
PHYSICAL REVIEW A VOLUME 28, NUMBER 5 NOVEMBER 1983

Field-induced chaos in the Toda lattice
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When the two-particle periodic Toda lattice is perturbed by a time-dependent external field, we

find that the external field creates resonance zones in the phase space of the Toda lattice. These res-

onance zones cause the energy of the lattice to undergo large fluctuations. Interaction of resonance

zones causes the motion of the Toda lattice to become "chaotic. " A theory is developed which de-

scribes the emergence of resonance zones for a small-amplitude applied field. Computer studies are

presented which verify this theory.

I. INTRODUCTION

In recent years, there has been a resurgence of interest
in the behavior of conservative anharmonic-oscillator sys-
tems. It was long thought that chaotic behavior in oscilla-
tor chains could be obtained simply by turning on a small
anharmonicity. Early computer work by Fermi, Pasta,
and Ulam' and by Henon and Heiles showed that this
was not true. The anharmonic systems studied by them
remained coherent at low energies. The system studied by
Henon and Heiles only began to exhibit globally chaotic
behavior above a certain critical energy. This is now fairly
well understood in terms of work by Kolmogorov,
Arnol'd, and Moser, who showed theoretically that for
large classes of anharmonic-oscillator systems the phase
space was largely filled by invariant tori at low energy,
thus ruling out globally chaotic behavior at low energy.
The work of Chirikov, Walker and Ford, and others has
shown that chaos in anharmonic-oscillator systems results
from the interaction and overlap of resonance zones in

phase space. These resonance zones have associated to
them, wildly oscillating separatrices which allow trajec-
tories to wander in an apparently random manner over
large regions of the energy surface.

The work of Toda illuminated another equally fas-
cinating aspect of the behavior of anharmonic-oscillator
systems. Toda found one particular anharmonic lattice
that is completely integrable and could sustain propaga-
tion of coherent energy pulses (solitons}. The solution of
equations of motion of many-particle Toda lattices has
been discussed by Flaschka, and by Kac and Van Moer-
beke. ' The Toda lattice does not become chaotic at any

energy. Computer simulation by Dancz and Rice" show

that soliton propagation can also occur in nonintegrable
anharmonic lattices, at least below the critical energy for
onset of chaos where all coherent behavior is wiped out.
Of great interest is the problem of how the small-scale
chaos present in nonintegrable anharmonic systems affects
soliton propagation.

As we shall show, an external field varying with time
can be used to probe the effect of internal chaos on the
propagation of nonlinear energy pulses (solitons). The
problem of how an anharmonic system responds to exter-
nal fields varying with time is important in other contexts
as well. For example, the problem of how energy, ab-

sorbed from an external field, is distributed in a molecule
and how the external field perturbs the internal dynamics
of the molecule is not well understood. It is known that
an external field varying with time can drive an otherwise
well behaved nonlinear system into chaos. Yet, in few

cases can the detailed mechanism be studied. As we shall

show, the Toda lattice provides an ideal system for explor-

ing the mechanism of field-induced chaos. In the absense
of a field the N-particle Toda lattice is integrable. The
solutions of the unperturbed system can be used to esti-

rnate where chaos will occur in the perturbed system. In
this paper, we shall show how an external field drives the
two-particle Toda lattice into chaos.

The two-particle Toda lattice reduces to a system of one
degree of freedom after the center-of-mass motion has
been removed. The methods we use in this paper can be
used to describe the perturbation of any system of one de-

gree of freedom. The Toda potential has the advantage
that it is completely stable and has a very simple spec-
trum. Thus, it enables us to see clearly the interplay be-
tween the external field and the spectral properties of the
unperturbed lattice.

We begin in Sec. II with a discussion of the properties
of the unperturbed two-body Toda lattice, and we intro-
duce a canonical transformation to a coordinate system in
which one of the variables for the unperturbed lattice is
cyclic. In Secs. III and IV we describe how an external
field introduces resonance zones into the phase space of
the perturbed system and give estimates for the size of
chaotic regions. Comparison of the theory with numerical
studies is given in Sec. V and, finally, in Sec. VI we make
some concluding remarks.

