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Direct determination of effective Hamiltonians by wave-operator methods.
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The determination of the most standard effective Hamiltonians is obtained by means of a simple

general similarity transformation. The wave operator is shown to be a solution of an operator equa-

tion which is the analog of the Mufller equations of scattering theory and which generalizes those

previously established by Bloch, Lowdin, J@rgensen, and Lindgren. The wave-operator equation is

solved by efficient iteration or perturbation-iteration methods which exhibit good convergence prop-

erties for degenerate systems and/or in presence of intruder states. In the following paper the

method is applied to the theoretical determination of transferable effective-spin interactions.

INTRODUCTION

The concept of effective interaction and effective Ham-
iltonian plays a central role in the field of nuclear struc-
ture and for studying the electronic and magnetic struc-
ture of atoms, molecules, and solids. ' Despite much

progress that has been made in the last twenty years, diffi-
culties remain both at the theoretical and computational
levels.

Although there is a general agreement that the most
fundamental effective Hamiltonians are those that were

previously found by Bloch and des Cloizeaux, there is

apparently no direct elementary way for deriving these ef-
fective Hamiltonians. The most transparent derivation
seems to have been given by Brandow in the framework
of the quasidegenerate perturbation theory. Brandow em-

phasizes the central position played by the wave operator
from which all effective Hamiltonians can easily be found.

Up to now various operator equations have been proposed
for determining this wave operator. The original Bloch's
equation for exact degenerate states was first generalized

by J@rgensen for quasidegenerate systems. A more general

equation has been obtained by Lindgren. However, this

equation cannot be considered as the most general one
since it is based explicitly on an unnecessary partition of
the exact Hamiltonian into an unperturbed Hamiltonian
and a perturbation. An important contribution of this pa-

per will be to show that there is in fact a very general
canonical equation for the wave operator which is the ana-

log of the Manlier equations of scattering theory.
Another problem in the field of effective Hamiltonians

is to find efficient procedures for calculating realistic ef-
fective interactions. Within the framework of one-
electron methods progress has already been made in that
direction in determining transferable atomic potentials in
molecules and polymers. Beyond one-electron methods,
two- and three-body electronic interactions in molecules
have, for example, been investigated with success by Freed
and co-workers. ' However, many important problems,
generally outside the capabilities of one-electron methods,
remain unsolved. For transition elements there is no

direct way for computing accurately the multiplets arising
from the quasidegenerate 3d"4s' and 3d" '4s electronic
configurations. In the field of magnetism there are no

standard methods for deriving from first principles the
various effective spin Hamiltonians in molecules and
solids. Perhaps the most difficult problems with which

we have to deal with are those arising in studies of metals,

surfaces, atoms adsorbed on surfaces, etc. For these very

degenerate systems there are no standard accurate
methods for studying the main geometrical and energetic
properties associated with the ground and excited states.
For most of the realistic applications the standard
Rayleigh-Schrodinger perturbation method diverges. Al-

though powerful methods for improving the convergence
were previously derived such as partial summation tech-
niques and Pade approximants, the problem of how to cal-
culate realistic effective Hamiltonians is still an open
problem. The most typical situation can be found in
many-body-perturbation theory where diagrammatic and
partial summations to all orders cannot be considered as
the final development of the theory. Thus in the present

paper we will present systematic algebraic iterative
methods for determining wave operators. These methods
will be developed in close relationship with the usual
linear and quadratic (Newton-Raphson) methods of nu-

merical analysis. These procedures will then be applied to
the theoretical determination of spin effective interactions
in the following paper, paper II.

The first section will introduce the notations and give
the general similarity transformation for obtaining the
standard effective Hamiltonians. Section II is devoted to
the determination of a general equation for the wave
operator Q. Efficient iterative schemes for determining 0
will be presented in Sec. III.

I. A GENERAL SIMILARITY TRANSFORMATION
FOR DERIVING EFFECTIVE HAMILTONIANS

The solutions of an exact Hamiltonian H define a Hil-
bert space which can be split into the subspace S of exact
solutions in which we are interested in and the orthogonal
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i| ENEMIES In order to go a step further, it is useful to consider the
transformation
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subspace S . The projection operators associated with S
and S are P and Q, respectively,

P'=P, Q'=Q, P~Q=I .

