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Perturbation theory in I /Z for atoms: First-order pair functions
in an 1-separated Hylleraas basis set
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For the 1/Z perturbation theory of atoms, a partial-wave method is presented for determining
first-order pair wave functions. It rests on the fact that the Hylleraas variational principle decou-
ples for the individual partial waves (I=0, 1,2, . . . ) and that all partial waves for I )) 1 are easily
representable (Schwartz, 1962). The Ith partial wave is approximated in basis functions obtained by
projecting the well-known Hylleraas functions (containing the powers of rl2) onto PI(cos012). Re-
sults for the 1s ground state show rapid convergence. The variational value for the (total) second-
order 1s energy, which would be provided by 45 Hylleraas functions, is achieved with 10, 12, 9, 8,
5, and 5 basis functions for I =0, 1, 2, 3, 4, and 5, respectively. For any I )6, one function is suffi-
cient. Also good convergence is found for three-electron integrals (parts of the second-order lithium

energy).

I. INTRODUCTION

This paper deals with the determination of first-order
atomic eigenfunctions within the 1/Z perturbation
theory. Using the Hylleraas variational principle'
and taking up suggestions of Schwartz, we will explore
the separate variation of the individual "partial waves" of
a first-order pair wave function.

Perturbation theory for atoms can be based either on
the bare-nucleus Hamiltonian (the 1/Z ansatz) or the
Hartree-Fock Hamiltonian. ' These two methods differ
in an important aspect. This is the strict transferability of
components (of eigenfunctions and energies) between
small and large atoms, which is afforded only by the 1/Z
method: The first-order eigenfunction %""(n) of an n

electron atom can be composed exactly from a finite num-
ber of hydrogenic orbitals and helium pair functions
qt' "(2) of different electronic states (Sinanoglu, Chisholm
and Dalgarno'). Similar exact (de)compositions (or "parti-
tions"), which likewise rest exclusively on components
arising from physical states, do also exist for the second-
and third-order energies EI '(n) and E'i'(n) (Ref. 9). On
the other hand, there are the well-known, more technically
oriented, decompositions of E' '(n) and E' '(n) which
have frequently been used in calculations for the lithi-
um ' ' and larger atoms up to neon. ' The components

8, 10, 11

of E' '(n) then are two-electron energies E' '(2) and
"three-electron integrals"; those of E' '(n) are two-
electron energies E"'(2) and (third-order) "three- and
four-electron integrals. "All of these components can be ex-
pressed in terms of the first-order pair functions qt"'(2).
The practical task consists in approximating the qt"'(2)
with sufficient accuracy.

Consider now the concrete case of the three-electron
ground state [configuration (1s) 2s]. Let E' '(3) =EL,' be
its second-order energy. (Third-order energies will not be
treated in this paper. ) The relevant first-order pair func-

tions +I "(2) then belong to the (ls) ground state and the
1s2s singlet and triplet states.

The appropriate and mostly applied method of approxi-
mating such pair functions is the Hylleraas variational
principle. ' Each (entire) pair function qt"'(2) [together
with its pair energy E' '(2)] is then determined in one
common variation. On the other hand, Schwartz "has
pointed out (i) the Hylleraas variational principle for
qt'"(2) decouples into separate principles for the individu-
al partial waves 4'i "(2) (l =0, 1,2, . . . , ), so, one large vari-
ational problem will be reduced to a series of small ones.
(ii) The %i" for 1»1 are of a simple form (compare Sec.
II of this paper). Furthermore, as observed by Knight, '2"
(iii) the three-electron integrals of EL," depend only on the
(l =0) partial wave of their respective pair function.
Therefore, a more compact calculation of these integrals
will be possible than if one used a representation for the
entire pair function.

