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Nuclear-spin relaxation due to translational diffusion
in a hexatic-8 and crystalline-B phase
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The general theory of nuclear-spin relaxation induced by translational self-diffusion in liquid crys-
tals, developed in previous papers, is applied to the crystalline-8 and hexatic-B phases of smectics by
taking into account their characteristic features concerning molecular positional ordering, the inter-
and intralayer molecular jumps, and the correlation in the layer stacking. The evaluated anisotropy
and dispersion of T& and T)~ are presented graphically for a variety of parameters. It is shown that
in most cases T)~, due to translational diffusion, has a characteristic anisotropy and dispersion while
T) is expected to be nearly isotropic and with co -type dispersion at usual NMR frequencies. The re-
laxation study cannot discriminate between various types of the interlayer and intralayer correlations
occurring in the crystalline-8 and hexatic-B phases of the smectics except in the case when relative
layer motions are fast compared to the diffusion. The comparison of the theoretical relation and ex-
perimental data enables the determination of diffusion constant D& in the smectic-B phases while the
ratio D&/D)) could be determined only via precise study of the T)~ angular dependence. With the
application of the theory to available T, data of the smectic-B phase of N-[4-(n-dodecanoyl)
benzyhdene)-4'-aminoazobenzene (C,zBAA) and of the smectic-B, phase of terephthal-bis(4-n-
butylaniline) (TBBA), the corresponding D& are estimated.

I. INTRODUCTION

Nuclear-spin relaxation studies have considerably in-
creased the insight into the molecular dynamics of liquid-
crystalline phases. So far rather complete studies have
been devoted to the nematic phase' and smectic-A
phase, while nuclear magnetic relaxation phenomena in
the three-dimensional (3D) ordered smectic phases are far
less known. ' These phases recently attracted a lot of
interest as possible model systems where 2D melting pro-
cess' ' can be studied.

Smectic-8 phase is characterized by regularly stacked
layers in which molecules are arranged in a two-
dimensional hexagonal lattice with their long axes being
perpendicular to the plane of the layer (Fig. 1). X-ray
studies' ' have confirmed the existence of two kinds of
smectic-8 phases: the crystalline-8 phase, ' where in-
tralayer positional order of molecules has long range simi-
larly as in some tilted ordered phases, ' ' and hexatic-8
phase, "' where intralayer positional order has a short
range (only about 20 molecular diameters' ) while bond
orientations" retain the long-range order.

Smectic mesophases are strongly anisotropic systems
where interlayer interactions are weak. In the crystalline-
8 phase resulting interlayer correlations strongly depend
on the length of the aliphatic tails, ' preparation of the
sample, and the state of anealing. ' Layers can be
stacked' at random (no correlation), or with partial corre-
lation extending from zero to ten molecular lengths where
the layers are arranged in monolayers (A,A,A, . . . ), in bi-
layers (A,B,A,B, . . . ), in trilayers (A,B,C, . . . ), or in
more complicated structures. These systems have small
but nonzero elastic shear modulus C~. ' ' In the

hexatic-8 phase which exists only as an intermediate
mesophase (after a 2D melting) between crystalline-8 and
smectic-A phase, thermal fluctuations via uncorrelated
layer displacements completely smear out interlayer corre-
lations. ' Up to now there is no conclusive information
about these relative layer (sliding) motions and their rela-
tion to the interlayer correlations. Because of the aniso-
tropy of phenyl rings a local intralayer orientational order-
ing of the herringbone type' ' ' ' ' develops in both
phases. The correlation length of this ordering is limited
by the positional correlation length, while its dynamics is
determined by molecular rotations around their long axes.
These hindered rotations with six energetically equivalent
positions are relatively fast ( —10" sec ') (Ref. 23) and
partially correlated due to the relative positions of the
phenil rings of the neighboring molecules' in the herring-
bone structure.

The orientational fluctuations of long molecular axes
have a characteristic frequency —10' sec ' (Ref. 23) but
much smaller amplitudes than in the high-temperature
smectic phases. "Head-to-tail" reorientations of 180
around the short molecular axes are very slow ( —10
sec ').

