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Exponential decay, recurrences, and quantum-mechanical spreading in a quasicontinuum model
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We consider a single quantum state coupled equally to each of a set of evenly spaced quasicontinu-
um (QC) states. We obtain a delay differential equation for the initial-state probability amplitude,
and this equation is solved analytically. When the QC-level spacing goes to zero, the initial-state
probability decays exactly exponentially. For finite QC-level spacings, however, there are re-

currences of initial-state probability. We discuss Tolman's "quantum-mechanical spreading" of
probability and also a classical analog of our model.

I. INTRODUCTION

One of the best-known general problems in physics is
the decay of a single excited quantum state into a back-
ground of states. Examples may be found in spontaneous
emission from an atom, decay of a radioactive nucleus, ra-
diationless transitions in polyatomic molecules, autoioni-
zation, and, more generally, the problem of time asym-
metry in physics. '

The problem of interest to us in this paper involves a
discrete background or "quasicontinuum" (QC) of states.
These background states are all coupled to a single, initial-
ly excited quantum state, but not directly to each other.
Whereas the details of the distributions of coupling
strengths and energy levels play a role in the dynamics of
this system, some interesting general features may be ob-
tained from specific models. In particular, we will consid-
er the QC states to be equally spaced in energy and to have
the same coupling to the initially excited state (Fig. 1).

Various researchers have found this model useful in
their fields of interest. Davies, for example, uses it to dis-
cuss the physics of time asymmetry. Bixon and Jortner
applied it to intramolecular radiationless transitions, while
Stey and Gibberd used it and other solvable models to
discuss the decay of the initial state in the limit of a back-
ground continuum of states. Similar work was reported
by Lefebvre and Savolainen. More recently, Eberly
et al. ' have applied a somewhat more general model to a
study of laser excitation of a molecular quasicontinuum.
On the basis of numerical computations, they emphasized
that the system has a characteristic "recurrence time" that
is directly proportional to the QC density of states.

This problem in elementary quantum mechanics has a
certain richness that deserves a simple and general treat-
ment outside the specialized contexts in which it has ap-
peared. It is our purpose here to give such a treatment,
which we feel to be of considerable pedagogical value.
The model illustrated in Fig. 1, while exactly solvable, is
far from trivial. It can be used not only as a paradigm for
the problem of dissipation and exponential decay in quan-
turn mechanics, but also to elucidate Fermi's Golden Rule
and the general phenomenon of "quantum-mechanical
spreading. " We discuss these and other aspects of the

model that are not evident in the cited research litera-
ture.

II. THE SCHRODINGER EQUATION
AND A DELAY EQUATION

The time-dependent Schrodinger equation for the QC
model of Fig. 1 may be written in terms of the state am-
plitudes as follows:

a(t) = i P g— b„(t), (2.1a)

b„(t)= —i(ho+ np ')b„(t) i pa (t),— (2.1b)

where a and b„are the amplitudes for the initially excited
state [a(0)=1] and the background states, respectively.

1/

FIG. 1. Diagram of model shows coupling of initially excited
state ~0) with infinite number of equally spaced background
states

~
n ) with spacing p
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The parameters p and hp are, respectively, the coupling
strength and energy-level detuning of the initial state from
the closest background state above the initial state (Fig. 1).
p, the QC density of states, is the inverse of the QC-level
spacing.

By formally integrating (2.1b) and using the solution for
b„(t) in (2.1a), we obtain for a(t) the integro-differential
equation

using the Laplace transform. We will instead give a more
elegant solution by first assuming a solution of the form

00

a(t)= g e " e ' C„(t„}e(t„),
n=0

(3.1)

where t„=t—nr. Using this form in (2.4), we obtain an
equation for the coefficients C„:

n —1

, a(t) = —p' f —i (50+np )(t —t')
t
)dt'e a(t

0
C„(t)=—y g C (t)

m=0
(3.2)

00= —P dt'e ' a(t') g e
0

Now we invoke the Poisson summation formula

(2.2)

with Cp(t}=1 and C„(0)=0 for n & 1. Now the Laguerre
polynomials satisfy the relation

n —1

L„(t)=—g L (t), L„(0)=l (3.3}
m=0

e ' = g 5{x n) . —

Thus we may write (2.2) in the form

a(t) = 2nP p —g f dt'e P a (t')

X5(t —t' —2~np)

