PHYSICAL REVIEW A

VOLUME 28, NUMBER 5

NOVEMBER 1983

Nonlinear heat flow in a steadily ablating plasma
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A simple method of solving the electron-transport equation in the presence of a steadily ablating plasma
is described. The results show that, compared with a motionless plasma, the presence of steady-state abla-
tion can substantially reduce the electric field in the direction of the heat flow. It does not lead to further

reduction of the (center-of-mass) heat flow.

Heat transport, by electrons in the ablation region of
laser-implosion targets is of considerable interest in the
design of targets for laser fusion. Comparisons of fluid
code simulations with laser-implosion experiments frequent-
ly indicate heat flows of up to two orders of magnitude
smaller than that given by the classical Spitzer-Harm! ther-
mal conductivity, and limited to what appeared to be an
anomalously small fraction of its free-streaming value.? One
suggestion to account for this apparent inhibition of the heat
flow has been that classical transport theory is inappropriate
in this region because of its steep temperature gradients and
consequent nonlocal effects, and that a more-accurate treat-
ment of electron transport with Coulomb collisions would
reveal a much lower heat flow.? Indeed, in recent years,
more-sophisticated kinetic studies of nonlinear heat flow
which use the Fokker-Planck equation to describe electron
energy transport directly, have revealed heat flows lower by
an order of magnitude than that given by the Spitzer-Harm
theory.*-®

All these previous studies assumed homogeneous plasma
with no ion motion. These restrictions simplified the calcu-
lations considerably. In reality, in laser implosions the in-
ward heat flow from the critical surface to the ablation sur-
face is accompanied by an outward acceleration and flow of
the ions. The plasma density at the ablation surface is typi-
cally two orders of magnitude higher than that at the critical
surface (for 1-um illumination). An important question is,
therefore, how does the inhomogeneity and plasma flow af-
fect the heat flow. The electron pressure gradient that
drives the ablation (in a high-Z target) is coupled to the
ions by both the electric field and collisions between elec-
trons and ions. The electric field E has to satisfy the ion
momentum equation (in steady state with one-dimensional
planar geometry), m;nju(du/dx) =eE +R,,, where, m;, n;,
and u are the mass, density, and flow velocity of the ions,
respectively (the ion pressure has been neglected). The last
term, R, represents the momentum-transfer rate between
electrons and ions, which in the absence of a net current is
proportional to the thermal gradient. The direction of the
electric field must now depend on the relative strength of
the collisional and convective terms. In the absence of plas-
ma flow it is everywhere directed inward towards the cooler
region, but the inclusion of ion motion could cause it to be
directed outwards to accelerate the ions. This would mean
that the heated electrons at the critical surface would be ac-
celerated into the ablation region by the electric field instead
of being retarded by it, which is the conventional picture.
This effect could increase the heat flow (compared to that
with no ion motion). On the other hand, transporting the
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heated electrons up a density gradient might tend to reduce
it. Hence, it is not clear what the net effect of a self-
consistent coupling of the electric field, density gradient,
and plasma flow is on the heat flow. Of particular interest
would be whether the inclusion of ablation could lead to an
even lower (center-of-mass) heat flow than that given by
the Spitzer-Harm theory.

To gain insight into this problem self-consistent calcula-
tions are required. Initial-value kinetic calculations with hy-
drodynamics are costly to perform. An alternative is to
solve directly for the quasi-steady-state. We chose the latter
option. Here, we describe a simple method of coupling the
electron-transport equation to the hydrodynamics and its
results.

Consider a plasma, in planar geometry, steadily ablating
from a cold to a hot boundary, corresponding to the abla-
tion and critical surfaces, respectively. The plasma is fully
jonized (Al**), quasineutral, and carries no net current.
The electron fluxes entering this ablation region at the hot
and cold boundaries are half-Maxwellians with temperatures
T, and T, respectively. The mass flux, m;n;u, carried by
the ion flow is constant throughout the ablation region in
the steady state. Prescribing the mass flux, T}, T., the den-
sity at one of the boundaries, and the separation between
these boundaries, specifies the problem completely.

Electron transport is described by the one-dimensional
transport equation

vxﬂ - eE—aL =
ox

ov, 5t

ﬂ] . o)

where fis the electron-distribution function in phase space,
x the preferred direction, v the electron speed, E the magni-
tude of the electric field, and (8f/8t), the electron-ion
scattering. This is solved in conjuction with the plasma
equation of motion, mnu(du/dx)=—0oP/dx, where P
=mefv3f dv. Here, m, is the electronic mass. For sim-
plicity, in the transport equation, electron self-collisions
have been ignored. In treating the electron-ion scattering,
the ions are assumed to be fixed. This is a reasonable ap-
proximation as the plasma flow velocity is of the order of
the ion sound speed, c¢,(x), which is much smaller than the
electron thermal speed v, [v,/u —(m;/m,) <<1]. Only
subsonic flows are allowed: planar geometry cannot support
steady supersonic flows. In the equation of motion, the ion
pressure is neglected because it is small compared with the
electron pressure [Z =13, (ion temperature per electron
temperature) <1].