In spite of the high positional order of the molecules in
the ordered smectic phases there are fast local motions
with large amplitudes (&2 A) (Ref. 17) and molecular
translational diffusion which is a slow jump process
( —10 sec ') as in solids but with much weaker dynami-
cal correlations. Diffusion constants have been deter-
mined by direct NMR measurements only close to the
smectic-8 —smectic-A transition ' and by quasielastic
neutron scattering and tracer method. Their values are
of the order 10 "—10 ' m /sec with small anisotropy
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(Di ID~~ =2). The intralayer jump rate is thus about 100
times greater than the interlayer jump rate.

The investigations of molecular dynamics by nuclear
magnetic relaxation require a precise knowledge of contri-
butions of different types of molecular motion to the mag-
netic relaxation rate. In our first paper, hereafter called
I, we described the general theory of the longitudinal spin
relaxation due to translational self-diffusion in thermotro-
pic liquid crystals and applied it to the nematic phase. It
was shown that Torrey's approach for classical liquids is
a fairly good approximation for T~ frequency dependence
in nematic phases. In our second paper, hereafter called
II, we applied the theory to the smectic-A phase, where the
isotropic Torrey's approach cannot be used.

In this paper we present —on the basis of the previous
works (I and II)—the calculation of the diffusion induced
magnetic spin relaxation rate in the smectic-8 phases. A
theoretical treatment for both crystalline-8 and hexatic
smectic-8 phase where different positional correlations are
taken into account, is j&resented in Sec. II. Nuinerical re-
sults for T] ' and T&& are presented graphically and dis-
cussed together with the available experimental data in the
Sec. III.

II. THEORY

A. Model and assumptions

In our treatment of the proton magnetic relaxation rate
caused by translational diffusion we neglect all details
which do not play an important role in this relaxation pro-
cess. Therefore, the following simplified model of the
srnectic-8 phase is adopted.

(i) Molecules are effectively represented by rigid
cylinders with length I and diameter d, having resonant
nuclei (protons with I= —, ) distributed along the long
molecular axis. The long molecular axes are assumed to
be perfectly oriented in the direction perpendicular to the
layer [the measured order parameter is close to 1 (Ref. 6)].
This model with motionally averaged shape and magnetic
interaction is justified because both local orientational
fluctuations of the long molecular axis and rotations
around it are fast while head-to-tail reorientations are
slow in the time scale which is determined by magnetic di-
polar interaction and self-diffusion jump rate. Similarly
fast fluctuations around equilibrium molecular positions
contribute to the nuclear magnetic relaxation only via in-
teraction averaging, so that molecular centers are taken to
be arranged in the two-dimensional hexagonal lattice with
the lattice constant equal to d (see Fig. 1). This assump-
tion is appropriate even for hexatic-8 phase as intralayer
positional correlation lengths are always long compared to
the range of the magnetic dipolar interactions.

(ii) Smectic layers are regularly stacked in a one-
dirnensional array with the lattice constant equal to the
length of the molecule l. As the possible interlayer order-
ing varies from zero to complete correlation we shall

13—16

make the calculation of T
&

for three possibilities: (a)
complete order with AAA. . . stacking, which would be
appropriate for the description of the crystalline-8 phase
with such stacking, (b) complete static disorder, which can
be applied for crystalline-8 or hexatic-B phase, and (c)
complete dynamic disorder fast in the time scale of the

jurnp diffusion (10 —10 Hz). This can be used in the case
of fast layer sliding in the hexatic-8 phase.

(iii) Translational diffusion of the molecules is
described —similarly as in the srnectic-A phase —by two
independent thermally activated jurnp motions:

(a) intralayer random jump process in the two-
dimensional hexagonal lattice where only six nearest lat-
tice points are accessible in one jump. The jump length
equals d. This motion depends only on the local structure,
so it is not affected by the transition from the crystalline-
8 to hexatic-8 phase because the intralayer correlation
length remains long compared to the jump length d.

(b) interlayer random jurnp process where a jurnp ter-
minates in one of the two adjacent layers. The possible la-
teral displacement to one of the nearest lattice points in
these adjacent layers depends on the relative position of
the layers (interlayer correlation). The jump length varies
between I and (I +d )'

The average time needed for one jurnp is, as in Torrey's
model, negligible compared to the average time interval
between two successive intralayer (~q) or interlayer (~~~)
jumps. Each molecule is taken to move independently.
Positional two-molecular correlations will be included
only via static pair correlations, ' while dynamical pair
correlations, which are usually taken into account in
solids, ' will be neglected. This is expected to be justified
because local positional motions in ordered srnectic phases
have much larger amplitudes' as in solids.