II. UNPERTURBED TODA LATTICE

Let us consider a two-particle Toda lattice with cyclic
boundary conditions (cf. Fig. 1i. The Hamiltonian for this

system can be written

~1 ~2 A &(Q2 Ql) A &(Q, —Q2i
2 2

H= + +—e +—e
Zm 2m B B B

(2.1)

where P; and Q; are the positions and coordinates, respec-

tively, of the ith particle, m is the mass of the particles,
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in[du(@, k) —k cn(4, k)] =k f sn(4, k)d4, (2.9)

where b, =K'/K, and K =K(k) and K'=K(1 —k2) are

complete elliptic integrals of the first kind. The spectrum
of p(t) and q(t) will consist of odd multiples of the fre-

quency 4~/2E. However, the amplitude associated with

each frequency will decrease roughly exponentially with

increasing n It .is easy to show that the variables (J,4) are
canonical. Since k) 0, the canonical variable J can only
take on values

FIG. 1. Toda oscillator with applied field.

/J i)2
1/2

—=Jmin . (2.10)

2

H =~+—(e ~~+e~~ —2)
m B

The equations of motion for this system are given by

p= — =A(es —e s )
~ 'BH

Bq

and

(2.2)

(2.3a)

and A and B are constants which fix the scale of the po-
tential.

It is convenient to make a canonical transformation to
relative and center-of-mass coordinates. We let

=P)+P2, Q, , ~ =(Q, +Q2)/2, p =(Pt —Pp}/2, and

q =(Q~ —Q2). Then if we assume that P, =—0, the
Hamiltonian takes the form

Thus J can take on positive or negative values, however,
condition (2.10} divides the (J,4} phase space into two
disconnected parts. If we start with positive J we can nev-

er reach the region with negative J.
In Fig. 2, we show a plot of the (p, q) phase-space trajec-

tory of the unperturbed Toda lattice for A =0.15, B=3.1,
and m =11.68&&10 in atomic units. (A and B were ob-

tained by matching the Toda potential at low energy to
that of the oxygen molecule. m is 40 times the mass of
the oxygen atom. ) The energy of the lattice is E=0.302
and J=491. For the above values of A, B, and m (the only

04

()P Nl
(2.3b)

2k
sn(4, k)

(1—k )'i (2.4)

One can show without too much difficulty that the rela-
tive momentum p(t) and relative position q(t) evolve in
time according to the equations

1/2

p(E)=
mA

8

o.a
O

Q.

UJ

0

UJ
IX

-0.2—

(a)

and

2 dn(4, k) —k cn(tP, k)

( I k2}t~2q(t)= —In (2.5)

-0.4
-2 0

RELATIVE Q

where sn, dn, and cn are Jacobi elliptic functions, and

4(t) = + tPo [4o=@(0)]2Jt
mp

The modulus k is defined as

J —4moA /B
k =

J2 (2.6)

In Eq. (2.6), mp ——4m/B and J is related to the total en-

ergy through the relation

I.4-

l.2-

I 0—
4J
D
)-0.8-
Q

0.6-

(b)

J 4A

mp B
(2.7) 0.4—

sin[(2n + I )@rr/2K]
sn(N, k) =

ICk „z sinh[(2n +1)btr/2]

and

(2.8)

The time series for p(t) and q(t) is periodic but is com-
posed of an infinite number of Fourier components. This
is easily seen if we note that

0.2—

0
0 0.05

A
0.1

I

O. I5
( IO )

I

0.2 0.25

F&G. &. (a) (p, q) phase-space trajectory and (b) spectrum of
the unperturbed Toda lattice for A =0.15, B=3.1, and
m =11.68&(10'.
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ones we will consider in this paper) J;„=306. In Fig.
2(b), we show the spectrum of the relative momentum at
this same energy. We see that at this energy we are very
near the harmonic limit of the oscillator, because most en-

ergy lies in a single-frequency mode of oscillation. A
sketch of the (J,4) phase space is shown in Fig. 3. When
the energy of the oscillator is constant, the (p, q) phase plot
is an ellipse centered at the origin, and J is a straight line
(J is constant).

