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Starting from a Pariser-Parr-Pople Hamiltonian, exact effective-spin interactions are determined
in a significant set of m molecules by the means of the wave-operator method presented in the
preceding paper. Comparison with the quasidegenerate perturbation theory (QDPT) demonstrates
the technical efficiency of the wave-operator formalism which exhibits regular convergence proper-
ties while the QDPT diverges for actual physical Hamiltonians. The determination of accurate
spin-exchange interactions between bonded and nonbonded carbon atoms makes possible a careful
study of their transferability. Then it is shown how effective-spin Hamiltonians of large systems
can be constructed from Hamiltonians of small pattern molecules. Finally, the wave-operator for-
malism is applied to effective Hamiltonians arising from higher ionic atomic states which corre-
spond to the lowest dipolar-allowed states and may be considered as an extension of the family of
the Heisenberg-type effective Hamiltonians.

I. INTRODUCTION

In order to check the efficiency of the wave-operator
formalism developed in part one of this series' we have
applied it to the theoretical determination of Heisenberg-
type Hamiltonians. The most popular effective Hamil-
tonians are actually the effective-spin Hamiltonians which
have been proposed for the study of magnetism. These
Heisenberg Hamiltonians involve either positive or nega-
tive effective exchange interactions. These interactions
are usually determined from experimental data and used
for parametrizing phenomenological Heisenberg Hamil-
tonians.

The theoretical origin of these effective Hamiltonians
has been well established from localized descriptions by
Anderson and has been later rationalized by Brandow.
If one considers for simplicity a system composed of 1V

electrons and N orthogonal atomic orbitals on different
centers, the effective exchange expresses both the direct
exchange integral and the possible mixing of the neutral
determinants (one electron per center) with the ionic deter-
minants where one electron of a spin has jumped from the
center A to the adjacent atom 8 which previously carried
one electron of P spin. The effective exchange between ab
and ab results from a mixing with ionic bb (or aa ) config-
urations. This superexchange theory may be refined by a
proper discussion of the orthogonality problems. It is
sure for instance that the antiferromagnetic terms which
appear to result from ionic configurations when orthogo-
nal atomic orbitals are used, result from overlap factors in
nonorthogonal —valence-bond (VB) approaches, as shown
very early by the Heitler-London treatment of the H2 mol-
ecule.

If one deals with a basis of orthogonal-VB —like deter-
minants, the most efficient way to derive spin Hamiltoni-
ans is certainly the quasidegenerate perturbation theory
(QDPT). Such an approach has been followed by two au-

thors of the present paper who constructed spin-effective
Hamiltonians for the sr systems of conjugated molecules
choosing the subspace of the neutral determinants [in the
sense of VB theory (one electron per center)] as the model
space spanning the effective Hamiltonian. The use of ef-
fective Heisenberg Hamiltonians for the treatment of the
sr system had been proposed before by Klein and by Bu-
laewskii, ' using two-body effective interactions only. The
QDPT treatment of the full sr configuratjon interaction
(CI) built from the a Pariser-Parr-Pople (PPP) (Ref. 11) or
a Hubbard' Hamiltonian has been pushed to higher or-
ders and it has been shown that the indirect coupling with
nonadjacent ionic or polyionic determinants results in ef-
fective two-body operators between nonadjacent atoms,
and in many-body operators involving more than two
spins. Four- and six-body operators are especially impor-
tant in cyclic molecules. The appearance of many-body
effective operators is the price to pay for the reduction of
the Hamiltonian to a small subspace which has to deal
with complex phenomena; this general conclusion has
been illustrated by the attempts of Freed and co-workers'
to build effective valence operators which would take into
account the role of the core electrons in "heavy" atoms.

This QDPT deduction of the Heisenberg-type effective
operators for m systems was shown to be poorly conver-
gent; the authors had to damp the high-order terms to
reach a good agreement with the full —configuration-
interaction results.

In the present contribution we again determine VB ef-
fective Hamiltonians for the neutral states of vr-electron
systems: However, instead of deriving these spin interac-
tions through a perturbation expansion we determine ex-
act solutions by solving the wave-operator equations
presented in paper I. The paper is organized as follows:
The parametrization of the PPP Hamiltonian is first re-
called. Then exact effective-spin Hamiltonians are de-
rived and compared with the results of the QDPT. The
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powerful convergence properties of our model are investi-
gated particularly in the case of molecules containing ion-
ic intruder states. Then a first quantitative study of the
transferability of spin interactions is given and it is shown
that in large molecules they can be deduced from effective
Hamiltonians of smaller m fragments. Finally it is shown
that our wave-operator methodology is not limited to the
lowest neutral states and that it can also be applied to the
first mainly ionic states which are responsible for the first
dipole-allowed transitions from the lowest neutral states.

LINEAR POLYENES CYCLIC

POLYENES

L/

BRANCHED POLYENES

II. FROM THE PARISER-PARR-POPLE
HAMILTONIAN TO EFFECTIVE-SPIN

HAMILTONIANS

FIG. 1. Linear, cyclic, and branch polyenes investigated for
the determination of effective-spin interactions.