B. Nuclear magnetic relaxation

In our calculations of the relaxation rates T
&

' and T &&'

due to molecular self-diffusion in the smectic-8 phases we
further take into account that other molecular motions
have characteristic correlation times essentially different
from ~z and v~~. So the relaxation induced by self-
diffusion can be treated independently and is effected by
the rest of the molecular dynamics only via averaging ef-
fects. The relaxation process is single exponential and
described by the well-known relaxation rate

Ti ——, y fi I(I+1)[J—"'(co,A)+J' '(2co, b)]

in the laboratory frame, and by

T, = ,'y fi I(I+1)[J—' '(2~, ,&)+ IQJ'"( g)
+J' '(2', h)]

FIG. 1. Schematic presentation of the smectic-B structure.
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in the rotating frame. Here J'k'(r0, 6) are the spectral den-

sities of the spatial part of the dipolar interaction at fre-

quency co for the case when the angle between the magnet-

ic field and the normal to the smectic layers equals h.
J'"'(co,h) are related to the spectral densities J'"'(ro),
which stand for 6=0, through a simple relation. The
formal form of T j

' and T&&' given by Eqs. (1) and (2) can

be used either if translational self-diffusion rate is slow or
fast compared to the intermolecular dipolar coupling coD

( —10 Hz). In the first case, the intermolecular magnetic

interactions are not motionally averaged and a common

spin temperature of the layer is established in a time much

shorter than T&, which enables the use of the spin tem-

perature approximation. In the second case, intermolec-

ular dipolar interactions are averaged out. The relaxation

of each molecule should be treated separately as in usual

polyatomic liquids, but one obtains equations of the form
33

(1) and (2) again if three spin correlations are neglected.
It has ba.n shown in I that the diffusional part of the

spectral densities J' '(co) of the 3D liquid crystal can be

written as the following integral over the 3D q space:

J "'(co)=(n/16'') f Re[~)'( q )~op'(q)]g

tor S,( q, c0) which contains all information on the di
fusional motion of molecules will be described in the next
section.

It should be mentioned that the motional averaging of
the interlayer magnetic interactions due to the fast relative
layer sliding would result in a 2D integration instead of
3D in Eq. (3) as shown in the Appendix.

C. Dynamical structure factor S,( q, co)

This S,( q, co) is the space-time Fourier transform of the
one-particle dynamical autocorrelation function G, ( r, t)
Function G, ( r, t) represents, when multiplied by d r, the
probability that a molecule, which is initially at the origin,
is located in d r ar r after a time t. Following
Chandrasekhar's treatment adapted to the smectic sys-
tems (see II) one can in the NMR frequency range easily
find

27
S,( q, co)=

1+(cur )
q

XS,( q, ~/2)d q . (3)
with

In Eq. (3) n is the density of the resonant nuclei with spin
I. Functions

W~"'( q )= f F~"'( r )g( r )e' q 'd3r (4)

q 1 All(q)
7 + +

7J
II

(g)

and

~',"'( q )=f F' I( r )go( r )e''"d r

are Fourier transforms of the spatial part of the dipolar in-

teraction '

p —2(z —0) I& =0

[p'+( +g)']'" p, k=+2

where AJ and A
II

are Fourier transforms of the molecular
distribution after a single jump in the perpendicular or
parallel direction, respectively. They depend on the details
of the diffusion process. Because intralayer positional
correlations are in both hexatic- and crystalline-8 phases
much longer than a jump length we have assumed in our
model the same intralayer jump process for cases (a)—(c)
of interlayer correlation. Taking into account the hexago-
nal structure and representing the vector q with cylindri-
cal coordinates qJ, y, qII one gets

weighted by g( r ) (static pair correlation function) or with
go( r ) (short-range part of the static pair correlation func-
tion), respectively. The coordinates p, z, P are cylindrical
coordinates of the vector connecting centers of two rnole-
cules, which carry the ith and jth interacting spins. g' is
the difference between the distances g; and gj. which mea-
sure the relative positions of the ith and jth spin in the
corresponding molecules (Fig. 2). The average indicated
by the subscript g is performed with the distribution
W(g), which is the convolution of two uniform effective
distributions of the resonant nuclei along the molecular
axis. This distribution will be specified by a parameter a
which stands for the distance of the closest approach of
two nuclei belonging to two adjacent layers (Fig. 2). W(g)
is given in detail in I and II. The dynamical structure fac-

FIG. 2. Schematic presentation of two rnolecules with nota-
tions used in the text.
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]
3 2'

AJ( q )= —, g cos qjd cos p —m
m=1 3

On the other hand, the interlayer correlation length is

much shorter so that we must treat All for each type of
the interlayer correlation separately as follows.