The Hilbert space can also be split into a model subspace
Sp spanned by approximate solutions of H and the orthog-
onal subspace Sp. The projection operators associated
with Sp and Sp are Pp and Qo, respectively,

Po=Po Qo=Qo Po+Qo= 1 .2 2 (2)

In order to derive effective Hamiltonians, H is first
transformed by means of a similarity transformation:

A =U 'HU. (3)

U has an inverse but it is not required to be unitary. It is
also assumed that the tranformation U decouples
within the subspaces Sp and Sp (see Figs. 1 and 2):

Hey

EXACT TRANSFORMED EFFECTIVE
HAINILTONIAN HAMILTONIAN HAMILTONIAN

FIG. 1. Exact Hamiltonian H, the transformed Hamiltonian
A = U 'HU, and the effective Hamiltonian H, ff =POP Po have
the same energies in the subspace S and in the model space So,
respectively.

H -=(PpPPp) 'PHPp .

Letter 0 in H - is the first letter of Okubo. It has been
eff, o

given in tribute to his original contribution in the field. "
The value v= 1 leads to the Bloch effective Hamiltonian:

H, rr it =PpHP(PpPPp)

H - and H, ff g are related to each other by a Herrnitian

transformation but are not in themselves Hermitian,

H, ff g
——H

t eff, 0 (10)

The canonical Hermitian effective Hamiltonian first given

by des Cloizeaux corresponds to the intermediate value
1

2 '

H, tr dc ——(PpPPp) PHP(PpPPp)

U=P(POPPO) "+Q(QOQQO) ".
U depends on a non-negative index v, the useful values of
which will be given below. Operators (PpPPp) " and

(QpQQp)
" are defined in the entire Hilbert space. The

nonzero matrix elements of (PpPPp) " and (QpQQp)
are defined from the matrix elements of PpPPp and

QpQQp in the subspaces Sp and Sp, respectively (Fig. 3).
This definition assumes that PpPPp and QpQQp have in-
verse operators in So and So. It can equivalently be stated
that if the vectors P, and P; span S and S, the vectors

P, =Ppg, and P; =Qpg; which span Sp and Sp must be
independent vectors. These conditions are not too severe
even for strong perturbations.

It can easily be checked that the inverse of U is

U '=(PpPPo)" 'P+(QoQQp) Q .

The main interest of the transformation U is that it leads
immediately to most basic effective Hamiltonians. The
value v=O leads to

~=Po~Po+ Qo~Qo (4)

It follows from (4) that an effective or model Hamil-
tonian can be defined by

H ff =Pp@ Pp

In our opinion the use of the operator U is the most direct
and transparent way for deriving the three basic effective
Hamiltonians. It does not seem that the importance of
this transformation was previously recognized although

Po Qo

Po Po XPo O PpgP 0

Qo 0 Qo gQo 0 0

H

(b)
Hey

(c)
F&G. 2. Matrix representation of H (a), M'(b), and H, ff (c) in the model space So (projector Po) and the orthogonal subspace (pro-

jector Qo). Hatched part of (a) represents nonzero matrix elements.



3186 PHILIPPE DURAND 28
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interesting one, especially for deriving transferable effec-
tive interactions. In fact, it will be seen in Sec. III of this
paper and in paper II that the perturbation-iteration pro-
cedure presented below leads to an effective Hamiltonian
corresponding to stable exact subspaces.

II. CANONICAL EQUATION FOR THE
WAVE OPERATOR

A. The wave operator

FIG. 3. Matrix representation of (PoPPp )
' (a) and

(QOQQO)
' (b) in the model space (projector Po) and in the

orthogonal subspace (projector Q&&).