In order to implement a method, as outlined by (i)—(iii),
suitable basis functions are needed which can compactly
represent the individual partial waves. Schwartz has
pointed out that products of one-particle functions
u (ri)u„(r2) (the ansatz of configuration interaction)
must lead to poor convergence for all of the higher 1. So-
merville and Stewart, ' who used products of hydrogenic
orbitals, have numerically confirmed this. The basis-
function problem has been solved to a certain extent by
Byron and Joachain' who showed powers of r( and r)
to yield much better convergence than powers of rl and
f2.

In this paper we propose to approximate the particular
partial wave qli" in those basis functions which are ob-
tained by projecting, onto the Leg endre polynomial
Pi(cos8&2), the well-known Hylleraas functions [the powers
of u =r12, s =r, +r2, t =r2 —rl, multiplied by the
zeroth-order pair function 4' '(ri, r2)]. This projection
provides sets (of radial functions) which are different for
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different I. Through the leading Hylleraas function
r 12

.4' ', these sets accord exactly with the known
behavior of the asymptotic %1" (I »1). We will see (for
the two-electron ground state) that these "I-separated Hyl-

leraas functions" have good convergence properties also
for the low l.

The theory given in Sec. II of the paper as well as the
calculations of Sec. III will deal with the ground sta-te pair
function. Our method can be transferred to excited-state
pair functions, first to the singlet and triplet ls2s states,
then also to P states.

II. METHOD

M, = 0 IH11(1,2)b (3)
7 13

a () )a(&)b (3)), (9a)

where the three heliumlike energies belong to the ground
and the singlet and triplet 1s2s states, respectively, and

M1, . . . , M6 are "three-electron integrals. " From the
latter, M„M2, and M5 are expressed in the first-order
ground state )IIII, from Eq. (1). Using the partial-wave ex-

pansion (3), M, to M3 are seen' "' to depend only on
(1)

+S=0-
Our procedure for evaluating M1 to M5 will be the fol-

lowing. Their definition is

We consider the 1/Z expansion' 1' of the ground state
of the two-electron atom (in the fixed-nucleus and non-

relativistic approximation):
q/(1) 1 2 g 3

13
a ())b(2)a (3)),

M2 ——0'~,' 1,2 b 3 b 1 a 2 a 3 (9b)

(9c)

EHe = —1+ 8 Z +EHeZ + (2)

where a and b are the ls and 2s orbitals of hydrogen. In
Eqs. (9a)—(9c) 0"~", is assumed to fulfill the normalization
condition

(Unit of length= 1/Z bohr; unit of energy=Z hartree. )

We assume the first-order eigenfunction %H,
' to be ex-

panded in partial waves (812 is the angle between the vec-

tors r1 and r2):

( )II„",'
I

)Il'„",) =0 . (10)

One integration in each of (9a)—(9c) is carried out to give,
for example,

with )I'I "=RI(r„r2 )Pl(cos812)
1=0

(3) M1 ——( %H,'(1,2) co1(1,2) ),
where

E' '= g El ' with El' '=
I =0 r12

e1 ). (4) oII(1,2) =—[I—(1+ , r1+ , r1+ —,r, —)e—']a(r1)a(r2)
T1

(i) Then the Hylleraas variational principle decouples
into separate principles for each partial wave

(2) — (p) 1 5 -(1)
E( & EI ——2 O'H,

r12 8

+ &)III"
I

H'"+1
I

Il'I") (5)

where +I is some approximation to %1 and(1) ~ ~ (1)

H = ——,V1 ——,V2 —1/r1 —1/r2(0)

(ii) The asymptotic behavior of %1
' for large I is

)III
z r12

I
I)IIHe+ (6)

where r12
I I is the projection of the coordinate r, 2 onto

PI (cos012):

(12)

is independent of the angle 012. So, )IIII,' in Eq. (11) can be
replaced by Oi

'
p. Our numerical evaluation will start

from this expression for M1 and similar ones for M2 and
M5. The auxiliary functions (12), etc. , have been given by
Cohen. '

For carrying out the separate variations (5) we express
the radial function RI(r„r2) as a linear combination of
basis functions to be constructed in the following way.
The well-known Hylleraas basis functions ' ' "' "used
for representing the total %H,

' are the powers of r12 ——u,
r1 + r2 ——s, and r2 —r1 ——t multiplied by the zeroth-order
wave function:

F~~„=II~S'It"'IIHe, P, qE I0, 1,2, . . . I, r E I0,2,4, . . . J .

