
is our hope that the techniques of smoothed optical-
correction potentials will provide useful guidance for the
development of physically correct polarization and ab-
sorption potentials in future work.
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