(a) Completely ordered layer packing. Here a molecule

can jump to one of the two adjacent layers and takes place
on one of the seven nearest possible positions in each layer.
The resulting Fourier transform is given by

(a) Completely ordered layer stacking (A,A, A, . . . ):

gJ(p )5(z), ~z
~

(I
g(r)=1X

2[~3d 5( p )+gg( p )] g 5(z —ml),
m=+1

(14)

iz
/

&I .

(b) Complete static disorder of the layer stacking (un-

correlated layer positions):

A
II q ) = c '

qll I )[1+6A,( q )] . (10)

g, (p )5(z), ~z
~

&I

g( r )=I)( +
5(z —m), ~z

~

&l
m=+1

(15)

(b) Complete static disorder of the layer stacking. In

this case possible molecular positions in each adjacent

layer which is accessible with one interlayer jurnp lay ap-

proximately within a circle having a radius d. So one

finds

II( q )= cos(qlll)J, (q,d)/(q, d) .

Here J1 is the Bessel function of first order.
(c) Complete dynamic disorder of the layer stacking.

Here the layer sliding is assumed to be faster than in-

tralayer translational diffusion, so the correlation is lost
when a molecule jumps to the adjacent layer. Therefore,
the relaxation rate depends only on the decay of the in-

tralayer correlations what can be formally described by
A

ll
——0 (see the Appendix).

The average times between random jumps in the direc-
tion parallel to the molecular director (rll) and perpendic-
ular to the molecular director (rq) are related to the mac-
roscopic diffusion coefficients through

with

g~( p )=v 3d~+5( p —p,.), (16)

where the sum runs over six nearest neighbors. The local
part of the static pair correlation function is the same in

both cases:

0, z=0, p(dgo(r)= .
1, ~z

~

&I andz=O, p&d.
(17)

(c) Dynamical disorder of the layer stacking: Due to
the dynamical disorder of the layer positions there is no
positional correlation between molecules belonging to the
different layers. The interlayer contribution to the mag-
netic interaction is therefore averaged out. This is formal-

ly taken into account by the vanishing of g( r ) for r out-
side the layer. Therefore,

g( r ) =16(z)g&( p ),
while the local part is given by

DJ d /(4g~ )

Dll ——I /(2&ll),

(12)

(13)

d

1, p)d.

where Dz and Dll stand for the eigenvalues of the dif-
fusion tensor in the perfectly oriented smectic-B phase.

D. Static pair correlation functions

Using our simplified models of the smectic-B phases we
construct static pair correlation function in such a way
that the regular stacking of the layers, two-dimensional
hexagonal lattice within the layers, and interlayer correla-
tions are described.

E. Relaxation rates T] ' and T~~'

In order to obtain the relaxation rates T1
' and T/p'

Fourier transforms of dipolar interaction, M o('( q ) and
M ~

'( q ), defined by Eqs. (4)—(6), should be evaluated ac-
cording to the different forms of g and go.

In the case of static layer packing where go is given by
(17), the evaluation of function M 0~'( q ) is performed in
the same way as in nematics and described in detail in I.
The result for cases (a) and (b) is given by

—2

W ~'( q )=2'�"e' ~ 2 &'/3
z 2 [qlldKk ~(qlld)Jk(qjd)+q dJk, (qjd)Kk(qlld))+ d

Jk(q~d)

1/3 qll+ql gyd

(20)

where three lines of each column correspond to k=0, 1, and 2, respectively, Jk are Bessel functions, Ek are modified
Bessel functions, while functions Wk can be written in the following form:
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P'& ———, cos[q~~(l —g)]
1 d

I—
r

l d
W2 ————, sin[q~~(l —g')] I—

3

+ 3qlld

d
1—

—
q~~d Ci[q~~ (1—g')]