(13)

1+2

21 +3 „I+1

If ( Pl(cos8, 2)
2l —1 p'- '

(valid for 1=0,1,2, . . . ) . (7)

By expanding each of these F~„ in partial waves similar to
(3), a specific set of radial functions is obtained for each
l =0, 1,2, . . . ; the first three Hylleraas functions u, s, and
u, for example, have the following partial-wave projec-
tions:

(iii) Consider the second-order energy EL' for the
ground state of the lithiumlike atom

(2) (2) l (2) 3 (2)ELj =EHe + TEHe' + 2 EHe"

+4M, —2M2 —M3 M4+ 2M5+ 2M6 (8)

II 'pHe
I I "12

I I pHe
(0) (0)

with r, 2 I I from Eq. (7),

s'PHe
I I s PHe~l, o a

(0) (0)

(14)

(15)
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+He I i= [(ri +r2)~in 2rir2&i(cos8»)5t, ] p„, .2 (0) 2 2 (0)

(16)

0 I =Clr12
I i+He

(1) (0) (17)

with ci to be optimized. This approximation has been dis-
cussed by Schwartz. Because of the asymptotic behavior
(6), (17) becomes exact (together with ci~ —,') for large l.
Owing to the variable parameter ci, the range of validity
of (17) extends down to smaller 1 values than that of Eq.
(6) itself. (Numerical values will be given in Sec. III.) We
will call (17) the "one-function approximation. "

Table I shows how the first 12 Hylleraas functions con-
tribute to the various partial waves. The number of
nonzero projections reduces with increasing l. In some in-
stances there is a linear dependence between projections.
Thus for a particular I, the number of basis functions
which derive from a given finite set of Hylleraas functions
reduces further. Resulting from the two categories of
Hylleraas functions (those containing even and odd
powers of u, respectively), there are two types of radial
functions differing in their behavior at ri =r2; infinitely
differentiable functions like (15) and (16) and functions
still having continuous second derivatives like (14). We
note that the similar but more elementary functions
r &r & %H,

' which were used by Byron et al. ,
' for general

m and n, are merely continuous and, so, individually are
less suitable to represent a +'I" wave function.

The simplest one among the so defined basis sets is, for
each 1, just the single function (14). Thus

1=0
1=1
l&2

X X X X X X X X X X
X X X X X X X
X X X X X

'Compare Eq. (13).
This projection is linearly dependent of the preceding ones.

'The functions of the fourth degree u, u s, . . . , t provide
6,5,4,3 linearly independent projections for I =0, 1,2, & 3, respec-
tively.

III. CALCULATIONS

The evaluation of the functional (5) for the basis func-
tions (14)—(16), etc., is straightforward and leads to sums
of James-Coolidge integrals' ' "
V~ „(a,P) = f f x y "e ~~dx dy

0&X &y & oo

m =0, 1,2, . . . ; m +n = —1,0, 1,2, . . . . (18)

The numerical values of the V „are computed con-
veniently via the recursion formulas of Refs. 18(a) and
10(a). For reaching high values of m (m )25 while
m+n (10) we used double-precision arithmetic (on a
Control Data Corporation Cyber-170 computer). The fi-
nal step in the evaluation of E~' ' is the solution of the sys-
tem of linear equations corresponding to (5).

TABLE I. 1 projection of the Hylleraas functions. The pro-
jections marked by X form the basis set for the specific l.