We can now use these new canonical variables to obtain
conditions under which an external field can induce large
energy fluctuations and chaos in the Toda lattice.

III. PRIMARY RESONANCES
IN THE PERTURBED TODA LATTICE

Then we can write the Hamiltonian in the form

(3.2)

J2H=
mp

4A +e g g g„(J)cos —lQ,
n 4~ —lQ

l=1,—1 n=1
(odd)

(3.3)

Let us apply an external force to each mass of the lat-
tice in such a way that the center-of-mass momentum is
zero (cf. Fig. 1). The Hamiltonian can be written

2

H= + (e —~+e & 2)+—eq cosQ, , (3.1)
m B

where e is the amplitude and Q, =coot +5 (No is the angu-
lar frequency, and 5 is the phase of the applied field; in
our strobe plots 5=m/2). In terms of the canonical vari-
ables (J,4) the Hamiltonian becomes

J A 2e dn(4, k) —k cn(4, k)—4—+ — cosQ, ln
mp B B 1 —k

FIG. 3. Sketch of the unperturbed J,4 phase space. Unphys-
ical zone —J;„&J&J;„divides the phase space into two
disconnected parts. For J&J;„ the phase trajectories (solid
lines) all move in the direction of increasing 4 while for J &J;„
they move in the direction of decreasing 4.

The magnitude of g„(J) decreases roughly exponentially
with increasing n.

The terins in Eq. (3.3) involving angle variations of the
form

num.
lQ

2E(J)

nm.
(3.5)

To see this let us focus on the region of the phase space
near J=J„' and let us make a time-dependent canonical
transformation to a time-dependent coordinate system
(P,g) and locate the zero value of P at J =J„&J„'. This
transformation can be accomplished by means of the
time-dependent generating function

2K(J„)
F(J,f, t)= —(J—J„)(f+lQ, ) . (3.6)

n~

create resonance regions in the phase space for values of
J=J„' where

The sum over n involves only odd integers. The index I
only takes values + l. (Note that we have written E and b,

as functions of J rather than k to emphasize their depen-
dence on J.} The function g„(J}may be obtained by the
use of Eqs. (2.26) and (2.27). We find

Then

gF 2K(J„)P= — =(J—J„)
df "

nn

gF 2&(J. )4= — =(g+lQ, }
BJ ' no.

(3.7)

(3.&)

B . mI(
'

g„(J)=— —n sinh n (3.4) and the new Hamiltonian becomes

BFH'=H+
at

'2
no.P

2E(J, )

mp

4~ p
" nmPPcoo+eg g—g„J„+ cos

(odd)

n VC(J„)
(t(+ IQ, ) —I'Q, , (3.9)

nE(J)

where n is odd.
Let us now restrict ourselves to very small values of P. Then we can write the Hamiltonian in the form

J„n~PJ„n2+p2H'=
mp mp+(Jfg ) 4mpEC (J )

4A n' n'I
Pcoo+eg g g„(J„—)cos —P+ —I' Q,B n n

(odd)

(3.10)
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where we have neglected terms of higher order in the Tay-
lor series. The equations of motion for P and P take the
form

3-

P=— =eg g —g, (J, )
B(t t „, n

"c

n' n'E
Xsin —l(+ —I 0,

n n

and

2 2BH nm (,)
n vrP

BP mpK(J„) "
2mpK2(J„)

(3.1 1)

(3.12)

02 04 06 08

From Eq. (3.11) we see that for small values of the prod-
uct eg„(J„) changes in the value of P will be small.
Neglecting the second term in Eq. (3.12), we see that for
values of J„&J„' the direction of flow of P(t) will be oppo-
site to that of g(t) for J„)J„'. Thus the surface J„=J„'
separates flow of opposite direction along the P direction,
and we expect the region about J„=J„' to be strongly dis-
torted.

