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Theory of optical multistability and chaos in a resonant-type semiconductor laser amplifier
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Multistable light arnplifications and self-pulsations in a resonant-type semiconductor laser diode (LD)

amplifier are predicted. A basic idea is derived from the active layer refractive index dependence on car-

rier density. An LD amplifier is shown to act as a high-Q nonlinear Fabry-Perot interferometer with true

optical gain and nonlinear refraction. Periodic and chaotic self-pulsations are sho~n to occur in the regime

~here the delay time of the feedback is smaller than the carrier lifetime.

In semiconductor lasers, thc actlvc laycl reflactlvc index
near the gain spectrum peak varies in an approximately
linear fashion with injected carrier density, as a result of the
anomalous dispersion effect. ' The strong carrier density

dependence of the refractive index has been found to result

in various peculiar phenomena, such as double-lobed far-

field patterns, lateral mode instability in stripe geometry
lasers, carrier-modulation contribution to laser linewidth,

and asymmetric tuning curves associated with injection lock-

ing.
This Communication predicts optical rnultistable operation

and chaotic behavior in a semiconductor Fabry-Perot-type
laser amplifier. The basic idea is derived from the carrier
depletion-induced refractive index change in the active layer

due to external light injection.
Figure 1(a) conceptually illustrates the model of the sem-

iconductor laser diode (LD) amplifier used for the following

analysis. A coherent optical beam with frequency v; is in-

jected into the LD amplifier through one of the facets. The
other facet is assumed to be antireflection coated, and the
Fabry-Perot resonator consists of one of the facets and an

external mirror. The LD is driven by dc injection current
below the threshold and acts as a resonant-type amplifier for
input laser light. The injected carrier density decreases as a

result of light injection, while the refractive index in the ac-

tive layer increases accordingly. This is because of the neg-

ative proportionality constant. '6 Therefore this system is

considered to be a nonlinear Fabry-Perot interferometer,
with true optical gain and nonlinear refraction.

%hen the spatial dependence of the population differ-

ence, coming from standing-wave effects, and absorption is

neglected, ' the result is the mean-field model. Most ana-

lytic work in optical bistability has been carried out within

the framework of the mean-field model. 9' In the LD am-

plifier system, the spatial diffusion of carriers in the longitu-

dinal direction is fast enough to allow neglect of standing-
wave modulation of carrier density. In addition, it is as-

sumed for brevity that the length of the LD, I, is much

shorter than that of the external cavity, L, and that the re-
flectivities of mirrors are high enough to allow the condition
of G (gain) = 1. In this case, we can employ the average
field distributed over the length of the LD" (mean-field ap-

proximation) and the propagation effect has been neglect-
ed. If the field changes faster as compared with the transit
time through LD or 6 && 1, mean-field approximation is

no longer valid,
The response of the active medium (LD) can be

described by the conventional rate equation for carrier den-
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FIG. 1. (a) Conceptional model of multistable semiconductor
laser amplifier with external mirror. (b) Output ~E/E, ~2 vs input

q ~ E/E, )2 relation. Numerical values for calculations are described
in the text. The positive branch unstable regions were obtained for

t~ jv, =0.05 numerically, with use of Eqs. (1) and (2). 0.05/div for
both axes.

sity. The rate equation is subsequently converted to the dif-

ferential equation for field's phase shift across the LD adia-

batically, through the carrier density dependence of the re-

fractive index. Applying the mean-field approximation, the

dynamics of the system is governed by the following

difference-differential equations'2:

E(r, i) = [ri(I —rt2)G]'/'~E;~
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Here, E is the complex mean-field amplitude, q the coeffi-
cient for light coupling into active layer, r~, r2 the amplitude
reflectivity, $ the roundtrip phase shift across LD, @p the
cavity mistuning parameter, ~, the carrier lifetime, t& the
delay time of the feedback, go the small signal gain coeffi-
cient, I the optical confinement factor, n the loss coeffi-
cient, g the mean-field gain coefficient, E, the effective sat-
uration intensity, J the injection current density, e the elec-
tronic charge, and d the active layer thickness. The factor R
can be expressed as

4m on Qg
~ aN aN

'

with n being the active layer refractive index. This is the ra-
tio of the derivatives with respect to the carrier density N of
the real part to the imaginary part of the dielectric constant.

The steady-state solution of Eqs. (I) and (2), denoted by
E, can be given as a multivalued function of E; such that
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which is illustrated in Fig. 1(b). Here, the adopted parame-
ter values are I =0.2, go=115 cm ', a=20 cm ', I =300
p, m, rt = rj =0.9, t)ip = —0.5, and R = —6.

These l E
~

are not always stable. A linear stability
analysis reveals that the stationary solutions of Eq. (6) are
stable only in the regions satisfying the condition
0 & S & S„where S is defined as S = d)Er'l2/dlEl, , and S,
is given by

(c)
t I &s

FIG. 2. Period-doubling bifurcations of self-pulsation in a LD
amplifier, assuming t~/~, =0.2. Adopted parameter values are
shown in the text. Horizontal axes: t/T, (0.2//div). Vertical axes:
~E/E, i2 (0.1/div). (a) period 1 (rt~E/E, l2=0. 1); (b) period 2
(0.2); (c) period 4 (0.32); (d) period 8 (0.35). A corresponding
cavity length for t~/7. , is L =6 cm when ~, =2 ns is assumed.