The effective-spin Hamiltonians will be derived from a
Pariser-Parr-Pople (PPP) (Ref. 11) Hamiltonian which is
most easily written in second quantization as

H = g g (aqaq+apa-)P~
p=lq=1

N N

+ —, y y (n —1)(n —1)y

ap and a- are the creation operators of an electron with an
atomic orbital 2p, in site p with spin up and down, respec-
tively. These atomic carbon orbitals are assumed to be
orthonormal.

nz ——apap+a~ is the occupation number on site p.s p
The hopping integrals p~ and the Coulomb bielectronic
repulsion terms have been chosen (in atomic units) to obey
the R dependence

P~ ———29.74exp( —2.206R&q )

=0 if R~ & 3 a.u. ,

y =, , yzz
——0.588 a.u. (16 eV) .

1

ypp'+ Rpq

(2)

(3)

H =Hp+A, V,
where V is the monoelectronic operator.

(4)

Rpq is the distance between two atoms on sites p and q.
The above parametrization gives the usual value

p~ = —0.086 a.u. (2.34 eV) for a distance R~ =2.65 a.u.
(1.4 A) between two carbon atoms. The interpolation
scheme for the bielectronic term Zpq is the one first pro-
posed by Mataga and Nishirnoto. ' The PPP Harniltonian
is known to predict correctly the elementary excitations of
conjugated hydrocarbons. It is the simplest generalization
of the Hubbard model' to which it reduces when one only
considers the monocentric integrals ypp generally noted U.
All calculations will be performed with standard
geometries (C—C bonds equal 1.4 A and C—C—C bond
angles equal 120'). The molecules investigated are listed
in Fig. 1.

In order to perform the comparison with the QDPT
and in order to study the convergence behavior of our al-
gorithm, H will be divided into two parts

V= g (azaq+a-a-)P~
piq

p~q

while Ho is
minants

~

I)
their ionicity

the bielectronic part of Eq. (1); VB deter-
may be ordered and classified according to

and energy

Ei (I
i
H

i

——I ) = M i Ko i
I ) .

The low-energy determinants are covalent or neutral (one
electron per center), the monoionic determinants, which
involve one positive and one negative charge, lie higher in
energy, the di-ionic determinants (two positive and two
negative charges) lie even higher and so on. This ap-
proach treats the delocalization of the electrons as a per-
turbation, while the usual treatments of the electronic
correlation start from a delocalized zeroth-order treatment
which diagonalizes a monoelectronic operator (Ho= V in
Hiickel theory or Ho is the Fock operator), the electron
repulsion is then treated as a perturbation and reduces the
weight of the ionic instantaneous situations which is
overestimated by the independent particle approaches.

The connection between the two opposite perturbation
treatments of the full Hamiltonian (Ho is monoelectronic,
V is the bielectronic repulsion or Ho is the bielectronic
repulsion, V is the monoelectronic delocalization) appears
clearly in the model studies of Pellegatti, Ciiek, and
Paldus. '

For an ¹ tom ~ system, effective-spin Hamiltonians
are defined within the subspace spanned by the 2 neutral
determinants in a one to one correspondence with the 2
Ising configurations. The taking into account of the spin
symmetries of the PPP Hamiltonian makes it possible to
determine effective-spin Hamiltonians with definite quan-
tum number S,=0, + —,, +1, . . . . Table I gives the spin
basic states for ethylene (S,=0), the allyl radical
(S,= ——,

'
), and butadiene (S,=0).

Beyond the usual two-body interactions the effective
Harniltonians contain four-spin, six-spin, . . . , ¹pin in-
teractions:

~Sf + g eff pq+
pq

p(q
p, q, r, s

p (q (r($

H,

riper

+ . . (5)

C is a constant. It is to be expected that n-spin interac-
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TABLE I. Matrix elements in a.u. of the effective-spin Hamiltonian for ethylene (S,=0) and the al-

lyl radical (S,= ——, ). The spin distributions of the basic determinants are indicated by arrows.

Ethylene Allyl radical

2&:

3):
(2/

—0.034 61
+ 0.034 61

[2)

—0.034 61 (2/

—0.035 785
0.034 174
0.001 611

—0.068 348
0.034 174 —0.035 785

tions will quickly decrease with n as will be discussed
from perturbation corrections in Sec. VII. In fact they do
and the two-body terms are by far the most important
ones as will be shown below.