The distortion of phase space at J„=J„' can also be
viewed in another way. If we integrate the equations of
motion then, for small eg„(J„),we find

FIG. 4. Plot of J„' vs coo for n = 1, 3, 5, 7, and 9 for A =0.15,
8=3.1, and m =11.68)&10 .

zero and P(t) diverges indicating strong distortion of the
phase space. This region of strong distortion is called the
resonance zone.

The actual allowed values of J„' are found by solving

Eq. (3.5) for J„'. This must be done numerically. Note
that J„' is independent of e but depends on cop for small e.
The nth resonance zone first appears at J=J;„and at a
frequency cop ——co;„where(n)

lt(t)=,
,
(J„—J„')t+

mpK(J„)
(3.13) n 'IT min

Emp K(J;„) (3.15)

and

P(t)= eg„(J„)cosset(t)
+ o ~ ~

mpK(J„)

(3.14)

Thus when J„-J„', the denominator in Eq. (3.14) goes to

Thus the resonance zones appear at J;„in equally spaced
frequency intervals. A plot of J„' versus cop for n =1—9 is
given in Fig. 4 for A =0.15, 8=3.1, and m = 11.68 &(10 .

Let us now study the flow about J=J„'. If we put
J„=J„' in Eq. (3.10), we see that the term linear in P can-
cels and we find

H"=H'— 4A

mp 8
n2~2P2z, +eg„(J„')cos(l()+eg„(J„')cos(g+2Q,)

4mpK (J„')

I

+Eg g g„(J„')cos —l(+
I n', n

n'Qn

n'E —E' (3.16)

where we have introduced a new Hamiltonian H" with a
new zero point of energy.

In choosing J„=J„', we have focused on a strongly dis-
torted region of the phase space, a resonance zone. To es-
timate the width of the resonance zone, let us neglect non-
resonant interactions, i.e., the third snd fourth terms in
(3.16). The Hamiltonian is then approximated by

p2H"= +eg„(J„')cosP,
2I (3.17)

P,„=+[2Ie
i
g„(J„')

~
(1+cosl(,„)]' (3.19)

I

with moment of inertia I. The angle 1( denotes angular
displacement of the pendulum from its stable equilibrium
position. The pendulum can undergo oscillations and ro-
tation. As shown in Fig. 5, the line separating the two
kinds of motion is called the separatrix. On the separatrix
the motion must stop at its unstable equilibrium point,
P=m. Thus the equation for the trajectory on the separa-
trix is given by

where

2mpK (J„')I=
n 2 (3.18) (3.20)

From Eq. (3.19) the half-width of the resonance zone is

hP,'„"'=2[Is
i
g„(J„')

i
]' '

We will discuss this approximation below. The Hamil-
tonian {3.17) is just the Hamiltonian for s free pendulum

or in terms of variable J [cf. (3.7)] it is

M,'„"'=[2mpe
i
g„(J„')

~

]'i (3.21)
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P
a We can use Eq. (3.26) to find the half-width of the sto-

chastic layer in terms of the deviation 6P from P,„. We
can write, in general,

2

Itp +5, = Itp—coslI .2 P 2

2I
(3.27)

FIG. 5. Sketch of pendulum phase space. Solid line is the
separatrix. Outside the separatrix we have rotation inside oscil-
lation. Dark circles are unstable fixed points. Crosses are stable
fixed points. Dotted and solid lines correspond to possible tra-
jectories of the pendulum.

P,„5P (3.28)

The angle P=m locates the hyperbolic fixed point on the
separatrix. There P,„=Oand we find

The angle /=0 locates the point on the separatrix where
P,„ is largest, that is, P,„=+2Ico. If we write P =P,„+6P
and set /=0, we find

From this result, we see that the width of the resonance
zones decreases roughly exponentially with increasing n.
The width of all resonance zones increases with v E.