J@rgensen' used it for v= —,
' in conjunction with a unitary

Van Vleck transformation.
Note that there is not always an obvious correspon-

dance between the model subspace So and the exact sub-
space S. This occurs, for example, in the presence of in-
truder states. This phenomenon is illustrated in Fig. 4,
where one considers two possible ways for defining S from
Sp for a two-dimension effective Hamiltonian. In case (a),
the two eigenvalues of H, rr are continuous but there is a
discontinuity of the physical content of the eigensolutions.
On the contrary, in case (b), the eigenvalues are discon-
tinuous whereas the physical content of S remains stable.
This means that for all values of parameter A, which is
linearly related to the energy of the intruder state, the sub-
space S remains as similar as possible to the model sub-
space Sp. The second definition of S is obviously the most

Q =P (PpPPp ) (12)

This expression was previously given by J@rgensen (see
also Ref. 15, p. 220). In order to get a general equation
for 0 we first recall and specify some of its main proper-
ties. Multiplying both sides of Eq. (12) at left either by Pp
or by P gives the usual projection properties:

PpQ=PO, PQ=Q . (13)

The first relation corresponds to the so-called intermediate

The basic effective Hamiltonians given in Sec. I depend
in a nonlinear and complicated way upon the projectors
Pp and P. However, it has been found useful from
theoretical arguments and also for practical applications
to introduce a wave operator, usually designated as Q,
which transforms the wave functions belonging to the
model space Sp back into the subspace S of the exact solu-
tions. This wave operator was first introduced for the
continuum part of the spectrum [Manlier (Ref. 13)] and
then for describing bound states [Eden and Francis (Ref.
14)]. In this paper we use the following definition:

~ +

...~

~t

..~ "
( i

~t

~0
0

s0
sl

0

~ +

~ 8
IP

S S

(b)
FIG. 4. Eigenvalues of a two-dimensional Hamiltonian in presence of an intruder state. The two eigenvalues of Hdf (solid lines)

are represented as a function of an arbitrary parameter A, . (a) and (b) correspond to two different possible definitions of the exact sub-
space S.
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normalization. Multiplying both sides of Eq. (12) at the
right by Po and P leads similarly to

which can be cast into the form of an operator equation
which was first established by Lindgren, '

QPO ——0, QP=P . (14) [Ho, Q] = —VQ+ Q VQ . (24)

The relation QP=P is established from the definition of
Q [Eq. (12)] and by noting that QP is a normal projector.
A different demonstration was previously given by
Jgrgensen. ' Other useful relations are

Q Q=(POPPO) ', Q =Q . (15)

Expressions (15) can immediately be established from
Eq. (12):

Q Q = (POPPO) P(POPPO) = (POPPD )

(16)

Q =P (POPPO) P(POPPO) =P (POPPO } =Q

Q =Q and Q, &Q mean that Q is a nonorthogonal pro-
jector. By introducing 0 the three basic effective Hamil-
tonians can be written

In contrast with Eqs. (23) and (24) which depend expli-
citly on the partition of H into Ho and V, Eq. (20) does
not depend on this partition. Equation (20) is uniquely
determined from the knowledge of the model subspace So
and from S through the projectors Po and P. It results
that Eq. (20) can be considered as a canonical equation for
A. In view of its simplicity and compactness we consider
that it is the best starting point for general developments
and for practical applications in the field of effective in-
teractions.

X=QOQ . (25)

C. Reduced wave operator

For further developments and applications it is useful
to introduce' a reduced wave operator X (noted X by
Lindgren' )

H.ff, B=POHB H
ff 0 0 HPO

eff, O

H,«« —(Q"Q)-' 'Q HQ(Q Q)- ~

(17)

(18)
Then

Q=(PO+go)Q=PO+X . (26)
The non-Hermitian Bloch and Okubo Hamiltonians de-
pend linearly on 0 whereas the Hermitian des Cloizeaux
Hamiltonian has a much more complicated dependence
upon A. Since there is a direct way for passing from 0 to
the above effective Hamiltonians we consider that our
main objective is to find out a general equation for Q.

Multiplying both sides of Eq. (20) from the left by Po and
using POO =Po gives the identity

POHQ=POHA=H, ff g .

Multiplying both sides of Eq. (20) from the left by Qo and
using Eq. (25) leads to the compact operator equation

B. Canonical equation for the wave operator Qo(1 X)H (1+X—)PO ——0 . (27)

The commutation relation [H,P]=0 and Eqs. (13) and
(14) allows us to write:

In the framework of perturbation theory Eq. (27) can be
transformed into

H Q =HPQ =PH Q = QPH Q =QHPQ =QH Q . (19) [HO, X]= —Qp( 1 —X)V( 1 +X)Pp (28)

Thus we have established the general operator equation

(20)

The resolution of this commutator equation leads to the
implicit operator equation,