Hylleraas
function' u s u us s t u u s us' ut s' st'

TABLE II. Partial-wave contributions EI' ' to the second-order energy of the two-electron atom.
Variational results for three basis sets of different size. All entries in 10 a.u.

0
1

2
3
4
5

6
7
8

9
10
1&11
Sum
E(2)f

A'

—124 694
—24 782
—3833
—1070.2
—404.9
—184.7
—95.7
—54.4
—33.1

—21 ~ 3
—14.3
—43.8'

—155 231

Bb

—125 331.2
—26471.9
—3895.6
—1076.8
—405.3
—184.8

—157 628g

C c

—125 333.2
—26 489.9
—3903.1

—1077.5
—406.0
—185.0

—157 657g

Byron et al.

—125 334
—26495
—3906
—1077
—405
—183
—94
—53
—32
—21
—14
—42

—157 656

'One basis function for each I.
5, 7, 5, 5, 2, 2 basis functions for I =0, 1,2, 3,4, 5, respectively.

'10, 12, 9, 8, 5, 5 basis functions for I =0, 1,2, 3,4, 5, respectively.
Reference 14 (variational calculations using 30 basis functions for each I ).

'From the asymptotic formula (21).
rThe exact value is —157 666.40 X 10 a.u. [Ref. 12(a)).
For I & 6 the (almost converged) values of column A have been used.
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For each I & 5 we have applied three basis sets A,B,C of
different dimensions. Set A contains only the function
(17). In B and C this set is extended by subsequent func-
tions according to Table I. In each case the projections of
the Hylleraas functions (13) of a certain polynomial degree

p +q +r have been included completely. Our largest cal-
culation is one for I = 1 with 12 functions (p +q + r & 4).
For 1&6 set A (the "one-function approximation") is
found to be sufficient (see below). The numerical results
are collected in Table II.

Comparing for different 1 the convergence of the energy
EI' ' with increasing basis set, relatively slow convergence
is found for 1 = 1 and 2, a more rapid one for 1 =0 and an
increasingly rapid convergence for I =3,4, 5, . . . . From
the previously calculated EI ' values, ' ' ' the best ones
are those of Byron et al. ': See the last column of our
Table II. These are variational results using basis func-
tions r &r "& %H,', namely, a rigid set of 30 such functions
(including negative exponents n) for any 1. For 1=0, 1,
and 2 our calculation C lies behind Ref. 14 by 9X10 in
total. Here our basis sets of 10, 12, and 9 functions,
respectively, are too small yet. For all l )3, however, the
superiority of the l-specific Hylleraas projections over a
rigid radial basis set becomes more and more apparent.
Taking, for each 1, the lowest EI' ' value of Table II (i.e.,

Ref. 14 for 1(2 and C or A, respectively, for the remain-

ing 1), these sum to a total E' ' of —157666.1X10
Comparing this with the exact E' ' (Knight' I')

E,'„,'„=—157 666.40 y 10 (19)

in a.u. , we conclude that each of the aforementioned EI' ',

within the number of digits given, should be nearly con-
verged. So, the remaining error in our best total E' ' (see
last line in Table II) should be almost entirely due to the
l &2.

Furthermore, our E' ' (total) can be compared with
direct calculations using the (entire) Hylleraas functions.
Such results for various numbers of functions are reported
in Schwartz's paper [Table I of Ref. 4(a)]: In order to ob-
tain our E' ' values of the cases A, B,C, about 6, 30, and
45 Hylleraas functions, respectively, would be required.