(21)

A3 4 cos[q//(1 g)]
d

4 '3
——,

'
q~~d —,

'
cos[q~~(1 —4)]

dp.
( 2+(2)5/2

d —2(1—0)
d(g —1)

d2

with Ci as the integral cosine.
In the case of dynamical disorder due to fast layer sliding [case (c)] P I&~( q ) depends only on q~ and cannot be

evaluated in a closed analytical form. It can be expressed by

p2 2/2
00

Wag'( q, )=25ri e'"~ J J3, (pq, ) pg (22)

P
In the evaluation of P ~"'( q ) three different static pair correlation functions [Eqs. (14), (15), and (18)] are taken into

account:
(a) completely ordered layer stacking,

1

iqlll -iglll —
iql) l

Wt '( q )=fg '( q3)+~3!d2 —2 0 + +(1+()' (1—g)' [d'+(1—g)']'"

d —2(1+()

[d2 (1+()2]5/2
i 2+km/3 gld cos{q —2+m/3)3

m=1
(23)

(b) disordered stacking,

l coshgq3 i sinhgq3

W~ '( q ) =f~
'( qz) 4' —,

' e—'"~q3le '
cos(q~~l) i sinhgq~ + sin(q~~l) cosh('qz

coshgqz i sinhgq3

(24)

3

g e '2 " /3 exp[iq j d cos(q 25rm /3) ]—.
m=1

(c) dynamically disordered layer stacking,

~
g

'( q )=f g"'( q ),
where the common part f~

'( q ) is given by

d2 2/2

( d 2 +(2 )
5/2

(25)

(26)

and

—1T1 ——a~qP1

—1T ip ——
4 av&Pip,

(27)

(28)

where

a= —,y A n/d (29)

measures the strength of the intermolecular dipolar in-
teractions. The dependences of functions P1 and Pip on
characteristic parameters are discussed in the next section
for all three types of correlation.

To obtain finally the relaxation rates T1 ' and T&p in-
tegration over q space and averaging over g have been per-
formed numerically. Introducing dimensionless functions
P~(cor&, D3 /D~~, l/d, a/d, d) and P~&(e3r3, e33r3,D3 /D[~,
1/d, a/d, h) one can write

III. RESULTS AND DISCUSSION

The functions P1p and P1 have been numerically
evaluated for all three types of the interlayer correlations
(a)—(c) in the frequency range cord=0 to e3rj =40 for a
number of different values of Dz /Dl l, a, co1, and 4. As ~z
is usually of the order 10 sec the above frequency range
covers typical proton NMR frequencies co between 1 and
300 MHz and frequencies coi for T1p measurements be-
tween 30 and 300 kHz.

In our calculations a uniform distribution of spins along
the molecular axis has been assumed. The quantity a (see
Fig. 2) measures the distance of closest approach between
two nuclei belonging to two neighboring molecules lying
in two adjacent layers. This distribution was proved in II
to present a good approximation. Figure 3 shows for
crystalline-B and hexatic B—cases (a) and (c)—the depen-
dence of P1 on the distance a for 6=0 and 90'. Starting
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C)

1.0

08—

0. 2

tion (a) and (b), is negligible, smaller than a few percent,
even at low frequencies. Therefore, studying the behavior
of the T

&
and T» one cannot make any conclusions about

the degree of the interlayer correlation in the crystalline-8
and hexatic-8 phases, and about 2D melting transition.
On the other hand, a kind of the hexatic-8 phase (c) where
relative layer sliding would be fast compared to the in-
tralayer diffusion, would be relatively easy detected via ap-
preciably different dispersion of J'"'(co). In the high-
frequency region co~& ) 10 the spectral densities can be well
described by

a/d

FIG. 3. Plot of the function P& vs a /d for cases (a) and (c).

J(k)(H) =C(IC)

S 7y

where

(30)

from a =I, what corresponds to a case where all resonant
spins are in the center of the molecule, the relaxation rates
decrease with decreasing a until for a=d, P~ becomes
nearly constant. In case (a) and 6&0'P~ begins to in-
crease for a/d =0.2 because of the increasing interlayer
interaction. One can conclude that for a smectic-8 phase
where a =2 A the value of P& is rather unsensitive to the
precise choice of a.