By using 0, =0, this equation can also be written in the
form

X= g (1—X)V(1+X)P. .
s, a

(29)

[H, Q]Q =0 . (21)

Equation (20) generalizes wave-operator equations previ-
ously established by Bloch, Lowdin, ' J@rgensen, ' and
Lindgren. For an exactly degenerate system and assum-
ing that the exact energy E is known, Eq. (20) gives im-
mediately Lowdin's' expression:

HA=EQ . (22)

Splitting up the exact Hamiltonian H into Ho and V al-
lows us to write Eq. (20) in the form

(Ho+ V)Q=Q(HO+ V)Q

The sum runs over the model subspace. P, is the projec-
tor corresponding to the eigensolution

~

a ) of H p

Ho
I
a &=E'I a &

and the reduced resolvent Qo/a is given by

(30)

Qo Qo

E, —Ho
0 (31)

The operator equations (27) and (29) will be the starting
point of two classes of iteration and perturbation-iteration
methods that will be given in the next section.

=QHO(Pp+ Qo)Q+ Q VQ

=AHOPOQ+ 0VA

=QHO+QVQ (23)

III. ITERATIVE METHODS FOR SOLVING
THE WAVE-OPERATOR EQUATION

Iterative methods for determining X will now be derived
from Eqs. (27) and (29). The former equation is at the ori-
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gin of iteration methods whereas Eq. (29) will lead to
perturbation-iteration methods which are in close relation-
ship with the standard Rayleigh-Schrodinger method.

A. Iteration methods

By introducing

~p ———A p F(X),

~)———Ao 'M~o,

LYk ———Ao
' bA ~k

(40)

F(X)=Qo(1 X)H—(1+X)PO,

Eq. (27) can formally be written as

F(X)=0 .

(32)

(33)

For most realistic applications expansion (38) diverges.
Development (39) has to be rescaled and we choose it of
the form

Let us first note that Eq. (33) is quadratic in the unknown
operator X. For determining X, F(X) is first linearized by
expanding F(X+~) in the neighborhood of X:

(F(X) ~F(X))=0. (42)

~=CO~O+C] ~]+ ' ' ' +Ck ~k+ ' ' ' . (41)

Let us first note that for the exact solution one has

F(X+~)=F(X)+A ~+
A ~=~H(1+X)PO+go(1 X)H bX—.

(34)

(35)

In (42) we have used the scalar product notation between
operators for which more details are given in Appendix A.
In our iterative procedure the best coefficients Ck of (41)
are determined at each iteration by minimizing

~ denotes a small variation of X and A is an operator or
superoperator' acting in the vectorial space 9' of all tran-
sition operators coupling So and So. Notations and results
concerning this vectorial space can be found in Appendix
A. In the particular case of a finite Hilbert space associat-
ed with the solutions of H, the matrix elements of A are
given in Appendix B.

If we were able to invert A in 9', the variation ~ of X
at each iteration would be given by

~=—A 'F(X) . (36)

Equation (36) defines a Newton-Raphson iterative pro-
cedure which converges quadratically (see Appendix C for
a comparison with the ordinary Newton-Raphson method
applied to an algebraic equation). Unfortunately expres-
sion (36) cannot be used directly. The calculation of ~
for a d-dimensional model space in a finite N-dimensional
Hilbert space would imply solving a dN-dimensional
linear system of equations which would require a compu-
tational time proportional to N . For practical applica-
tions various approximations must be made on A ' which
lead to quasiquadratic procedures and computational
times proportional to N at each iteration. The easiest
way is to partition A into two terms:

(F(X+tu) ~F(X+M)) . (43)

Assuming that ~ is small with respect to X and using
the linearization of F(X) in the neighborhood of X accord-
ing to Eq. (34), the minimization of (43) can be replaced
by

(F(X)+A ~
~

F(X)+A bX);„. (44)

(A ~k
I
F(X))

I
(45)

B. Perturbation-iteration methods

Most of the results of the preceding paragraph are still
valid but the operator equation to be solved is now re-
placed by

F(X)=X —f(X)=0,

f (X)=g (1 —X)V(1+X)P, .
Qo

a

(46)

With respect to (46) the operator A is now defined by

Expression (44) is quadratic in ~ and the coefficents
C~ in (44) are best determined by the standard Fourier
method that leads to the resolution of a system of linear
equations:

A =AD+M . (37) [bX V(1+X)
a

In a matrix representation Ao is assumed to contain the
main part of A. The expansion of A ' in powers of ~
gIves

—(1—X)V ~]P, . (47)

=Ao —Ao
—1 —1 —1 —1 (38)

In order to establish a relation between our perturbation-
iteration methods and the standard perturbation methods,
it is useful to introduce an operator C by

By using (38) one can write
C=A (48)

with

Lu=&o+W] + ' ' (39)
C will be called the convergence operator. Expression (47)
shows immediately that C tends to the identity operator
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C=1. (49)

The variation ~'"'=X'"'—X'" " of X at the nth
iteration is now given by (for the linear method)

for small perturbations. A reasonable approximation for
small perturbations is then to choose

cal content of the effective Hamiltonian: We can easily

pass from the unperturbed model subspace with projector

Pp to the nearest exact subspace with projector P even in

the presence of intruder states, as will be shown in paper
II.

CONCLUSIONS
~(n) F(X(n —1)) (50)

Equation (50) defines an iterative procedure for determin-

ing X, simpler than the Rayleigh-Schrodinger expansion,
which converges linearly for small perturbations. This
terminology is borrowed from the standard field of linear

and quadratic methods for solving ordinary algebraic
equations (see Appendix C). From this point of view, the
Rayleigh-Schrodinger method appears as a rather compli-
cated quasilinear method. For larger perturbations C is

far from being the identity operator and one has to use ex-

pansion (41) with a linear optimization of the Ck s.

C. Practical aspects

The perturbation-iteration method has been implement-
ed on a computer for determining effective Hamiltonians
of dimension up to d =20 in a finite 1000-dimensional
Hilbert space. In most cases we took A =1 and limited
the expansion (38) to its first term. Thus the variation of
X at the nth iteration is

~'" =CO~0" —— COF(X "—'
) . (51)

According to (45) the best coefficient Co is at each itera-
tion given by

(AF(X'" ")
~

F(X'" "))
Cp ——

(AF(X'" ")~AF(X'" ")) (52)

We also found it useful, as in the Chebyshev iterative pro-
cedure for solving linear equations, to mix in at the nth
iteration ~("' given by (51), the variation ~(" ') ob-

tained at the (n —1)th iteration. In all cases examined the
convergence of the procedure was improved but at the ex-

pense of a larger memory for keeping the numerical infor-
mation associated with three successive iterations. Our
procedure requires about dN multiplications at each
iteration. This number is to be compared with the X
multiplications needed by most iterative methods for cal-
culating a proper solution of an N-dimensional matrix.
Finally for very strong perturbations we have used a two-
term expansion in Eq. (38). Damping and level shift tech-
niques could also be used for particular cases. All the
computational details will be published elsewhere.

In conclusion we have succeeded in determining effec-
tive Hamiltonians by quasi-Newton procedures. The effi-
ciency of these methods can also be understood by consid-

ering that the resolution of Bloch-type equations is ob-
tained by the minimization of the norm of F(X). Thus
our procedures are implicitly based on a variational prin-
ciple on the wave functions whereas most of the standard
methods of resolution of the Schrodinger equation are
based on the Rayleigh-Ritz variational principle. It re-
sults from the different nature of these minimum princi-
ples that our methods are stable with respect to the physi-
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APPENDIX A: THE VECTORIAL SPACE
OF OPERATORS ACTING IN THE HILBERT SPACE

The set of all operators A, B,C, . . . , acting in the Hilbert

space spanned by the solutions of H define a new Hilbert

space in which the scalar product between two operators A

and B is defined by

(A l8)=Tr(A 8) . (A 1)

The above notation with parentheses is used in order to
avoid confusion with the scalar product notation in the or-

dinary Hilbert space. The operators or superoperators'
acting in the new Hilbert space will also be denoted by
capital letters A, B,C, . . . .