{2.3)

(2.4)

for n & 1 and Lp(t)=1. The functions

Lp(t), n =0
L„(t)—L„ i(t), n&1

therefore satisfy the relation

~„(t)= —g ~ (t)

(3.4)

(3.5)

or
with Wp(t)=1 and W„(0)=0 for n & l. It follows from
the uniqueness theorem for differential equations that

a(t) = — a (t) yg e a—(t —nr)e{ t —nr),
2 n=1

where 8 is the unit step function,

y=2mP p

and

(2.5)

C„(t)=W„{yt}

so that the solution of Eq. (2.4) is

00

a(t)= g e + e rit nr~~2—
n=0

(3.6)

'T=2$p . {2.6)
X W„(y(t —nr ))e(t —n 7') . (3.7)

Equation (2.4) has the form of a delay differential equa-
tion. When the QC-level spacing is taken to be zero, so
that ~ becomes very large, we have

a(t)= — a(t) .
2

Therefore, the initial-state probability in this limit decays
exactly exponentially:

~a(t)
~

~—e

The decay rate y is precisely that given by Fermi's Golden
Rule.

Delay differential equations have many interesting ap-
plications. A typical application is to problems involving
retarded interactions, in which case the origin of the delay
time r is physically clear. ' In the present problem the de-
lay equation arises from the additive phasing effect of the
evenly spaced background states. Mathematically, this
finds its expression in the Poisson sum rule (2.3). A simi-
lar equation arises in the classical problem of an oscillator
coupled to a background of oscillators with evenly spaced
frequencies. This classical analog is discussed in Sec.
VIII.

III. SOLUTION OF THE DELAY EQUATION

The delay differential equation (2.4) with the initial con-
dition a (0)= 1 may be solved in a straightforward manner

Solutions equivalent to this have been reported by Stey
and Gibberd and Lefebvre and Savolainen. "

IV. INITIAL-STATE PROBABILITY

Writing out the first few terms of (3.7), we have

a(t) =e &" y(t -r)e —~' '—"e(t r-)—
+ [ ,

' y'(t —2r)—'—y(t —2r)]
x e ~ ~]~ e(t 27-) —~ ~ ~ (4.1)

where for simplicity we have assumed 60——0, i.e., one of
the QC levels is exactly resonant with ~0). At each in-

tegral multiple of v, a new contribution arises. The varia-
tion of a (t) with t can therefore be quite complicated,
especially when contributions from earlier "intervals"
(n —1)~& t &~ overlap appreciably. Stey and Gibberd
have aptly described this variation as "bizarre. " We will
therefore show a few graphs of

~
a (t)

~

for various values
of y and ~. In each case we have evaluated (3.7) up to
t =5m.

Figure 2 shows the initial-state probability for y=2 and
r= 6. The exponential decay in the first interval (0 & t & 6)
is followed by a recurrence of probability beginning at
t =~. The variation in successive intervals of time ~ is
more complicated owing to the polynomials multiplying
the factors exp[ —y(t —nr)/2] in the expression for a (t).
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FIG. 2. Initial-state probability vs time with y=2, ~=6, and
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FIG. 4. Same as Fig. 2, but with y=z= 1.
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Figure 3 is for y=~=2. Because the basic "recurrence"
time is now shorter than in Fig. 2, there is more of a con-
tribution in a given interval from previous intervals, and
this is reflected in the fact that the probability comes up
higher for t &~ than it does in Fig. 2. Figure 4 is for
y=r= 1, where this overlap effect is more pronounced.

Figures 2—4 are obtained assuming b,o ——0. In Figs. 5
and 6 we show

l
a (t)

~

for two cases in which
exp( i hor)= ——1. Destructive interference in the contri-
bution to a (t) from previous time intervals is now incom-
plete at all times, unlike the case in which b,o

——0.