III. EXACT RESULTS FOR LINEAR
AND CYCLIC MOLECULES

The methodology presented in paper I is used for exact-

ly solving the wave-operator equation [Eq. (20)] starting
from the full m-CI matrix. From the knowlege of the
wave operator 0 we determine either the non-Hermitian
Bloch effective Hamiltonian H, ffs or the Hermitian des

Cloizeaux effective Hamiltonian designated H,ffd(. The
details of the computational procedure are given in the

Appendix. Tables I and II give the matrix elements of
these Hamiltonians for ethylene, the allyl radical, and bu-

tadiene.
For the first two molecules, due to evident symmetry

properties, H,ff g is identical to H, ff d( ~ For butadiene the
two effective Hamiltonians have almost identical matrix
elements. As expected the lowest diagonal matrix ele-

ments are those corresponding to the most alternant spin
distributions: ~2) for the allyl radical (Table I), ~2) and

~5) for butadiene (Table II). The most important extradi-

agonal terms are those associated with the exchange of
two spins. Those arising from two bonded atoms are one

order of magnitude greater than those proceeding from
nonbonded atoms. For example, the values of the ex-

change terms between the pair of atoms (1-2) and (1-3) in

butadiene are 0.034 and 0.002 a.u. , respectively. As will

be seen later, values of these spin interactions and the
analysis of their transferability from a m system to anoth-
er m system are more basically understood by the means of
perturbation theory.

IV. COMPARISON WITH THE QUASIDEGENERATE
PERTURBATI(1N THEORY

In order to compare the convergence properties of our
perturbation-iteration scheme with the QDPT, let us first
consider the matrix element of H,ffg for butadiene be-

tween the most alternant spin wave function. Figure 2

gives the values obtained at the successive iterative steps

by our method as a function of the perturbation parameter
[let us recall that the perturbation term is the

monoelectronic hopping term of H in Eq. (1)]. The con-

vergence toward the exact solution is regular up to =2. 5.
In agreement with a previous analysis' the convergence
of the iterative procedure is almost quadratic for small

values of A, and becomes linear beyond k=0.5 including
the value A, =1 which corresponds to the true physical
Hamiltonian. Similarly Fig. 3 shows the values obtained

by the QDPT at various orders of perturbation. The
series converges very fast for small values of A, , very slow-

ly near )i=1, and strongly diverges beyond A, =1. Note
that the divergences occur in the physical region (A, = 1) as
was previously reported. ' Similar results are shown in

Figs. 4 and 5 for the two-body interaction term associated
with the exchange of two spins on the central bond of bu-

tadiene. The comparison between our wave-operator for-
malism and the QDPT is similar for all molecules listed in

Fig. 1.
The fact that the radius of convergence of the series

occurs approximately for A, =1 which corresponds to the
true physical parameter of the PPP model explains why

precise results are difficult to obtain within the standard
QDPT (without infinite summation). However, the

QDPT is very illuminating for understanding the origin of
the spin-coupling mechanisms and for obtaining their or-

ders of magnitude which are closely related to the first ap-
pearance of a nonzero contribution in the perturbation
series For example, . the QDPT explains immediately why

in Table III the two-spin interaction terms of two bonded
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TA&LE II. Matrix elements (in a.u. ) of the effective-spin Hamiltonian for butadiene (S,=O). The spin distribution of the basic

determinants are indicated by arrows. Numerical arrays (a) and (b) correspond to the non-Hermitian Bloch H, ff g and Herrnitian des

Cloizeaux H,ff d( effective Hamiltonian, respectively.

(a)

(2/

&4I

(6/

—0.037 167
0.033 782
0.001 763
0.001 763

—0.000 157
0.000016

[2&
0.033 750

—0.102 175
0.034098
0.034 098
0.000055
0.000 174

0.001 613
0.034 248

—0.071 529
—0.000 192

0.034 248
0.001 613

l4)
0.001 613
0.034 248

—0.000 192
—0.071 529

0.034 248
0.001 613

0.000 174
0.000055
0.034098
0.034 098

—0.102 175
0.033 750

/6)
0.000016

—0.000 157
0.001 763
0.001 763
0.033 782

—0.037 167

—0.037 168
0.033 764
0.001 691
0.001 691
0.000 001
0.000022

—0.102 169
0.034 175
0.034 175
0.000 054
0.000001

(b)

—0.071 534
—0.000 197

0.034 175
0.001 691

—0.071 534
0.034 175
0.001 691

—0.102 169
0.033 764 —0.037 168

atoms are much greater than those associated with two
nonbonded atoms. The former ones appear at second or-
der in the perturbation series while the latter ones make
their first appearance at fourth order. Similarly it can be
seen in Table IV that four-spin interactions can be com-
pared with (1-3) two-spin exchange terms between non-
bonded atoms both bonded to an intermediate carbon
atom. The difference in the order of magnitude of the
six-spin interaction terms in hexatriene and benzene given
in Table IV is also easily explained by perturbation. How-
ever, for benzene the QDPT gives at sixth order a very
large six-body contribution between the two most alter-
nant spin distributions. In a Hubbard model its expres-
sion, in atomic units, is

5

—504 P~ = —0.035
Vpp Vpg

which is much greater than the exact value —0.004489
quoted in Table IV.

