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For the nondispersive propagation of waves in one dimension, there is no essential difference between
the concepts of longitudinal and temporal coherence, and these terms are often used interchangeably. For
the dispersive propagation of waves, such as electrons or neutrons in vacuo, or light in a medium, this is no
longer the case. We analyze the coherence properties of a dispersively propagating beam of radiation, and
discuss the observation of its spatial and temporal coherence properties by means of a two-beam inter-

ferometer.

I. INTRODUCTION

Recent experiments in neutron and electron optics! 73
have brought to prominence phenomena in interferometry
which are not adequately described by the standard discus-
sions of coherence in optics.*~¢ The standard analyses deal
only with the dispersion-free vacuum propagation of light
which, in one dimension, is characterized by a wave-form-
preserving translation at uniform speed, and thus makes
longitudinal (spatial) and temporal coherence properties
essentially equivalent.

This equivalence does not apply to the dispersive propaga-
tion of, say, electrons or neutrons in vacuo, nor to light in a
material medium. Further, very few experiments, if any,
have ever studied temporal coherence properties directly, as
this would require the artificial insertion of a variable time
delay in some part of the recording process. This is seldom
practicable.” Nevertheless, we indicate below how a two-
beam, e.g., Michelson or Mach-Zehnder interferometer,
with a dispersive cell in one arm and vacuum in the other,
may effectively study the temporal (as well as spatial)
coherence of electromagnetic waves.

In addition, we draw attention to the fact® that, in spite of
the growth of the size of wave packets under dispersive pro-
pagation,® the coherence length, as measured by an inter-
ferometer, does not depend on its overall position down-
stream in the beam.

II. THEORY

Let ¢(x,¢) be the wave amplitude at position x and time ¢

for whatever type of radiation we wish to analyze. The
wave equation obeyed by (x,#) will be denoted by
Wix,t}y(x,0) =0 . (4]
For example, for light in vacuo,
9? 9?
Wixti=———— ; 2a)
b= a7 ~ o (2a
for nonrelativistic particles of mass m,
L9, B d?
Wixtl=it—+—— ;
L TR Py (20)

and for light in a dispersive medium the Fourier transform

28

of Wis given by
Wik ol=[n(o)w/c]>—k* . Q2¢0)
The mutual coherence function T is defined by
T(xt;x't) = WlaO)y*(x', 1)) 3)

where ( ) denotes an ensemble average. It follows, from
the restriction that Wis a linear operator, that

W ix, )T (xt;x't') =0 . 4)

In other words, the fact that the mutual coherence function
obeys the same wave equation as the amplitude function®*~®
is generally true for any linear wave equation. In particular,
if ¢ develops dispersively in time, then I' will develop
dispersively also.

In the light of this, and using a simple-minded picture of
spreading wave packets, one could easily be misled into
thinking that the coherence length will also spread upon
propagation in a dispersive medium. This, however, is not
the case, as will be shown below.

If the system is stationary in time, the coherence function
I" will depend on 7, where

T=t—1t . (5a)

If the system is translationally invariant the coherence
function I'" will depend on

(5b)

We shall restrict our attention to translationally invariant,
time stationary systems. We note that translational invari-
ance precludes (significant) absorption.

For such systems we have

X=x—x".

r(X,7D=r(x"+Xt+T;x",t)
=X+ X+ T)p*(x"t)) . (6)
Let us denote y(x,7) by a Fourier integral
() = [ 4(0) explilk(@)x —wilde . Q)
If we use the stationarity requirement and perform a fin-
ite time average and take the limit, in the usual way

(Wiener-Kintchine theorem), we may write the mutual
coherence function in terms of the spectral distribution
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function:

rxT) = s eplilk(@X-oTldo , @
where

S(w) =27 (|l4(w)|?) . 9)

We see, from Eq. (8), that the spatial and temporal
coherence properties of the field are completely determined
by the spectral distribution function S(w) and have no
direct relation to the size and duration of the possible wave
packets that comprise the field. This will be illustrated
below in connection with a two-beam interferometer.

In the case of nondispersive propagation

k(w)=w/c , (10)
where c is the constant phase velocity, we have
rx7) = s(w)explio(X/c - T)ldo

=I'(X—cT,0)=T(0,T—X/c) . (11)

Thus the coherence function is a function of the single vari-
able (X —cT), and is completely determined by its spatial or
temporal dependence alone, i.e., space and time displace-
ment intervals play an equivalent role.

In the case of dispersive propagation, k(w) is not linear
in w, and the equivalence of space and time intervals, mani-
fest in Eq. (11), does not hold. In the dispersive case, the
roles of Xand T are distinct.

III. APPLICATIONS TO INTERFEROMETERS

If the wave field before a two-beam interferometer is
given by ¢(x,1), the wave field after passing through the in-
terferometer is given by

(0 =3 [W0e) +e(x +X,01 (12)

where X is the path difference between the interferometer
arms. The average output intensity thereafter is given by

I=5IT(0,0) +Rel'(X,0)] . 13)
J

\l'/(x,t)=fA(w)GXP[iw(x/c—t)]%(exp(in/C) +explilk(w) —w/clD})dw ,

where k(w) is the dispersion relation for the included medi-
um. We now find that the time-averaged intensity function
is given by

1= $(0)L(1+Re explilk (@) D—w(X+D)/cl))dw (19)
=+1r(0,0) +Rel(D, (X +D)/c)]

=Io[1 +Rey(D, (X +D)/c)] . (20)

Thus the temporal coherence of propagation in the disper-
sive medium may be analyzed by varying the nondispersive
drift path (X + D).