In our further detailed investigation of the frequency
dependences of functions P~ and P» we choose the fol-
lowing molecular parameters: I /d = 5 and a /d =0.5.
Figure 4 presents frequency dependences of the spectral
densities J' '(co), J"'(co), and J' '(co) for our three types of
the interlayer correlation (a), (b), and (c) using D& /Dl

l

——2.
It is important to note that the difference between spectral
densities belonging to the two kinds of the static correla-

10

C' '=0. 140, C'"=0.044, C' '=0.325,

for cases (a) and (b), while

C' '=0.0546, C'"=0.0050, C' '=0.346

for case (c). Here constants C' ' do not depend on param-
eters d, I, a, and Dz /Dll as far as I &&d, d &a, and
Di /Dll ) 1

The dispersion of P j at 5=90' for smectic-8 phases in
cases (a) and (c) is compared to the dispersion of P& for
the smectic-A phase and isotropic phase in Fig. 5 where
the rates are plotted versus (co7g)' . Both smectic phases
have D& /Dll ——2 and I/d =5. In the case of the isotropic
liquids the diameter of spherical molecules is taken to be
equal to our d and ~;„=vz is used.

The dispersions of P& and P» for 6=0',90' and a po-
lycrystalline sample are presented for cases (a) and (c) in
Figs. 6 and 7, respectively. The effect of the ratio D& /Dll
on the dispersion of P& for 6=0' and 90' in cases (a) and
(c) is shown in Fig. 8. Inspecting these diagrams the fol-
lowing conclusions can be drawn.

(1) The dispersion of T& in the crystalline-8 and
hexatic-8 phase is similar to the dispersion of the
smectic-A phase as long as the relative layer motion is not
too fast. If in a hexatic-8 phase these motions were fast
compared to the translational diffusion, the relaxation rate
would be appreciably reduced and would have approxi-
mately Lorentzian shape in the whole frequency region.

0, 5

I

8
8

0.2

0.05 0.1 0.5

~4)T ~

FIG. 4. Dispersion of the spectral densities J' '(co), J"'(co),
and J' '(co) for different types of layer packing: (a) complete
correlation (solid curve), (b) static disorder (dashed curve), and
(c) dynamic disorder (dotted curve).

0.5 1.0 1.5 2. 0 2.5

FIG. 5. Dispersion of P& for oriented (4=90 ) smectic-8
phases (a), (b), and (c), smectic-A phase, and isotropic liquid
(Torrey, Ref. 29).
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the two different molecules. So, instead of a, the effective
strength of intermolecular dipolar interactions
a,ff——a(d/d, ff) must be used in Eqs. (27) and (28). The
effective distance d,ff can be determined from the low-
frequency dispersion (co~& (1)of the relaxation rate.

In the following we are going to compare our theoreti-
cal results with T~ dispersion measured by Kruger and
co-workers ' in the smectic-B phase of the N [4 (n--
dodecanoyl)benzylidene]-4'-aminoazobenzene (C &2BAA)
and to dispersion determined by Blinc et al. in the
smectic-B, phase of the terephthal-bis-(4-n-butylaniline)
(TBBA). In both cases the rough analysis of the T& based
on Torrey's theory ' ' clearly showed that translational
diffusion is the main relaxational mechanism in the MHz
region.

In Fig. 12 it is shown how T& dispersion in C&2BAA
at 104.3'C can be explained by a sum of a self-diffusion
induced relaxation rate (T~ )D and a frequency-
independent contribution ( T

& )~, possibly due to
local molecular reorientations. The best fit of the theoreti-
cal curve to the experimental data is obtained for
7 J

—1.3 X 10 sec, d, ff
——6.9 A, and ( T~

'
)z ——0.66 sec

Here we have additionally used the known data: I/d =5,
n =0.05 A, and D&-D~~. The fitted value d, ff

——6.9 A
significantly differs from the lattice constant d=5.03 A
(Ref. 21) indicating that there are uncorrelated fast molec-
ular motions with large amplitude ()2 A). That is in
agreement with the x-ray studies of some ordered smectic
phases. ' Using Eq. (12), rz ——1.3)& 10 sec, and the jump
distance d=5.03 A, we get D, =0.46&(10 " m /sec,
which agrees with Kruger's value (D ) =0.67&& 10
m /sec. Unfortunately, there are no T~& data available so
that D~