The conclusion of the above discussion is that if the
QDPT is the natural framework for understanding and
giving the right order of magnitude of spin interactions,
precise values of these terms can only be obtained beyond
perturbation theory by using nonperturbative approaches.
Moreover it will also be shown that exact results are

necessary for studying in a precise way the transferability
of spin interactions.

V. MORE ABOUT THE CONVERGENCE PROPERTIES
(INTRUDER STATES)

The convergence properties of our method are now pur-

sued a step further in investigating effective-spin Hamil-

tonians in the presence of intruder states. The problem of
intruder states is well known especially in nuclear phys-
ics' where, despite some progress, all basic convergence

and stability difficulties do not seem to have been over-

come.
As an illustrative example we consider the unsymmetri-

cal linear allyl radical

R 1.4 A

for which the distance between the second and the third
carbon atom is maintained equal to 2.65 a.u. (1.4 A) and

we vary the distance R between the two first atoms. The
variation of the three eigenenergies of the effective-spin
Hamiltonian (S,= ——, ) corresponding to the three neutral

states (see Table I) are given in Fig. 6. Note the discon-

tinuity of the second eigenvalue at the distance R =-1.8
a.u. corresponding to an avoided crossing occurring at
small distance between the second neutral doublet and the
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FIG. 2. Diagonal matrix element (in a.u. ) of H, ff & for buta-

diene relative to the most alternant spin determinant as a func-

tion of the perturbation parameter A, . Exact values (solid line)

are to be compared to those obtained by the wave-operator for-
malism at the successive iterations (dotted lines).

FIG. 3. Diagonal matrix element (in a.u. ) of H, ff ~ for buta-
diene relative to the most alternant spin determinant as a func-
tion of the perturbation parameter A, . Exact values (solid line)
are to be compared to those obtained by the quasidegenerate per-
turbation theory 1QDPT) at the various orders of perturbation
(dotted lines).

second ionic doublet states; the energy of the former is al-

most R independent while the lowest ionic states have a
strong Coulombic dependence in I/R. It is quite satisfac-
tory to note that our iterative procedure converges in the
region of the avoided crossing. However, as expected, the
convergence is slower in this region (38 iterations at
R = 1.85 a.u. instead of 11 at R =2.4 a.u.).

The most interesting point to be noted is that in con-

trast with the discontinuity of the eigenenergies the eigen-
vectors of H, rr correspond to the exact eigenvectors of H
which have the largest components within the subspace of
the neutral states. This is of fundamental importance for
keeping the same physical meaning of the spin interac-
tions and warranting their transferability. The main
reason why the solutions remain stable within the sub-

TABLE III. Two-spin interactions in hexatriene involving one, two, and three bonds between the two atoms exchanging their

spins. Exchanged spins are represented by filled arrows. Order of perturbation gives the first order of perturbation providing a
nonzero contribution.

Matrix element

Number of bonds
between the two

atoms exchanging
their spin Order of perturbation

Energies
(a.u. )

eff
0.034 250

0.001 607

Ji )( eff —0.000 194
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FIG. 4. Matrix element (in a.u. ) of H,ff g corresponding to the

exchange of two spins represented by thick arrows on the central
bond of butadiene. Values are given as a function of the pertur-

bation parameter A, . Exact values (solid line) are to be compared
to those obtained by the wave-operator formalism at the succes-
sive iterations (dotted lines).

FIG. 5. Matrix element (in a.u. ) of H,ff g corresponding to the
exchange of two spins represented by thick arrows on the central
bond of butadiene. Values are given as a function of the pertur-
bation parameter k. Exact values (solid line) are to be compared
to those obtained by the QDPT at the various orders of pertur-
bation (dotted lines).

space of neutral states (or equivalently the Ising configu-
rations) in the presence of intruder states is that instead of
using a variational principle on the energies our procedure
is implicitly based on a variational principle for the wave
functions. However, one should notice that the discon-
tinuity in the eigenvalues of H, ff occurs at R=1.85 a.u.

while the weight of the fourth exact eigenvector on the
neutral space is larger than the corresponding one of the
second eigenvector between R=1.95 and 1.85 a.u. This
kind of hysteresis is a good illustration of the nonobvious
correspondence between the approximate model space So
and the exact subspace S matched through the wave

TABLE IV. Two- four-, and six-spin interactions in hexatriene and benzene. Exchanged spins are represented by filled arrows.
Order of perturbation gives the first order of perturbation providing a nonzero contribution.

Energies (a.u. )

Matrix element
n-spin

interaction
Order of

perturbation

) l)(
ll Heff 0.034 250 0.034 321

I ~() l~( H~ff )( ) i —0.000058 0.000083

Jli)~li~ll~~ 0.000001 —0.004 489
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FIG. 6. Dependence of the eigenvalues of H, ff g (solid lines) of a linear unsymmetrical allyl radical

R 1.4 A

on the distance R between the two first carbon atoms. Complementary spectrum is represented by dotted lines. Each energy leve»s
characterized by its spin degeneracy (2S+ 1) and an inner symmetry index (+ or —).

operator 0 (see the first section of paper B.
Good convergence has also been obtained for other mol-

ecules including more compact structures than those listed
in Fig. l, for example, a formal tetrahedron which stabi-

0

lizes the ionic configurations by the means of the

Madelung field.