The asymptotic region (1& 6) deserves a further discus-
sion. We have seen that in this region the "one-function
approximation" [Eq. (17) and column A in Table II] is
sufficient for an accuracy of the total E' ' of better than
10 a.u. Equation (17) yields Ei as the quotient of two
sums of James-Coolidge integrals (18) for a =p=2 which
can readily be evaluated. Actually this expression for Ei'
can be transformed into a very simple formula proposed
by Schwartz. We expand V „(2,2) according to

V „(2,2) = '
2 ( —,

' +Rq+R3+R4+ . ),o+I ( z~ 3 ~

m+
(20)

where o.=m +n and

E pgg A [ 1 A + A +O(~ )] (21)

The first two terms of (21) agree with Schwartz's formula
[in its extended version as communicated in footnote 8(a)
of Ref. 14]. The difference between (21) and the exactly
evaluated Ei ' quotient is very small; for 1=6 it is 10
a.u. , and less for higher 1. The expression (21) can be
summed analytically over 1 (Ref. 21) and yields
—43.8X10 a.u. for 1 &11 as given in Table II. Certain-

ly, for a desired accuracy of E' '(total) of 10 a.u. , the
one-function approximation, and so formula (21), could be

applied already for 1 =6.
Using the partial wave O~" o as determined in our varia-

tional calculations A, B, and C (compare first line of Table
II) the three elec-tron integrals (9a)—(9c) have been evaluat-
ed. Again one is led to sums of James-Coolidge integrals
(18), here for different (a,p) combinations. The results are
shown in Table III. The accuracy of the sum

4Mi —2M& —M3 appearing in Eq. (8) is seen to be deter-
mined by that of M3. In each of the cases A, B,C, the Mi
is somewhat more accurate than the respective E' '(total);
compare the last line of Table II.

IV. DISCUSSION

In this paper we have defined a method of l-separated
Hylleraas basis functions to be used for the variational
determination of first-order pair functions for atoms
(within the 1/Z-perturbation theory). The method has
been tested for the ground state of the heliumlike atom. It
is found to yield, in compact calculations, accurate values
for the second-order quantities: the pair energy EH,' and
the three-electron integrals Mi, M2, Mi (which belong to
the energy EL of the lithiumlike atom). The results are
in more detail.

(i) The I-separated Hylleraas functions give rapid con-

vergence for the individual partial-wave energies Ei ' for
all l. In the asymptotic region of large i (this is I & 6 for
an accuracy of 10 a.u. ) one basis function per I suffices.
For EH,' (the sum of the Ei ') the value of —0.157 657 a.u.
was obtained by using 10, 12, 9, 8, 5, 5, functions for
I =0, 1,2, 3,4, 5, respectively. To reach the same accuracy
in a direct calculation would require 45 of the original
Hylleraas functions. We estimate that Knight's' "very
exact EH, [obtained in 100 Hylleraas functions, Eq. (19)]
would be reached in the l-separated method by using
about 25 functions for the l =1 partial wave and about 20
for those of the remaining low I.

TABLE III. Three-electron integrals MI, Mq, M3 (parts of the
second-order energy of the three-electron atom) evaluated in the
(l =0) partial wave from variational calculations A, B,C (which
used 1, 5, and 10 basis functions, respectively). All entries in
10 a.u.

(o+2)(o+3) . . (o+0
2' (m +2)(m +3) . (m +i)

Subsequently, using the terms of (20) up to R7, the quo-
tient of E~' ' is expanded in powers of k=2/(21+1) to
give

Ml
M2
M3

—5124
—6368

—22 784

—5058.3
—6243.2

—23 802

'Chisholm and Dalgarno, Ref. 8.

—5057.73
—6243.46

—23 755.8

Exact value'

—5057.704
—6243.572

—23 758.968
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(ii) The ansatz in one basis function which is valid for
large I has been shown to go over into Schwartz's asyrnp-
totic formula. ' Therefore, while retaining the same
method, one can deal very simply with the whole asymp-
totic I region.

(iii) The convergence of the three-electron integrals M 1

to M3 is similar to that found for the EI ' of the low l.
It appears to us worthwhile to try these l-separated pair

functions for the calculation of third-order energies. Par-

ticularly accurate pair functions are then required. For
the third-order lithium energy EL the work of Yung,
Sanders, and Knight" has shown that the variation of the
entire pair functions provides a good EL only with ex-
treme effort.
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