V. CONSERVATION LAWS

In general the variation of a(t) with t is complicated.
However, some simplification is possible when y~&&1. In
this case the "lifetime" y

' associated with the exponen-
tial decay factor on each time interval is short compared
with the duration ~ of each interval, and so the contribu-
tions from different intervals do not appreciably overlap.
From (3.7) we can write

For y~&&1 there are two area-conservation theorems
that follow from (5.1} and the properties of the Laguerre
polynomials. These are

(n+1)T 00f dt a'"'(t) = f dt a'"'(t)
flT flT

r

2/y, n =0
4/y, n &1 (5.2}

f dt
i

a'"'(t)
i

= f dt
i

a'"'(t)
l

2

1/y, n =0
2/y, n)1. (5.3)

VI. FINITE NUMBER OF BACKGROUND STATES

In both cases the value of the integral on the first interval
is half its value on all subsequent intervals. Equation (5.3}
says that the integrated probability for the initial state in
each interval n ) 1 is conserved, and (5.2) is a similar re-
sult for the integrated probability amplitude.

a'"'(t) =e "e W„(yt„) (5.1)

in this case, where a'"'(t) denotes a (t) for
nr & t & (n + 1)r, i.e., in the nth time interval.

Our analytical solution for the initial-state probability
amplitude assumes an infinite number of QC states. What

I.o l.O

= 0.8
U

0~ 0.6
CL

—0.8
U

0~ 0.6
CL

U 0.4
V)

I

U 0.2
C

0.0 2.0 40 6.0
Time

8,0 l 0.0

U 0.4
M

I

U 0.2

0.0 I

l.o
I l

20 &0
Time

4.0 5.0

FIG. 3. Same as Fig. 2, but with ~=2. FIG. 5. Same as Fig. 2, but with y=~= 1 and ho7 ='1T.
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happens if we have a finite number of equally spaced
background states, as in Fig. 7?

For the case shown in Fig. 7, the infinite summation in
the integrand of Eq. (2.2) is replaced by a finite summa-
tion, in w ic case the integration is not lso easi y per-
ormed. Figures 8—10 show the results of numerical in-

and 15 res
2 the re

, respectively. These should be compared 'th F'e wi ig.
e result for the case of an infinite number of back-

anal tic
ground states. As N increases,

I
a (t)

I
a r h

ana ytical result shown in Fig. 2 for an infinite number of

in excellent agreement with Fig. 2. The reason for this is
discussed in the Appendix.

is not a trace of any quantum-mechanical operator. "
n our problem the density matrix is simply

p „(t)=c*(t)c„(t), (7.2)

where c~(t)=a(t) and c (t)=b ~(t) otherwise. The s s-
pure state and therefore remains in a

pure state:
Tr p(t) =Tr p (t) =1 . (7.3)

It follows furthermore that the entroen ropy

mechanical nature of this spreading of (fine-grained) prob-
ability is to note that

g pnninpnn

VII. QUANTUM-MECHANICAL SPREADING

In his treatise on statistical mechanics Tol
'

s, o man identi-
ie a istinctly quantum-mechanical source of the de-

crease with time of the H function. Th''on. is quantum-
mechanical contribution stems from the Klein relation

S=—k Tr (plop)

is zero throughout the evolution of our system.
We have computed the function

F(t)= g p„„(t)lnp„„(t)=g I
c„(t)

I
ln

I
c„(t)

I

n

(7.4)

g p„„(0)lnp„„(0)) g p„„(t)lnp„„(t),
n n

(7.1)

where p is the density matrix and is assumed to be dia o-
is 'quantum-mechanical spreading" is the

o e iago-

spreading of probability over the possible states of the s s-
tem. One wa to ay appreciate the purely quantum-

es o t esys-

(7.5)

for our system in order to check (7.1) and to elucidate the
nature of the quantum-mechanical spreading of probabili-

taining Fig. 2. Clearly the Klein relation F(0) & F(t) is sa-

thtF F
tisfied. Note, however, that if t & t it d f
tatFt &F(t

&
it oes not follow

t t F
&

F 2), for off-diagonal terms appear in the
density matrix as the system evolves in time, whereas the

b„
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FIG. 11. Plot of the function F(t) vs time using the parame-
ters of Fig. 2. Note: F(0))F(t).

derivation of the Klein relation assumes that there is no
off-diagonal coherence.

If the system starts out at t=0 with some nonvanishing
off-diagonal density matrix elements, the Klein relation is
invalid as a general statement. It fails, for instance, if we
assume initial conditions corresponding to the state of the
system at t=10 in Fig. 11.

The fact that the entropy (7.4) of a system initially in a
pure state remains zero has led in the past to an alterna-
tive definition of entropy, one that gives an entropy in-
crease due to quantum-mechanical spreading even for a
system initially in a pure state. In particular, Born' pre-
ferred the definition

and assume that

I
a

I
«~p la I, I

b«)
I «~p lb «) I, (8.3)

a(t)= —iP+b„(t), (8.4a)

b„(t)= i(cp„—c—pp)b„(t) —iPa (t),
where P=A /2cpp.