VI. TRANSFERABILITY OF SPIN INTERACTIONS

The determination of exact effective-spin interactions
allows for a careful analysis of the transferability of spin
interactions in a molecule and from one molecule to
another molecule. In this section and the next one we will

only consider Hermitian des Cloizeaux effective Hamil-
tonians (H, ff d( ). Table V gives an idea of the variability

~ -0.1lh

Q
K
LLJ

Z
LLJ

TABLE V. Dependence of the two-spin exchange interac-

tions on the central double bond of hexatriene on the spin distri-

bution on the other carbon atoms. Values of the adjoint matrix
elements are given in parentheses; they give an idea of the non-

Hermitian character of H,ff g.

-Q2
Spin distribution

Exchange interaction
(a.u. )

0.339 59 (0.33626)

-0.3
~eeet 3 exeet 2 3 4 eee+ 2 3 4

N

FIG. 7. Convergence of the eigenvalues of H,ff of linear n.

molecules with respect to the number N of atoms involved in the
construction of H,ff.

0.33900 (0.33900)

0.337 85 (0.334 25 )



3200 MAYNAU, DURAND, DAUDEY, MALRIEU 28

of the two-spin exchange interactions on the central bond
of hexatriene as a function of the distribution of the spins
on the other carbon atoms. The mean value is 0.0337 a.u.
and the dispersion 0.002 a.u. Table VI gives the values of
this same two-spin exchange term for two bonded carbon
atoms for a large set of linear and cyclic m. molecules. The
mean value is 0.0335 and the dispersion 0.002 a.u. is iden-
tical to the intramolecular dispersion (the discrepancy for
the four-membered ring is due to a large cyclic contribu-
tion as will be discussed below). The above results show
that, as expected, the effective interaction exchanging two
spins on two neighbor atoms is almost transferable in the
whole series of m. systems within a relative fiuctuation of
about l%%uo. For very accurate calculations one can take
into account increments of interactions associated with m.

fragments containing a small number of carbon atoms as
will be shown in the next section.

VII. BUILDING UP EFFECTIVE-SPIN
HAMILTONIANS FOR LARGE SYSTEMS

FROM SMALL FRAGMENTS

Let us again consider the two-spin interaction corre-
sponding to the exchange of two spins on two bonded
atoms. Let us first define n-atom increments associated
with n-atom fragments. Consider, for example, the allyl
radical where the three-atom increment to the two-body
exchange operator in the difference between the exact
two-spin exchange term of the allyl radical and the corre-
sponding two-body operator in the two-atom problem
(ethylene):

TABLE VI. Two-spin exchange interactions between bonded carbon atoms in a series of linear, branched, and cyclic conjugated
rnolecules. Dots indicate the two sites exchanging their spins. Values of the adjoint matrix elements are given in parentheses; they
give an idea of the non-Hermitian character of H,ff J.

Molecule Spin distribution Interaction (a.u. )

0.034 611 (0.034 611)

0.034 176 (0.034 176)

0.034 248 (0.034 098 )

0.034 255 (0.034 080)

0.034 250 (0.034 101)

0.033 247 (0.033 196)

most alternant 0.034 321 (0.033 924)

most alternant 0.029 340 (0.029 340)
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Dots in the above matrix elements indicate the two sites
exchanging their spins. One may write the operator corre-
sponding to H(3) in second quantization as

h~ ia&aqaqa&n~,

where n, =a, a„ is the occupation number of the a spin or-
bital on the r atom and h „ is the amplitude of the incre-

ment. In such a three-atom operator, the two atoms on
sites p and q are active in the sense that their spins are ex-
changed while the electron on site r is apparently passive
but plays a role in the intermediate ionic states resulting in
the final contribution. Similarly for linear fragments,
four-atom increments to the two-body exchange are ob-
tained through

1,
b«adiene

H

1
!

eff

( — — H (3)
0ff

Let us now consider a numerical example that will give
the order of magnitude of the many-atom fragments.
Suppose that we are interested in evaluating the two-body
matrix element

of the pentadienyl radical (sites exchanging their spins are
represented by dots). Let us now consider smaller two-,
three-, and four-atoin fragments with (eventually) the
same spin distributions in the neighborhood of the sites
exchanging their spins. These fragments, the spin distri-
butions and the values of the corresponding matrix ele-

ments, are given in Table VII. Thus we are able to write
down the value of the above exchange term in the penta-
dienyl radical as the sum of the two-atom exchange in-
tegrals of ethylene and of two-, three-, four-, and five-
atom increments (Table VIII). Note that these increments
quickly decrease with the number of atoms of the frag-
ment. In fact for evaluating this matrix element with a
precision of 10 a.u. one needs only to get information
from the effective-spin Hamiltonian of ethylene and the
allyl radical.