We shall evaluate Egs. (19) and (20) for the case of a

narrow spectral distribution over which the wave number
]

F(X,T)=exp[imo(X/uo—T)]fS(w)exp[i(w—mo)(X/vo—T)]dw=exp[iwo(X/uo—T)]F(X/vo-T) .
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If we write the complex degree of coherence as

y(X,T)=T(X,T)/T(0,0) (14)
and

I,=5T(0,0) , %)
then

I=1I[1+Rey(X,0)] . (16)

The magnitude of y(X,0) corresponds to Michelson’s
fringe visibility function

_ Imax - Imin
V(X) lmax+[min |7(X’0)| ’

It will be noted that the coordinate x, which appears in
Eq. (12), does not appear in Egs. (16) or (17). The coordi-
nate x, which measures the distance downstream from the
source to the interferometer, and hence influences the
overall size of the dispersing wave packet, plays no role in
determining the time-averaged interferometer output. The
coherence length, on the other hand, is determined by the
range of X for which |y(X,0)| is significantly different from
zero. Thus coherence length is independent of wave-packet
size. It may be worth emphasizing that, in general,
ly(X,T)| for T =0 is not measurable in a simple inter-
ferometer, employing one detector. However, in the case of
radiation for which nondispersive propagation is possible,
such as electromagnetic waves in vacuo, a time delay T may
be simulated by an additional nondispersive path difference.
Such is not the case for beams of material particles for
which even the vacuum acts as a dispersive medium, by vir-
tue of the Schrédinger equation (2b).

For the case of light and other electromagnetic waves the
behavior of |y(X,T)| for T =0 may be studied as follows:

Consider the inclusion of a dispersive cell in the nonvari-
able arm of a Michelson interferometer, or in one arm of a
Mach-Zehnder interferometer. Let D be the length of path
that light traverses in this dispersive cell.

In terms of the Fourier decomposition of the incident
wave ¢(x,0) given in Eq. (7), the interferometer output
wave will now be

an

(18)

M
k(w) changes only slowly. Let wo be the center frequency
of the distribution function S(w). Then we may expand

2
k() = k(@) +(@—w)) [-2E +%(w—wo)2d—lg + -
 J, do’ ),
2
= wo/ g + (@ — wg) /vy + 5 (0 — wp)? dl; +ee
do’ |,
1

where wuo=w/k(wy) is the phase velocity and wvo
= (dk/dw)q! is the group velocity.
Let us evaluate I'(X,7) using only the first and second

terms of Eq. (21). In this case

(22)
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FIG. 1. Output of a Michelson interferometer with fixed disper-
sive path difference D vs the variable vacuum path difference X, Eq.
(20), for the Gaussian spectral distribution, Eq. (24).

If S(w) is symmetric about wy then Fis real. In that case
we see from Eq. (20) that the interferometer fringe spacing
is determined by the phase factor in Eq. (22) and hence by
the phase velocity uy,. We see further from Egs. (22) and
(17) that F alone determines the visibility function which,
in turn, depends only on the group velocity vy.

Applying Eq. (22) to the dispersive cell interferometer sit-
uation given in Eq. (20), we find the explicit X and D

dependence
Uo c c Yo c c

(23)

1= 10[1 +COS(1)0[D

It is instructive to consider the case of a Gaussian spectral
intensity distribution

expl — (o — wg)%/2(Aw)?]
[27(Aw)?]}?

In Fig. 1 we illustrate Eq. (20) for the case of the spec-
trum of Eq. (24). Note the differential displacement
between the zero-phase fringe and the center of the visibili-
ty envelope.

We now evaluate the complex degree of coherence y us-
ing the Gaussian spectral distribution of Eq. (24) to find

expliowg(X/ug—T)1
[1-i(Aw)2(dPk/dw?)o X1

(24)

S((u) =10

y(X,T) =

5 (80)2(X/vy—T)?

1-i(Aw)*(d?k/dw®)oX (25)

xXexp|—

[In Eq. (25) the quadratic terms of Eq. (21) have been re-
tained.]

In Fig. 2 we display Eq. (20) as a function of frequency
wo using the above form of y(X,T) for the case of a disper-
sion relation corresponding to a single optical resonance in a

3151

N

—

°
A

(I) ALISNZINI IndLNO

—
o
r

.
L

Wr

LASER FREQUENCY (wo)

FIG. 2. Output intensity of a dispersive cell Michelson inter-
ferometer as a function of wy, center frequency of the Gaussian
spectral distribution, in the vicinity of a single optical resonance at
w,.

dilute gas, namely,

k=w/c +7rr,cNf/(w,—%ie,—w) , (26)
where N is the particle density, fis the oscillator strength of
the resonance, w, is the resonance position, €, is the reso-
nance width, and 7, is the classical radius of the electron.
This corresponds closely to the experimental observations of
Duval and Mclntosh,”! who used a Cs vapor cell in a
Mach-Zehnder interferometer, illuminated by a turnable dye
laser.

The disappearance of fringe visibility as wo approaches w,
is due to the factor [1—i(Aw)*(d%k/dw?)oX]"? of Eq. (25)
which becomes significant when d*/dw? becomes large, as
it does in the neighborhood of a resonance. (Note that the
quadratic approximation to the dispersion relation is invalid
for lwo— w,| <e¢,, Aw.)

IV. CONCLUSION

We conclude that for propagation in dispersive media, the
distinction between longitudinal and temporal coherence is
significant. It is experimentally accessible in the case of
electromagnetic radiation, and is useful in the interpretation
of interferometric data.
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