While the shape of the n =1 resonance zone will be
described by the pendulum Hamiltonian, the separatrix as-
sociated with this zone will contain a stochastic layer in-
duced primarily by the n = 1 nonresonant interaction. The
width of this stochastic layer may be estimated with the
use of methods discussed by Chirikov. Let us consider
the first three terms in the Hamiltonian (3.16) and focus
on n=1,

(&P)
S 2I

(3.29}

For later reference it is useful to compute 5P for a particu-
lar example. Let us consider frequency fp

happ/2v—

—r
=5&&10 . Then Ji-1370 and top/co=3. 5e [we have
used gi(Ji)=0.665 to obtain tp]. When @=0.8 and /=0
we have P,„=1334and 6P=20 When e. =0 8and . g=m
we have P,„=O and 5P=231. Thus the stochastic layer
near the hyperbolic fixed point is wider than elsewhere
along the separatrix.

H"=H p e
I g i—(Ji }

I
cos(y+»i » (3.22) IV. SECONDARY RESONANCE ZONES

(Ref. 12)
where Hp is the pendulum Hamiltonian

p2
Hp= e

I gi(Ji }
I
coslI .

2I
(3.23)

An orbit which lies on the separatrix of Hamiltonian
Hp has energy Hp Ep e

I gi I

=——Itp ——. The change in en-

ergy of an orbit on the separatrix (during one-half period
of oscillation of the pendulum} due to the perturbation in
Eq. (3.22} is given by

In Sec. III we derived conditions for the appearance of
resonance zones in the phase space of the perturbed Toda
lattice. However, we have not yet exhausted all possibili-
ties. There are many more to be found. Additional reso-
nance zones appear if we attempt to find the cyclic vari-
ables (J„@i)associated with the full perturbed Hamiltoni-
an (3.3). To see this, let us introduce the generating func-
tion

dep
dip —— dt

dt P (t) si[ng (t)+2cppt +rp]

(3.24)

Fp(J),4)=J(@+eGp(J),&,t),
where

mpg„( Ji )sin[a„(J, )4—IQ, ]
Gp(Ji 4, t}=

mpcppl —2Ji x„(Ji )
(odd j

(4.1)

—7TCOO/N ~~p-32m. Icope sin~p . (3.25)

where P,„(t) and g,„(t) describe the variation of momen-
tum and angle at the separatrix. [We obtain explicit ex-
pressions for P,„(t) and f,„(t) by solving the equations of
motion obtained from (3.23) for energy Hp ——e

I gi I
.]

Equation (3.24) may be written in terms of Melnikov-
Arnold integrals as described in Ref. 6. We find aF, aG,

4) —— ——4+@
BJ) BJ)

(4.3)

(4.2)

where «„(Ji)=nit/2K(Ji). The new canonical variables
(Ji,@i) are given in terms of the old variables (J,&i),
through the relations

(3.26)

Equation (3.25) may be used to set up the whisker map
which describes motion in the neighborhood of the separa-
trix. The whisker map can then be used to obtain the
half-width 6, of the stochastic layer at the separatrix.
is given by

3
64mIcop

e

and

BFp QGp=
ae

= '+' ae

J2
0) ——

mp

4A BFp
+ev(J, 4)+

at

The transformed Hamiltonian H
&

is

(4.4)

(4.5)
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where

V(J,4)= g ggn(J)COS[K„(J)4 —lQ, ] .
l n

(odd)

If we write H~ explicitly in terms of the new canonical
variables (J~,4~), by means of a Taylor-series expansion,
we find

2

+e' g g g„'„'(J,)cos[K' n n(J, )e, L,—', Q, +r„' „' (J, )]
nl, n2 ll, l2, 13

(odd)

1

Hi ——

mo

I I I I

g
' ' '

&, (J&)cos[K„' „' „(J,)4~ Lt'—t, 't, Q, +r '
„' '„.&, ]+0(& ),

1' 2' 3 I1,12,13,I 1,l2

(4.7)

where

13
K„, „{J) )=K„(J,)+13K„(J,),
ll, l2

Knl'n2'n3=Kn +li Kn +l2Kn

(4.8a)

(4.8b)

g. ', .', (Ji)= I[f.', , ', (Ji)]'+[h.',
, ', (Ji)]']'" (410)

I1,12
and the phase angle ~„„(Ji ) is given by

l3
Lll l2 =l~+l2l3

I 1,l2 i+ ) 2+l2l3 .