The above results are general for any diagonal or extra-
diagonal spin matrix element. This means that from the
knowledge of exact spin Hamiltonians of a small set of
pattern molecules we are able to reproduce to any required
precision the effective-spin Hamiltonian of large ~ sys-
tems. The procedure has been made entirely automatic on
a computer. The improvement of the eigenvalues of the
H ff s as a function of the number of atoms involved in
their construction is given for hexatriene and benzene in
Table IX and illustrated by Figs. 7—9 for a set of linear,
branched, and cyclic conjugated molecules. Table IX
shows that almost exact results for hexatriene (six atoins)
are obtained from information contained in two- and
four-atom fragments.

A comparison between linear and cyclic molecules
clearly indicates the need for introducing four- and six-
atom cyclic fragments in order to take into account the
ring currents as previously discussed. The conclusion of
the above analysis is that accurate many-body effective-
spin interactions can be derived for large ~ systems by
picking up information from exact effective-spin Hamil-
tonians of small pattern molecules that can easily be deter-
mined once and for all.

The additivity of the effective operators in terms of 2-,
3-, . . . , n-atom contributions is easy to understand in the
framework of perturbation theory. A generalized linked
cluster theorem has been established for the Rayleigh

TABLE VII. Two-spin exchange interactions in a series of linear m fragments with an increasing
number of carbon atoms (from 2 to 5). Dots indicate the two sites exchanging their spins.

Spin distribution S,
Number of

carbon atoms Interactions (a.u. j

0.034 611

1

2 0.034174

1

2 0.034 174

0.034 337

0.034 175

1

2 0.033 902
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TABLE VIII. Two-spin exchange interaction in the pentadienyl obtained by the addition of increments associated with two-,
three-, four-, and five-atom fragments. Dots indicate the two sites exchanging their spins. All energies are given in a.u.

eff
pentadienyl

eff
(')

0.034 611

+

eff
(3)

eff
(&)

—0.000437

—0.000437

three-atom
increment

+

+
eff
(4)

0.000 163

0.000001

four-atom
increment

eff
(5) 0.000001

five-atom
increment

exact value 0.033 902

Schrodinger quasidegenerate perturbation theory for the
case of complete model space by Brandow. '"'. It has been
generalized later on to any kind of model space by Hose
and Kaldor '" and by Levy ";the effective operators cou-
pling two configurations of the model space are the sum
of connected contributions which may be represented by
linked diagrams. Since in our problem the perturbation V
operator is the monoelectronic operator

~Pl P 0+ p q)
p, q bonded

reduced to the hopping integrals between adjacent atoms,
any nth order linked diagram (which involves n interac-
tion lines) can only imply n connected bonds, i.e., a con-
nected subfragment of n bonds in the molecular graph.
Connected means that one may go from any bond of the
subfragment to any other bond of it without going out of
the subfragment. It may be shown that for noncyclic
molecular structures a 2nth-order diagram can only imply
n connected bonds. The linked cluster theorem therefore
ensures that

(i) the effective operators may be considered as sums of
contributions involving connected subfragments of the
molecular graph, and

(ii) the contributions involving a subfragment of n

bonds can only appear at the nth order of perturbation.

Therefore, the p-center contributions to a given effective
operator should be greater than the contributions involv-

ing a (p +q) subfragment. The n many-body terms
should decrease in amplitude with n.

These conclusions are valid from the perturbative ap-
proach within the radius of convergence of the perturba-
tive series. Since the effective Hamiltonian is unique once
the model space is chosen, the same conclusions hold for
the perturbation-iteration procedure presented here; the
contributions of a given n-atom subfragment to an effec-
tive operator are the sum of all the QDPT diagrams
which contribute to this operator and which imply all the
n atoms of the subfragment at least once. These diagrams
are of order n and larger than n and the increments which
are presented there imply infinite summations in terms of
perturbation theory; this logical structure of Hd~ in terms

TABLE IX. For hexatriene (a) and benzene (b), convergence of the six lowest eigenvalues of H,ff's constructed from fragments
with an increasing number N of atoms. All energies are given in a.u.

N=2
N=3

exact value

N=2
N=3

exact value

—0.2592
—0.2551
—0.2554

—0.2978
—0.2912
—0.3012

—0.2551
—0.2216
—0.2219

—0.2504
—0.2454
—0.2404

(a)
—0.1849
—0.1840
—0.1842

(b)
—0.2077
—0.2121
—0.2087

—0.1686
—0.1699
—0.1704

—0.1925
—0.1939
—0.1981

—0.1567
—0.1586
—0.1584

—0.1731
—0.1745
—0.1728

—0.1470
—0.1464
—0.1468

—0.1384
—0.1446
—0.1448
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of transferable increments is of course valid outside the
radius of convergence of the perturbation series.

