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Resistive and viscous convection in a cylindrical plasma
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It is shown that the combined effect of resistivity, viscosity, and thermal conductivity leads to large-scale

stationary convection. This is done for a cylindrical current-carrying plasma in a shearless magnetic field.

Convection is shown to take place for large wave numbers and Bz/B, )) 1.

It has been recently shown that, in a current-carrying
cylindrical plasma, viscosity and thermal conductivity lead to
stationary convection. ' It has also been shown that, in

such systems, resistivity and thermal conductivity also lead
to convection. ' In the first case, convection occurs for large
wave numbers and (Bq/B, )»1. In the second case, it

was shown that convection takes place for small wave
numbers and, in the tokamak limit, (Bq/B, ) «1.

The stability of a current-carrying plasma column limited

by conducting walls in a shearless magnetic field has been
extensively studied. The first analytical results are due
to Tayler and Shafranov' who solved the ideal magnetohy-
drodynamic (MHD) equations assuming incompressible
motion. It turns out, however, that there is no linear solu--(p)
tion of the ideal MHD equations close to k II

= k ' B =0.'
However, viscosity has been shown to remove the singulari-

ty at k[I =0, giving rise to three marginal modes for each m

value, ' as illustrated in Fig. 1.
It will now be shown that the combined effect of resistivi-

ty, viscosity, and thermal conductivity gives rise, for each m

value, to four states which, under some conditions, trigger
large-scale stationary convection in the plasma.

The equations describing the system are

where L is the length of the cylinder.
Assuming a nearly constant density, p = pp, and lineariz-

ing Eqs. (1) for perturbations of the form

f"'(r, t) =f"'(r) exp(ims+ikz+Ot)

the following equation for the perturbed velocity is ob-
tained:

[(0+p~p a )(0+gp a )+(m —nq) ](
= —'7p +2i(m —nq)((, eg —(ge, ) . (4)(i)

In this equation, the following definitions have been used:
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where Bp, BI, and pp are constants and a is the radius of the
cylinder. The rotational transform is constant and, there-
fore, the magnetic field is shearless:
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In these equations, q is the resistivity, y the adiabaticity
coefficient, Sp a constant heat source required to maintain

the equilibrium pressure profile, and p. j the perpendicular
part of the viscosity tensor. The other parts will be shown

to be unimportant.
The system consists of a cylindrical plasma column

bounded by conducting walls. The equilibrium is character-
ized by

y=0 p&pO

-(o)
B = BI —ee+ Boe,

a
(p) I

p =po-
4m a

(2)
FIG. 1. Growth rate 0 vs nq —m for p, & &0 and q=0.
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and

27K tl = 2p fl 0

lpga

~ ~ ~ ~ (7)

Assuming '7 v=0, Eq. (4) yields

(1) 2 2 (1)Vp +kcrp =0

whose solution, regular at r = 0, is

p =aJ (k(o' —1)'~ r)
with a a constant and

(8)

-az ai nq-m

2 ] m —nq I (10)(0+pp a )(0+qp a )+(m —nq)~
(1) (1)Throughout, it has been assumed that V xB = pB

Equation (4) shows that the assumption is valid provided
that P=ko.

The boundary conditions are

(,(r =a) =0
and

FIG. 2. Growth rate 0 vs nq —m for p. ~ & 0 and q & 0.

where A. =k a p, qq.
As pointed out above, the motion has been assumed in-

compressible. In general, Eqs. (1) for '7 v=0 can only be
satisfied if y = ~. Nevertheless, it is possible to show that,
for the particular states under consideration, i.e., cx1 and o, 2,
Eq. (lc) is also satisfied for V v =0 and y finite, provided
that

(,(r =a) =0 . (12)

From the components of Eq. (4) it follows that the boun-
dary conditions can only be satisfied for a- =1.

Thus, setting o' = 1 in Eq. (10) yields the following
dispersion relation:

and

3 dp
(0)

jXK =
4ka dr

q/~ = 8m/3

(18)

(19)
0 = ——,

'
(p, +i))k'a'

k4a4+ (p —q) +2~m —nq~ —(m —nq)
4

' 1/2

(13)

On the other hand, the boundary conditions, Eqs. (11)
and (12), and the recurrence relation among Bessel's func-
tions,

yield

xJ'(x) =xJ )(x) —mJ (x) (14)

Zm —1
2

(r =1+
ka (15)

where Z 1 is the value of the argument of J 1 at the
point where the function takes its first zero.

Therefore, the analysis is valid provided that
k a » Z 1 and the boundary conditions are satisfied
within the order of Z~ ~/k a~.

It is interesting to notice that, as expected, the dispersion
relation given by Eq. (13) reduces to the one obtained in
Refs. 1 and 2 for g=0. Moreover, resistivity reduces both
the range and the growth rate of the unstable spectrum (see
Fig. 2).

From Eq. (13) it follows that there are, for each m value,
four states which are both marginally stable, ReQ =0, and
stationary, ImQ =0. These states are denoted by n1, a2,—a~, —aq in Fig. (2) and are given by

respectively. Similar conditions hold for the states —cx1 and

The flow pattern corresponding to these states can be
determined in the usual way and is illustrated in Fig. 3 for
m =1.

The perturbed velocity on the center line of each tube can
be shown to be given by

vt = 0

v, = (8,/8, ) v, ,

v, = ( —1)"+'CkaJ (Z tr/a)

(20)

(21)

(22)

where C is a constant.
From the dispersion relation given by Eq. (13) it follows

that nq & m and, since o. =1, Eqs. (3) and (7) imply
(Bq/8, ) )) 1. Therefore, from Eq. (21) one concludes that
vy » v, which justifies the neglect of parallel viscosity.

In complete analogy with the demonstration given in Ref.
10 (Chaps. II and XI and Appendix I) and in Ref. 11, it is
possible to show that the conditions given by Eqs. (18) and
(19) can be written in terms of a critical Rayleigh number.

(16)

and

ay- 1+ (1—
A. ~) ' ~, (17) FIG. 3. Flow pattern of convective states for m - 1.
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For the state a1 the critical Rayleigh number becomes

ka
6m

and for the state a2

16m ka
Crit

3 m

(23)

(24)

nonlinear Eqs. (1) possess stationary convective solutions
which bifurcate from the equilibrium solution for
~ )~ 10, 11

crit

Finally, it is interesting to notice that the convective char-
acter of the modes a1 and —n1 is determined only by

viscosity and thermal conductivity while that of 0.2 and —n2

only by resistivity and thermal conductivity [see Eqs. (18)
and (19)].

A detailed account of this paper will be given elsewhere.
Equations (23) and (24) have been derived assuming
k4a4gp, i ( 1.

In general, the treatment forA =St„;t is a condition for
marginal stability. The linear theory does not say anything
about the behavior forA' )9t„;,. However, since the states
under consideration are not only marginally stable
(ReQ =0), but also stationary (ImQ =0), the complete
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