Suppose that

(8.4b)

an assumption that can be checked once a solution has
been obtained. Then we may replace (8.1) by

"5"=—kF(t) . (7.6)
with

n ~o+ao+np, n =0,+1,+2, . . . , +X (8.5)

VIII. A CLASSICAL ANALOG

Consider a harmonic oscillator of (circular) frequency
coo coupled equally to a large set of "background" oscilla-
tors with frequencies co„. If the background oscillators are
not coupled among themselves we have the equations of
motion

x(t)+coax (t) = —A g q„(t), (8.la)

q„(t)+u„q„(t)= —Ax (t), (8.1b)

where A is the coupling constant. Write

x (t) =Re[a (t)e ' ],
q„(t)=Re[b„(t)e ' ] (8.2)

Jaynes' has noted that this definition does not give the
same entropy for all pure states, whereas von Neumann
demonstrated that any pure state may be reversibly and
adiabatically transformed into any other pure state of the
system. Furthermore, F(0) &F(t) in general only if there
is no off-diagonal coherence at t=0.

In Fig. 12 we show the distribution of probabilities

I c„ I
at different times for the same parameters as in

Fig. 2. The spreading of probability is largely confined to
the background states closest in energy to the initial state.
That is, QC states that are far off resonance from the ini-
tial state

I
0) are not visited with high probability during

the evolution of the system.

1 «+ &p(cpp+~p) . (8.6)

This ensures that the oscillator frequencies ~„&0, while
the number of background oscillators is large enough so
that we can take N~ oo as an approximation in the solu-
tion of (8.4) for a(t) (see the Appendix). Then a(t) is
given approximately by (3.7), and we have a classical ana-
log of our quantum-mechanical QC model.

IX. DISCUSSION

An important feature of the QC model we have dis-
cussed is that it is exactly solvable for the initial-state
probability. In the limit of a continuum of QC states, this
probability exhibits exact exponential decay.

The problem of the decay of an unstable state in quan-
tum mechanics has a large literature. ' A necessary condi-
tion for pure exponential decay is that the energy spec-
trum have no lower bound; this condition may be inferred
from the Paley-Wiener theorem. ' Thus in realistic physi-
cal models exponential decay is only an approximation.
Fonda and Ghirardi' have associated the deviations from
exponential decay with the regeneration of the initial state
from the "background" states. Robiscoe and Herman-
son' have considered a model of "exponential decay with
a memory, " which gives pure exponential decay in the
limit in which the memory time goes to zero. A similar
model was discussed by Pietenpol, ' who obtains exponen-
tial decay in the limit of weak coupling to the background
continuum, corresponding to the case of a short memory
time in the model of Robiscoe and Hermanson.
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The OC model hwe have considered gives exact exponen-
tial decay in the continuum limit. If twe retain only a fin-
ite number of QC levels, the energy spectrum has upper

n la ecay isc udes exponential decay. ' However, exponential de

number of AC leo A evels, when the density of background
states is large.

Exponential decay of an unstable state is, of course,
very often an excellent approximation. Nevertheless, there

are situations in which nonexponential d

non-Lorentzian line shapes might be associated with finite
memory times. We are currently investigating the QC
model from this point of view '
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N sin(N„) cos(x /2)Sz(x)—:g e ' =cos(N )+
sin(x /2)

(A 1)

has maxima at x =2mn, n =0, +1,+2, . .. . In Fig. 13 we
plot S~(x) versus x for 0&x &20. As N increases we ap-
proach the limit

APPENDIX

N oo X
lim g e ' = g 5

N~co ~ ~ 277
(A2)

If we assume a finite number N of background states as
in Fig. 7, then

OO —inp (t —t') ~ —inp (f —t')e ~ ~ e
n= —N

in Eq. (2.2). The sum

i.e., the Poisson sum rule. Even for N as small as 3 or 9
we can see from Fig. 13 that values of a (t') with
t'=t —2mpn =t —n~ are weighted strongly in the in-
tegrand of (2.2). For N=29 we are in fact very close to
the limit (A2), i.e., the limit of an infinite number of back-
ground states.
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