FIG. 8. Convergence of the eigenvalues of H, ff of branched m-

molecules with respect to the number N of atoms involved in the
construction of H,ff.

which are the solution of intermediate effective Hamil-
tonians defined in the subspace of ionic states (always in
the sense of the valence-bond theory). The two effective
Hamiltonians spanned by the neutral and monoexcited
states, respectively, have been investigated for butadiene.
Figure 10 gives the spectrum as a function of the pertur-
bation parameter A, . Good convergence properties are ob-
served for A, E [0,2.5] (let us recall that the value A, = 1 cor-
responds to the actual physical situation). The good con-
vergence properties of H,'ff defined in the space of
monoionic states is quite noticeable since these states are
almost degenerate with the di-ionic states, resulting in a
strong mixing of all these ionic states in the exact solu-
tions.

The analysis of the physical structure of these effective
Hamiltonians for excited states is beyond the scope of the
present paper. One should only mention here that their
operators translate both spin ordering effects and delocali-
zation of the charges (holes and particles), as has been il-
lustrated previously in the construction of effective Ham-
iltonian of ~-systems cations. ' This new example con-
firms that the Heisenberg Hamiltonians appear as a spe-
cial case of a larger family of effective Hamiltonians.

It is also of value to notice that for large values of A,

some eigenvectors corresponding to eigenvectors of H', ff

VIII. EXTENSION OF THE METHOD
TO HIGHER IONIC STATES

0.5

The methodology presented in this paper is not limited
to the subspace of the 2 Ising configurations correspond-
ing to the lowest neutral states of n. systems. It is also ef-
ficient for determining the first dipole-allowed states 0.3

~ -0-1-
ttt

Z
UJ

0.1 "

tg

tA
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Q 0
Cf
LLIz
ill

0.1

-0.3-

3 4+ exact 3 4 4 exact

N
3 4 0.5

FIG. 9. Convergence of the eigenvalues of H,ff of cyclic m

molecules with respect to the number N of atoms involved in the
construction of Hdf. The star in 4 means that the cyclic 4-

atom contribution has been omitted.

FIG. 10. Eigenenergies of butadiene arising from the neutral
and monoionic states as a function of the perturbation parame-
ter A, .
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have a lower weight in the monoionic determinants (span-

ning H,"rr ) than the ground state which is attained through
the Heisenberg effective Hamiltonian for neutral states.
This remark illustrates again the nonobvious correspon-
dence between the model subspace So and the eigensub-
space S to which one arrives through the wave-operator
formalism: This example shows that the arrival subspace
S is not defined by the eigenvectors of H which have the
largest components on So. This behavior points out once
again the problem of the one-to-one correspondence be-

tween So and S. From a physical point of view it is satis-
factory that H, f~ and H*,~f spanned by orthogonal So's,
lead to orthogonal arrival S subspaces. This point is
necessary to assure the transferability of the effective in-

teractions.

perturbation theories corresponds approximately to the
true actual physical parameters of the original electrostat-
ic Hamiltonian.

Finally it could be objected that we have derived spin
interactions from an approximate electrostatic Hamiltoni-

an, but it can be conjectured that similar convergence and
transferability properties could be found from the exact
electronic Hamiltonian. Very promising the results have

already been obtained in this way for ~ systems in our lab-

oratory. ' We believe that the next step should be to apply
the methods presented in this paper to highly degenerate
systems such as alkaline and transition metals in order to
extend Hund's rules for atoms and to get a better qualita-
tive and quantitative understanding of spin interactions in

condensed matter.

IX. CONCLUSION

The comparison between the QDPT and the wave-

operator formalism for the precise problem of construct-
ing Heisenberg Hamiltonians from full n-CI matrices for
conjugated molecules shows the technical efficiency of the
second approach since the perturbative approach begins to
diverge for the physically meaningful Hamiltonian (I,= 1),
while the wave-operator treatment gives a regular conver-

gence even for a very strong perturbation (2, up to 2.5).
Besides this technical efficiency for the lowest states of

the spectrum one may notice that the wave-operator ap-

proach, when So is chosen as the monoionic determinants,
is able to lead to the lowest dipolar allowed "ionic" states.

With respect to the difficult problem of the one-to-one
correspondence between the model space So and the exact
subspace S, illuminating results have been obtained show-

ing that the eigenstates of S are not necessarily those hav-

ing the largest components on the model space So. Start-
ing from orthogonal model spaces, we however have al-

ways obtained orthogonal exact arrival subspaces.
As previously established by perturbation theory our

calculations confirm that the two-spin exchange interac-
tions between bonded atoms, which are generally con-
sidered in phenomenological Heisenberg Harniltonians, are
by far the most important ones. However, ¹pin interac-
tions play an important role in molecules involving N-

membered rings. Although the right order of magnitude
of these many-body interactions was previously reported,
our results indicate that exact values, especially those ap-
pearing at a high order of perturbation, may be quite dif-
ferent and generally smaller than the perturbation values.
From exact effective-spin Hamiltonians we were able to
produce a careful study of their transferability. Finally
we indicated a method for constructing accurate
effective-spin Hamiltonians for large systems from a
hierarchy of exact spin Hamiltonians of small molecules.