In this paper we are mainly interested with the deter-
mination of a reduced wave operator X coupling the
model subspace Sp and its orthogonal complement Sp, the
projectors of which are Po and Qo, respectively. X can be
expanded in basic operators:

(A2)

(A3)

It has first been shown in this paper that the most basic
effective Hamiltonians can easily be derived from a simple

similarity transformation. In a second step we have estab-

lished a general compact equation for the wave operator.
This equation is likely to be the most general one in this

field. In contrast with other similar equations it does not

require any partition of the exact Hamiltonian into an un-

perturbed Hamiltonian and a perturbation. For this

reason we suggest that this equation should be called the
canonical wave-operator equation. For quantum mechan-

ics of bound states and the corresponding effective Hamil-

tonians, this equation is the analog of the Mufller equa-

tions of scattering theory. In the third part of this paper
we have proposed generalized Newton-Raphson iterative
methods for determining the wave operators. These
methods appear as the natural generalization of the
Rayleigh-Schrodinger method. The relationship between

these methods and the usual perturbation theory is estab-
lished by means of a convergence operator which tends to
the identity operator for small perturbations. It will be
shown in paper II that for spin effective interactions these
methods have good convergence properties for highly de-

generate systems even in the presence of intruder states.
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The
~

i,a)'s define an orthonormal basis set of transition
operators coupling So and So.

j=3 j=4
X X X

j=5 j=7 j=e

(i,a ~j,b)=b;, 5.b .

With this notation (A2) becomes

X= g g ~i,a)(i,a ~X) .

;~g~ a &So
0

(A4)

(A5) i-4

x x
X X X

X X X

X X X

~

i,a)(i, a
i

can be considered as the closure relationi,a
with respect to all operators coupling So and So. Any
linear operator A acting in the new Hilbert space can be
defined by its matrix elements between the

~

i,a)' s:

l-5
X X X

X X X

X X X

;Jgg a, bGSO
~i, a)(i, a ~A g, b)(g, b

~

. (A6)
i-7

X X X

X X X

(Note. In Appendixes A—C the letters a, b, c will denote
the states belonging to the model space So and the letters
i,j,k, . . . will be used for the states belonging to its orthog-
onal complement So.)

APPENDIX B: MATRIX ELEMENTS OF A

For practical applications, one needs the matrix ele-
ments of A between the orthonormal set of transition
operators defined in Appendix A. We consider successive-
ly operators A corresponding to the iteration and
perturbation-iteration methods.

1. Iteration methods

l=8

X X

X X X

FIG. 5. Matrix representation of A in the basis set of the
operators i,a)= ~i &(a ~; a ESO and i ESO. Dimension of the
Hilbert space, N =8. Dimension of the model space, d =2.
Matrix representation of order d(N —d)=12. Nonzero matrix
elements have been represented by crosses.

For small perturbations the matrices associated with A

and A ' are almost diagonal and the matrix elements of
A ' can be approximated by

From definition (35) it can easily be checked that the
only nonzero matrix elements are those given by

(~ a l~ ' Ij»)= o ob.bb
1

E, —E;
(87)

(i,a ~& ~i,a)=(a ~H(I+X) ~a &
—(~ ~(1—X)H

~

i),
(81)

(i,a
(

3 [i,b) = (b
(
H(1+X)

[
a ),

(i,a (A ij,a)= —(i ((1 X)H j) . —
(82)

(83)

In (81)—(83) the unperturbed basic vectors
~

a ) and ~i )
span the model space So and its orthogonal complement,
respectively.

It is to be noted that the matrix elements given by
(81)—(83) define a very sparse matrix. Figure 5 displays
the nonzero matrix elements corresponding to a finite Hil-
bert space of dimension N =8 and to a two-dimensional
model space. The matrix representation of A is made up
of a diagonal of full 2)&2 matrices and, outside this diago-
nal, there are lines of nonzero elements which couple the
six vectors belonging to So.

Assuming that H =Ho+ V, (Al), (A2), and (A3) can be
expanded in first order in V:

In the case of a one-dimensional model space Eqs. (37)
and (87) lead to variations of the wave function at each
iteration which are quite similar to those used in the
Davidson method.

2. Perturbation-iteration methods

—(i
~

(1—X)V ~i )],

(88)

(i a ~A ~i b)= o o (,b
~

V(1+X) ~a),1

E
(B9)

It results from (47) that the nonzero matrix elements of
A are now given by

(i,a ~A ~i, )a=1 + o o [(a
~

V(1+X) ~a)
I

E, —E;

(~ a l~ I~ a)=E' E'+&a
I

V Ia& —(~
I

V—I~&
1

E, —E;
(810)

('a ~~ I' b)=(b
~

V ~a) (85)

(84)
Up to the first. order in V, expressions (BS), (89), and
(810) become, respectively,

(86)(i,a ~A ~j,a)= —(i
~

V
~
j) .