2(1 + rt2r22G2)/(1 —rt2 ) 7) G

assuming rir2G =1. For S &0 (negative branch), the sys-
tem is always unstable, and this region is depicted by the
dotted line in the figure. Using a computer we have found
that the "Ikeda unstable" region appears in the positive
branch for a comparatively small tq value. ' ' This positive
branch unstable region is shown by the dashed line in the
figure for tR/r, =0.05.

Figures 2(a)-2(d) show the numerical results for Eqs. (1)
and (2) with different r)liE, /E, li2 values, assuming I =0.2,
go=115 cm ', n =20 cm ', I =300 p.m, r~ =r2 =0.9,
@p= —0.5, R = —6, and tR/r, =0.2. These figures indicate
the period-doubling (or successive subharmonic) bifurca-
tions of self-pulsations. It is interesting to point out that
self-pulsations occur in the regime where the delay time t~
is much smaller than the carrier lifetime 7,. ' " In the LD
amplifier system, the lifetime of the cavity, which is approx-
imately given by rR= tR/(I —rir2G), becomes longer than
the carrier lifetime in the regime tR/r, « 1, because of its
low dissipation rate (high-Q factor) as a result of optical
gain, i.e., 1 —r~r2G (&1. This situation is brought about
when the LD is biased just below the threshold for lasing.
Figure 3 shows (a) time-dependent trajectory and (b) corre-
sponding trajectory in the [Re(E/E, ) —Im(E/E, ) j phase
space for chaotic self-pulsations, where tR/r, = 0.5 and
&IE,/E, I'= o.3.

These positive branch instabilities, however, disappear for
a conventional LD resonant-type amplifier without external
mirror, i.e., L =0, since tR/r, is as small as 10 . In order
to further investigate optical bistable properties we will re-
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FIG. 3. Long-term periodic or chaotic self-pulsation in a LD am-
plifier, assuming tR/r, =0.5 and rt~E/E, ~2 =0 3. Other parameters
used are same as in Fig. 2. (a) Time-dependent trajectory, t/r,
(0.4/div) lE/E, l (0.1/div). (b) Trajectory in complex phase space,
0.1 div, with origin at (0,0).
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strict the analysis to the lowest branch in Fig. 1(b) and

L =0 case. '

Figure 4(a) illustrates lEO/E„l' vs r)lE/E„l' for various

R values [l Eel =—(1 —r2 ) lEl: steady-state output power;

E,', —= (1 —rj ) E,': saturation output powerts], assuming
I =0 2, go=240 cm ', o. =20 cm ', 1=300 pm, ri
=r2' =0.3, and go=0, 4.5. It can be seen that bistability

arises more easily when R becomes large. The R factor has

been reported to vary between —0.5 and —6.2 in the case of
a GaAs active layer. '

Figure 4(b) shows lEo/E„l' versus nominal frequency de-

tuning ( v; —vo) /Av ( hv = c/2 nl, axial mode spacing; ct
velocity of light), where vs is the cavity resonance frequency
in the absence of light injection. Calculations were carried
out for various R values, assuming the same parameter
values as in Fig. 3(a) and qlE;/E„l'=0.01. It can be seen
in the figure that the detuning curve becomes very asymrne-
trical with respect to v; = vs when lR l takes place on the or-
der of 1-2. In particular, if R is a negative value, the max-

imum output power can be obtained at a negative value of
nominal detuning. Furthermore, hysteresis properties com-
ing from the multivalued function, Eq. (6), appear in nega-

tive detuning. This nonlinear resonance has been observed
experimentally for a GaA1As/GaAs resonant-type amplif-

ier. 's The result is shown in Fig. 4(c). Similar asymmetri-
cal tuning curves have been reported by Lang for an

injection-locked LD oscillator. However, peculiar nonlinear
resonance properties with hysteresis as shown in Fig. 4(c)
were not observed for locking with low power light injec-
tion. ' '

To summarize, multistable light amplifications as well as

periodic and chaotic self-pulsation in a resonant-type sem-

iconductor laser amplifier have been theoretically predicted.
Previously reported carrier depletion-induced refractive in-

dex change in the active layer has been found to be large

enough for multistability as well as self-pulsations at a real-

istic input light power level. Peculiar nonlinear resonance
properties have been also shown to exist with hysteresis.
The present theory can be generally applicable to any other
laser amplifier system which has asymmetry of the deriva-
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FIG. 4. (a) 1Ep/E, ol vs rtlE;/E»l for different R values, as-

surning the same parameter values as Fig. 2 (see the text). (b)
lEo/E„l2 vs (v; —vs)/Av for different R values, assuming

pl E/E„l'=O.OI. (c) Nonlinear resonance phenomenon observed

in a 300-p,m-long chaotic self-pulsations GaA1As/GaAs resonant-

type amplifier, where bias injection current is 81.8 rnA and qP;„is

0.1 mW (P;„,injected light power; q, light coupling coefficient into

the active layer).
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tive with respect to population density, i.e., nonzero R
value, at the lasing frequency. "
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