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Effect of dipole-dipole interactions on optical bistability
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The effect of resonant collisions resulting from (Coulomb) dipole-dipole interaction is examined on opti-
cal bistability in the mean-field approximation. A propagator formulation is employed. A generalization of
the standard equations of state for the absorptive-dispersive bistability is obtained. It is found that
Lorentz-Lorenz local-field correction produces a small but appreciable shift of the optical-phase-transition
point.

Optical bistability has received considerable attention in
recent years. ' In gases, the simple collisional aspects of
the problem can be treated by using the transverse and
longitudinal relaxation rates, ' which is adequate for foreign
gas and natural broadening. In this Brief Report we exam-
ine the modification of the standard results due to reso-
nance broadening and Lorentz-Lorenz local-field correction,
both of which arise from (Coulomb) dipole-dipole interac-
tion. ' The propagator formulation developed earlier will
be used for this purpose. (This paper will henceforth be re-
ferred to as I.) A simple approximation to the propagator
equations leads directly to the mean-field theory. An equa-
tion of state is obtained which is valid for absorptive as well
as dispersive bistability in a ring cavity. This equation is a
simple generalization of the standard results, and reduces to

I

these results if Lorentz-Lorenz correction is neglected. The
effect of Lorentz-Lorenz correction on the phase transition
is small, but not completely negligible (see Fig. 1).

We will consider the standard ring cavity' with the gas
contained in the region, 0 ~z ~ L (along z axis), and with
end mirrors of reflection coefficient R. The absorbing
atoms have a lower (upper) state la & (Ib & ). (In the
resonance broadening limit the gas consists of identical
atoms, but it could also include a buffer gas in the foreign
broadening case. ) Equations (2.5)-(2.9) of I can be easily
modified to take account of the boundary conditions for this
case. Combining Eqs. (2.5) and (2.9) of I and reducing the
result to one-dimensional propagation (along the z axis with
k = ke, ) inside the absorption cell, we obtain (t = I )
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where Ao is the Rabi frequency at resonance for the in-
cident field, d,b is the component of the dipole matrix ele-
rnent d,b, along k 3 = k3e „and T = 1 —R, is the transmis-
sion coefficient of the end mirrors. Note that (2) simply
represents the input boundary condition, at z = 0, where 0 is
the mistuning with the nearest cavity mode. @ is related to
the dielectric susceptibility [see (8)].

To solve (1) in the mean-field approximation, we first ob-
tain the appropriate approximation for I 0 from (3); evaluat-
ing the integral at the pole, k3 = (co/c) + i 0+ = k + i 0+, we
obtain

rp(k~, k2, ) =i(2 /3)kid, bl $(k, )h(k~ —k)A(k —k2)

(5)

Here we have averaged over the dipole orientations so that
I d, y I I d,ql /3. Now we use the large sample limit

(kL » 1) in (4) to obtain

A(k —k') =2@5(k'—k) =LSk k (6)

X(k) = , I&abl'y(k, ~); y=—«/T (8)

Here it is assumed that 8 ((1, and X denotes the dielectric
susceptibility of the gas. The above equation is a generali-
zation of the standard equation of state in the mean-field
theory. ' First let us show that (7) reduces to the standard
equation if Doppler effect and Lorentz-Lorenz correction
are neglected, and the standard collision model is used. In
this case,

Approximations (5) and (6) reduce (1) to an algebraic
equation with the following solution:

t'+ dk) Qo/JTA(k) = ) Q(k, k, co)=, (7)
27r
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reproduces the standard value for Lorentz-Lorenz correc-
tion; the motion and the spatial degeneracy can modify the
multiplicative numerical factor.

Neglecting the energy and momentum dependence of T'
Eqs. (2.10)-(2.14) of I lead to the following generalization
of (9):

—n (Ace —I'y~)
A~'+ y&+y~ II'/y

~~
+ nT'(4~ I yj—)

Then (7), (8), and (14) give the following generalization of
(10):

1

2C(1+X2+A2)
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@(co) = —n(Ace —I'yq)(hcu +yq +yqII /y~~)
(9)

ACU = OJ —
Q)zb

where y~~ (yq) is the longitudinal (transverse) relaxation
rate, n is the number density of atoms, and Ace is the de-
tuning. For absorptive bistability, Aced =0, 0 =0, and
(7)—(9) give

Y=X+2CX(1+X2) (10)

C = em
~
dob~'kL (3y~ T) (12)

Equation (10) is the well-known equation of state for ab-
sorptive bistability. '

In this paper we will consider only the binary collisions in
the impact limit. ' Therefore many complications such as
duration of collision effects, many-body effects, ' and the
effect of the field on the collision rates' will be neglected.
In this model, the resonance broadening arising from
resonant collisions contributes to yq in the usual manner.
However, the contribution of the collisions in which excita-
tion is transferred coherently from one excited atom to an
unexcited one, through (Coulomb) dipole-dipole interac-
tion, is taken into account in a generalized Lorentz-Lorenz
local-field correction. 4 This correction is determined by T',
the excitation transfer T-matrix element, according to (2.11)
of I. The static limit value

T'= —47r[d t, ( /9 (13)

Y

FIG. 1. Results predicted by the equation of state (15) are shown
for two limiting cases. Here C =20, 5=1, /=1. Curve a: Z=0

1(foreign gas and natural broadening limit); curve b: Z=
3

(reso-
nance broadening limit).

& = (&~)/yq, X =
I &l(y~~yq) '~', Z = nT, /yq (16)
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Equation (15) reduces to the standard results if Z 0. In
particular, it reduces to (10) if 5 =@=Z =0. It follows that
a similar equation can be obtained for a Fabry-Perot cavity
if slightly different definitions of X, Y, and C are used.
[See, e.g. , Eq. (3.12) of Ref. 9 for the appropriate result for
a Fabry-Perot cavity without Lorentz-Lorenz correction. ]

Equation (15) is applicable to resonance broadening,
foreign gas broadening, and natural broadening, if proper
contributions to y]] and yq are included. For example, let
yq=yt+y2, where y~ (y2) denote the resonance (foreign
gas and natural) broadening rates. According to the simple
collision model, y~ =m'n)d, q~ /32. Then it follows from
(13) and (16) that Z —4/3vr —3, in the extreme resonance

1

broadening limit (y2 « y~). On the other hand, Z 0 in
the foreign gas (and natural) broadening limit (y2 )) yt).
Therefore the effect of Lorentz-Lorenz correction is not ex-
pected to be very large. This effect is more clearly observ-
able in the (mixed) absorptive-dispersive case. Figure I
shows a comparison of the resonance broadening limit
(Z =

3 ) with the foreign gas ( and natural) broadening lim-

it (Z =0). The effect of Lorentz-Lorenz correction is ap-
preciable in the region of the optical phase transition.

The general formulation of I covers not only the mean
field, but also the fluctuations. For example, the fluores-
cence spectra are given by Eqs. (3.1)-(3.11) of I. These
equations can be easily solved in the same manner as (7).
The general formulation also contains the complete propaga-
tion, absorption, and scattering effects, and it can be
developed into a theory which goes beyond the mean-field
approximation. ' '
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