E, and E; are the unperturbed energies of the states
~

a )
and

~

i ) belonging to So and So, respectively.

(i,a (A )i, a=)1 +o o[(a
(
V)a) —(i

)
(Vi)],

I

E, —E;

(811)
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(i a ~A ~(i b)=
o o (b

~

V
~

a),1

E.

(i,a ~A
~ j,a)= —

o (i
~

V
~
j) .

1

Eg —E;

(B12)

(B13)

Expressions (Bl 1)—(B13) clearly indicate that for small
perturbations 3 and C=A ' tend towards the identity
operator. Thus we have established the mathematical
correspondence between our method based on the conver-
gence operator C and the Rayleigh-Schrodinger methodol-

ogy which is valid for small perturbations and corre-
sponds within our formalism to C =1.

iterative Newton-Raphson procedure. At the nth iteration
the variation bx "'=x'" —x " "of x is given by (for the
quadratic method)

F(x'"-")
Ft( (n —1))

(C2)

F'(x) is the derivative of F(x) with respect to x. The
geometrical interpretation of this procedure which con-
verges quadratically is given in Fig. 6(a). Quasiquadratic
methods can be considered as those for which I/F'(x) is
calculated in an approximate way. For characterizing the
linear methods it is useful to introduce the notation

APPENDIX C: LINEAR AND QUADRATIC
ITERATIVE METHODS

f (x) =x F(x)—.

Equations (Cl) and (C2) become

(C3)

This appendix briefly recalls the main results concern-
ing the standard linear and quadratic methods for solving
ordinary algebraic equations. These results are then ex-
tended to operator equations such as those met in Sec. III.

1. Ordinary algebraic equations '

(C5)

F(x)=x —f (x)=0, (C4)

F(x'"-")Ax"=
fi( (n —1))

If f (x) is a slowly varying function of x [ ~

f'(x)
~

&&1],
Eq. (C5) can be approximated by (for the linear method)

Let ~x (")= —F(x'" -") (C6)
F(x)=0 (Cl)

F(x)

be an ordinary algebraic equation. One of the most effec-
tive ways for determining the roots of this equation is the (n)

f( x(n —))) (C7)

(C6) or (C7) define iterative procedures which converge
linearly, the geometrical interpretations of which are given
in Figs. 6(b) and 6(c). Note the oscillatory convergence to-
wards the solution in 6(c) when f'(x ) &0.

which by using (C3) can also be written (also for the linear
method)

2. Operator equation

Let us now consider the operator equation

F(X)=0 . (Cg)

f (x)

[See, for example, Eqs. (32) and (46) of Sec. III.] The ana-
log of (C2) for the variation ~(")of the operator X at the
nth iteration is

t', b) 'F(X(" ") . (C9)

f(x)

(C9) defines a generalized Newton-Raphson procedure.
The comparison between (C2) and (C9) shows that the
operator or superoperator 3 for determining X plays the
same role as the derivative F'(x) for finding the roots of
an ordinary algebraic equation.

When the operator equation is put in the form

(c)
X f (X)=0, —

it is useful to introduce the convergence operator

C=A

and (C9) becomes (for the quadratic method)

(C10)

(Cl 1)

X
FICr. 6. (a) Newton-Raphson iterative method (quadratic con-

vergence) for solving the algebraic equation F(x)=0. (b) and (c)
Iterative method (linear convergence) for F(x)=x f(x) =0. —

~(n) C~(~(n —1)
) (C12)

The matrix elements of 3 given by (B8)—(B10) show that
for small perturbation 3 and C converge to the identity
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operator and (C12) becomes (for the linear method)

(C13)

(C13) defines an iterative procedure which converges
linearly and is the analog of (C6).

The results given in this appendix clearly indicate that

all the operator iterativ|; procedures presented in Sec. III
must be replaced in the general framework of the standard
linear and Newton-Raphson iterative methods for solving
ordinary algebraic equations. We emphasize again the im-
portance of the operator C on which are based all the con-
vergence properties of these iterative methods.
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