~

cannot be determined.
In Fig. 13 it is shown how T~ dispersion in the smectic-

B, phase of the TBBA at 130'C can be similarly explained
as in the case of C»BAA with the use of the theory
developed in this paper. Here the same d, ff

——6.9 A was
used as in the previous case as it cannot be determined by
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' in the crystalline-B
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the high-frequency T] data themselves. The best fit is ob-

tained with ~z ——0.47)&10 sec and (T~ ')~ ——0.32 sec
if I/d=5 and n=0. 05 A . Using the lattice constant
d =5. 17 A (Ref. 17) for the jump length we find

Dz ——1.4&(10 ' m /sec which is consistent with the pre-
vious evaluation ' of (D).

IV. CONCLUSIONS

In this paper the theory of the intermolecular longitudi-
nal spin relaxation due to molecular self-diffusion in the
crystalline-B and hexatic-B phases is treated. With the use
of the general theory for the diffusion-induced spin relaxa-

tion developed in I the effect of 3D ordering of these
liquid crystalline systems has been taken into account.
Translational diffusion is described by two independent
random jump motions, one in the 2D hexagonal lattice
and another between the regularly stacked layers.

Numerically evaluated results for T&
' and T&z' show

that at usual NMR frequencies T&
' due to the transla-

tional diffusion in smectic-8 phases is expected to be prac-
tically isotropic with co type dispersion, while T&z is ex-

pected to be anisotropic with characteristic cp —c &co] fre-

quency dependence. The comparison between the theoreti-
cal prediction for the self-diffusion induced part of T~
and experimental data could yield the value of the dif-
fusion constant D~ in the srnectic-8 phases which can
be—in view of its low value —hardly measured by direct
NMR and other methods. The investigations of T&& can

I

When the modulation of the interlayer magnetic in-

teractions due to relative translational motion of two adja-

cent srnectic layers is fast compared to the modulation in-

duced by translational diffusion, these interactions are

motionally averaged on the time scale important for the
diffusion part of the relaxation process. The part of the

dipolar coupling which is averaged out contributes only to
the magnetic spin relaxation caused by the layer sliding.
Thus the autocorrelation function of the spatial part of the

dipolar interactions (F'kT ( r (0))F'"'( r (t )) ) which is

used in the evaluation of T&
' due to the translational

self-diffusion is different from zero only when r (0) and

r (t) are both in the same layer. To describe the intr+layer
correlations only, a partial one-particle autocorrelation

function G~( r, t) is introduced

G, ( r, t)=6(z)e '~G, ( p, t), (A 1)

where Gq( p, t) describes the intralayer motion and r~~ is

the interlayer jump time. Neglecting two-particle dynami-
cal correlations we can introduce the joint probability

function P, ( r, r ', t ), which describes the relative
motion of the two particles, as

provide the value of Dz /D)~ and promise even an insight
into the interlayer correlations.

The theory is used to explain the proton relaxation and

to determine D& component of the self-diffusion tensor in

the srnectic-8 phase of C&2BAA. Further it is proposed
that the theory developed for smectic-8 phases can be ap-
plied to the smectic-8, phases as well. This is illustrated
in the case of TBBA.

APPENDIX

Pt( r, r ', t)=gT( p ') f GT( p, t)GT( pT+p p', t)5(z —)T5(zT+z —z')e ~'d3rT, (A2)

where gj ( p ) is given by Eq. (16) and GT( p, t) by

~ q J P —~l~ —~g( qg])«gd2Gg(p t)= e e d qz. (A3)

J' '(co)= f [F' '
( r )F "'( ')] Pt( r, r', t)

&(g( r )d r d r 'e'~'dt, (A4)

Starting with the expression and using Eqs. (A2) and (A3) we can write the spectral
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density in the following form:

J(k)( ) f [ ~(k)
( )~(k)( )]

4m.
XS,( qz, co/2)d qz, (A5)

where S, ( qt, co/2) is given by Eqs. (7)—(9) with A~~ =0.
Comparing this expression to Eq. (3) one can notice that
here M ~

' and M 0~' depend only on qz and that the in-

tegration is two dimensional.