Another conclusion of this work is that one has to
clearly recognize the domains of applicability of the
QDPT and of the wave-operator techniques. QDPT pro-
vides the basic understanding of the origin and structural
dependence of the spin interaction and of their order of
magmtude. However, for obtaining exact solutions the
iterative resolution of wave-operator equations seems to be
much more efficient, since the limit of convergence of
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APPENDIX: COMPUTATIONAL PROCEDURE
AND APPLICATION TO BUTADIENE

The general method presented in paper I is applied to
butadiene which is given as an example for explaining
how the calculations were actually done. In a first step
the full configuration interaction matrix is constructed us-

ing the atomic orbitals as monoelectronic wave functions.
Then the effective-spin Hamiltonian is obtained by solving
the reduced wave-operator equation.

1. Structure of the configuration interaction
(CI) matrix

Butadiene is a four-electron four —~-orbital problem.
In the minimal basis set the Hilbert space is spanned by
the Cs =70 four-electron determinants. However, the spin
symmetry [S„H]=0 allows us to derive independently ef-
fective Hamiltonians for the various S, values which run

from S,=O to 2. Therefore, we have only considered the
subspace spanned by the 36, S,=0 determinants. The six
neutral determinants with one electron per carbon atom
are

/

1)=
/

abc d /, /

2) =
/

abed /, /
3)=

/

ab cd
/

4) =
/

abed /, /

5) =
/

abed /, /
6) =

/

a bcd

In these determinants the atomic orbitals appear in the
natural linear sequence a b c dof th—e m—ole—cule. These
determinants which span a six-dimensional model space
So are also in a one-to-one correspondence with the six
spin configurations given in Table II. The orthogonal
subspace So is made up of 30 ionic determinants. For ex-

ample, the determinant
~

aabc
~

belongs to So. These ion-
ic determinants which have higher energies than the neu-

tral ones are classified according to their increasing ener-

gies; there are 12 adjacent monoionic determinants, 12
nonadjacent monoionic determinants, and 6 di-ionic deter-
minants which have the highest energies.

The matrix elements of the PPP Hamiltonian [Eq. (1)]
are easily calculated and the schematic structure of the
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full CI tnatrix is given below,

mono-ton&c
I 1non-

neutral (6) adjacent(12) adjacent(12) di-ionic(12)

The operator F is defined by Eq. (46) of paper I.
(i ~'" "la& and (i

I

tttX'" 'la& are the increments
of the matrix elements calculated at the (n —1)th and
(n —2)th iterations. At each iteration the Ck coefficients
are obtained by solving a system of linear equations

model
space (6) E, 3

g akt Ct —— fk, —k = 1,2, 3
1=1

where

aki —g (i
I

A ~'"+' "'
I
a &

(A3)

orthogonal
subspace (30)

and

x(t' IA ~'"+' i'
I

a &, k, l =1,2, 3

fk —g (i
I

A ~'"+' "'
I

a &

a,i

y(t IF(X" ')Ia&, k=1,2, 3.

(A4)

(A5)

F tndicates the existence of charge transfer (i.e., pt,q) tn-

tegrals outside the diagonal of the matrix.

( lx(1)
I E —E;

(Al)

E, =(a
I
H

I
a & and E; = (i

I
H

I

i & are the unperturbed
energies corresponding to the model space So and its
orthogonal complement So. Later the labels a and i will
always characterize the subspaces So and So, respectively.

At the nth iteration (n & 3) the increments of the matrix
elements of X are a linear combination of three increments

2. Resolution of the wave-operator equation

The reduced wave-operator equation is solved by the
perturbation-iteration method given in paper I of this
series. The first order of the QDPT provides the initial
values of the matrix elements of X

g ((i
I

F'"'
I

o &)'
a, i

(A6)

d is the dimension of the model space So and D is the di-
mension of So (for butadiene d=6 and D=30). When the
norm becomes smaller than a given threshold e = 10
where m is a positive integer, the iterative procedure is
stopped. Thus the matrix elements of X are determined
with approximatively m exact figures. Finally the matrix
elements of the effective Hamiltonian are obtained by a
simple matrix multiplication

(&
I

H ff I

b &
= (a

I

H
I
b &+ g &~

I

I'
I

t &(t
I

X
I

b & .

(A7)

The operator A is defined by Eq. (47) of paper I. At each
iteration the distance to the exact solution is estimated
through the norm of F:

1/2

(i
I

~ '(la&=c, (i
I

F'" "(x)Ia&—
+C(2i

I

~'" "
I
a &

+C, (t
I

m'"-"
I

a & . (A2)

For all the conjugated molecules investigated in this paper
the iterative procedure generally converged in less than 20
iterations for a threshold a=10 . Butadiene needed only
8 iterations.
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