These equations are solved numerically using two nested
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iterations. An inner iteration solves the transport equation
for an assumed electric field. Using the electron total ener-
gy O [Q=%mev2—e¢(x), ¢(x) is the electric potentiall,
and its momentum perpendicular to the direction of the
electric field L [L =mv(1 —p?)V2 p=wv,/v] as the in-
dependent variables, the transport equation can be ex-
pressed as
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Equation (3) can be solved by integrating along trajec-
tories of constant Q and L in phase space. This is done nu-
merically by mapping these trajectories onto an angular
mesh across the spatial domain. In the results presented
below, 70 of these trajectories (for 0 < u < 1) were used in
all the calculations. A diffusionlike moment of the trans-
port equation is used to accelerate convergence. The nu-
merical details of solving the transport equation with this
method are to be found in Ref. 7.

The outer iteration searches for the self-consistent electric
field to couple the electron and ion motion. The equation
of motion which must be satisfied upon convergence is used
to correct the electric field according to the formula

ie
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Here ¢*(x) is the corrected potential to be used in the next
iteration. All the other quantities are evaluated at the
current iteration. Convergence is fastest with no ion flow
(in which case the electron pressure is constant). The
number of outer iterations needed for the simulations
presented below ranged from 5 to 20.
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FIG. 1. The electron temperature (T), total electron pressure
(P), and density (N) for a simulation with T,/7,=2 and
D/X=10. The hot boundary is at X =0 and the cold boundary,
X =D. The units are arbitrary.
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Calculations were made with T,/T.=2 for different mass
fluxes and system thicknesses parametrized by D/\, where
D is the spatial separation between the boundaries and X is
the mean free path of an electron at the hot boundary with
kinetic energy %k(T,, +T.). Figure 1 illustrates a simula-

tion with D/x=10 in which the plasma flow attained a
Mach number (flow speed per ion sound speed) of 0.74 at
the hot boundary. The density, temperature (kinetic), and
total electron pressure are shown.

Figure 2 shows the effect of increasing ablating flow on
the electronic potential —e¢(x). For sufficiently high-
mass flow the potential becomes nonmonotonic near the hot
boundary. The electric field accelerates the ions out of the
ablation region near the hot boundary and retards them in
the colder, denser region. The reason is as discussed above.
In these simulations we have ignored the existence of elec-
trons with total energies less than the escape energy of the
potential through and which could, hence, be trapped in it
(the total energy is a constant of motion here because of the
Lorentz plasma approximation). It is possible that in exper-
iments with high-Z targets some electrons are trapped just
behind the critical surface in this way.

Figure 3 shows the normalized heat flow Q/Qsp [calculat-
ed center-of-mass heat flow per Spitzer-Harm thermal con-
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FIG. 2. Effects of increasing steady-state ablation on the electron
potential —e¢(x) along a system with D/X=10. Each curve
represents a simulation with a given (constant) mass flux (m;n;u)
and is labeled by the Mach number the plasma flow attained at the
hot boundary (X =0). The top curve represents a simulation with
no ion motion (9P/9x =0).
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FIG. 3. Comparison of Q/Qsp (calculated heat flow per Spitzer-
Harm thermal conduction for a Lorentz plasma evaluated at the lo-
cal values of A/Ly). Each solid curve represents Q/Qsp along a
system of given D/\ with no ion motion. The effect of including a
steady-state ablation in that system is repesented by the dotted
curve immediately above the bold curve. The dotted curves are la-
beled by the Mach number the plasma flow attained at the hot
boundary (X =0). The dashed curves approximate the heat flows
at the top of the temperature fronts.

duction evaluated at the local values of (A/L7): A is the
mean free path of an electron with energy k7(x) and Ly is
the temperature scale length]. Each bold curve represents
Q/Qsp measured along the temperature front in a simula-
tion with no ion motion. The dotted curves represent simu-
lations with ion motion and are labeled by the Mach
number the plasma flow attained at the hot boundary.
From left to right, each pair of bold and dotted curves cor-
responds to systems with thicknesses D/Xx =20, 10, 5, and
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0.5. For all cases, the lowest point of each curve corre-
sponds to that spatial point nearest the hot boundary (criti-
cal surface), i.e., at the top of the temperature front. The
heat flows can be multivalued in A/Lz because of nonlocal
effects. The high-energy tail of the electrons from the hot
boundary streams into the cold region (at the top of the
curve) with little attenuation and enhances the heat flow
there.

It can be seen that inclusion of steady-state ablation tends
to increase Q/Qsp. As the system gets less collisional the
difference between the results with and without ion motion
decreases. For both cases, in the collisionless limit all mac-
roscopic quantities (including the potential) are constant.
The difference between the two cases arises then from the
fact that in the fluid frame the flow of the electrons from
the hot boundary is shifted inwards with ion motion. For
the subsonic flows here, the difference is quite small (Fig.
2, Ly/x—0). If there is no ion motion then the electric
field in the direction of the heat flow increases as the sys-
tem becomes more collisional. The inclusion of ion motion
does two things, first it reduces this electric field as
described above and second it raises the electron pressure
gradient to drive it. The increased pressure gradient is af-
fected by a weak smoothing of the temperature profile and a
more marked increase in density near the cold boundary.
The increased density makes the system more collisional
and would tend to lower the heat flow but this effect is not
enough to compensate for the lower electric field. ilence, a
net increase in the heat flow is seen. As the system gets
more collisional, the difference in the electric field with and
without steady-state ablation becomes more important. This
is reflected in the difference in the heat flows between the
two cases with increasing collisionality.
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