'C. G. Wade, Ann. Rev. Phys. Chem. 28, 47 (1977).
W. Wolfel, Kernrelaxationsuntersuchungen der

Molekulbemegung im Flussigkristall PAA (Minerva Publika-

tion, Miinchen, 1978).
R. Blinc, M. Luzar, M. Vilfan, and M. Burgar, J. Chem. Phys.

63, 3445 (1975).
4R. Blinc, M. Vilfan, M. Luzar, J. Seliger, and V. Zagar, J.

Chem. Phys. 68, 303 (1978).
5Th. Mugele, V. Graf, W. Wolfel, and F. Noack, Z. Natur-

forsch. 35a, 924 (1980).
M. Vilfan, J. Seliger, V. Zagar, and R. Blinc, Phys. Lett. 79A,

186 (1980).
7G. J. Kruger, H. Spiesecke and R. Steenwinkel, J. Phys. 37,

123 (1976); G. J. Kruger, H. Spiesecke, R. Steenwinkel, and F.
Noack, Mol. Cryst. Liq. Cryst. 40, 103 (1977)~

R. Blinc, M. Luzar, M. Mali, R. Osredkar, J. Seliger, and M.
Vilfan, J. Phys. (Paris) Colloq. 37, C3-73 (1976).

R. Y. Dong, J. Mag. Res. 48, 280 (1982).
' M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
' B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121

(1978); D. R. Nelson and B. I. Halperin, Phys. Rev. 8 19,
2457 (1979).

' R. J. Birgeneau and J. D. Litster, J. Phys. (Paris) Lett. 39,
L399 (1978).

' A. J. Leadbetter, J. C. Frost, and M. A. Mazid, J. Phys.
(Paris) Lett. 40, 325 (1979).

' D. E. Moncton and R. Pindak, Phys. Rev. Lett. 43, 701
(1979).

'5R. Pindak, D. E. Moncton, J. C. Davey, and J. W. Goodby,
Phys. Rev. Lett. 46, 1135 (1981).

' A. M. Levelut, J. Doucet, and M. Lambert, J. Phys. (Paris) 35,
773 (1974).

' A. M. Levelut, F. Moussa, J. Doucet, J. J. Benettar, M. Lam-

bert, and B. Dorner, J. Phys. (Paris) 42, 1651 (1981).
M. Cagnon, J. F. Paliene, and G. Durand, Mol. Cryst. Liq.
Cryst. 82, 185 (1982).

' Y. Thiriet and P. Martinoty, J. Phys. (Paris) Lett. 43, 137
(1982).
S. Zumer, Phys. Rev. A 15, 378 (1977).
J. Doucet, J. Phys. (Paris) Lett. 40, 185 (1979).
R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 48, 1625 (1982)~

A. J. Dianoux and F. Volino, J. Phys. (Paris) 40, 181 (1979).
A. Buka, L. Bata, K. Pinter, and J. Szabon, Mol. Cryst. Liq.
Cryst. 72, 285 (1982).
G. J. Kruger, Phys. Rep. 82, 259 (1982) and references

therein.
J. A. Leadbetter, R. M. Richardson, and J. C. Frost, J. Phys.

(Paris) Colloq. 40, C3-125 (1979); R. M. Richardson, A. J.
Leadbetter, C. J. Carlie, and W. S. Howell, Mol. Phys. 35,
1697 (1978}.

A. V. Chadwick and M. Paykary, Mol. Phys. 39, 637 (1980).
S. Zumer and M. Vilfan, Phys. Rev. A 17, 424 (1978).
H. C. Torrey, Phys. Rev. 92, 962 (1953); H. A. Rhesing and

H. C. Torrey, 131, 1102 (1963); G. Held and F. Noack,
Proceedings of the 8th Congress Ampere, Nottingham, 1974
(Nottingham Ampere Cotnmittee, Nottingham, 1974), p. 461.
M. Vilfan and S. Zumer, Phys. Rev. A 21, 672 (1980).
D. Wolf, Spin-Temperature and Nuclear-Spin Relaxation in

Matter (Clarendon, Oxford, 1979).
32A. Abragam, The Principles ofNuclear Magnetism (Clarendon,

Oxford, 1962); M. Goldman, Spin Temperature and Nuclear

Magnetic Resonance in Solids (Clarendon, Oxford, 1970).
P. S. Hubbard, Phys. Rev. 128, 650 (1962).
S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)~

35C. A. Sholl, J. Phys. C 14, 447 (1981).