(4.9a)

(4.9b)

I1,l2

l&, l ~n~, n2 (JI )

r„', „',(J))=tan (4.11)

1 2The interaction g„„(J&) is given by In Eqs. (4.10) and (4.11),

mpg„(J~ )g„(J~ )K„{J~)K„(J g„,(J~ )gn, (J )&„,(J] )

+
[mpcppl] 2J, K„,(J—])][mppspl2 2J, K„,(J—, )] mpcpp12 —2J&K„,(J&)

(4.12)

and

mpg„(J) )g„(J,)K„,(J, )K„(J, )

2[m pcppI z 2J1Kn {J i )]—
In Eqs. {4.12) and (4.13) we have used the notation

gn =dgn /d J and ~„=d~„/d J. The interaction
ll, l2, 13

ph~s~ angle r ' ' '
I, have a structur

nl, n2, n3', l l nl n2 n3 1

I1,l2 ll
similar to g„„and r„„but are more complicated. [For

ls 1' 2

a special set of values of the indices g
' ' '

I, is given in
nl, n2 n3, l

1

Eq. (4.25).] The new canonical variables (J, , 4~) are well

defined as long as J& does not satisfy the odd-integer reso-
nance condition given in Eq. (3.5) (To be more exact, as
long as Eg„(J& )/[mpcopl —2J]K (J, )] remains small. )

An analysis of the Hamiltonian H
&

similar to that given
in Sec. III for the Hamiltonian H yields a new resonance
condition on the variables J&. We find

I, + i~13 m pep pK (J ( )
JC

n )+13n2
(4.14)

Fi ——J24')+e Gi(J2, C'i, t), (4.16a)

where

Now instead of odd integer resonance zones we have the
possibility of "fractional" or secondary resonance zones
appearing. The width of these new zones is given by

AJ,„=[2mpc'
~
g„', „',(Jt)

~

]'~ (4.15)

These new zones have a width proportional to e rather
than v e as was the case for the odd-integer resonance
zones introduced in Sec. III.

We can repeat this type of transformation. For exam-
ple, we can transform to new canonical variables (J2,+2)
via a generating function

Gi(J2 4'& t)=
nl, n2 I I I
(odd 3

I I

mpg„' „' (J)sin[K„„(J2)4& Lt 'I Q, +r„' „]—
ll ll

moLI, , I,~o—2J2&, , „,(J2)
(4.16b)

With this transformation we remove the contribution of order e in Eq. (4.7) and we are left with a leading contribution
of order e . This gives a new Hamiltonian,

2

H2 —— — +e g g g g t, (J2)cos[Kn, „,n, (J2)@2 LI, t, I, Q, +r t, ]+O(E )—. (4.17)
nl, n2, n3 1, 2, 3

(odd)
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The new canonical variables (Jq, @i) are well defined as

long as we avoid resonance zones given by Eqs. (3.5) and

(4.14). Analysis of the Hamiltonian (4.17) yields a new

resonance condition

l, + 1', 12+

lilac

mpcppK(J2)
Jz ——

n ~+1&nz+lznq

The width of these new zones is given by

(4.18)

(4.19)

MpcppK (J')
JC

7l77
(4.20)

g can now take on all rational fractional values.
The resonance zones located by Eq. (4.20) are observ-

able. The canonical transformations (4.2), and (4.16), etc.
provide a means of solving the equations of motion of the

system to any order in e. To see this, let us stop after the
second transformation and approximate the Hamiltonian

Hz by

J2
Hz-

mp

4A

B
(4.21)

Then Jz ——const and 42 ——(2Jz/mp)t+52. The variables

Jz and N& may be expressed

(4.22)

and

(4.23)

We can, in principle, solve Eq. (4.23) for J, in terms of Ji
and t. Thus

We may continue this type of transformation to eliminate

terms of higher order' in e. Each new set of canonical
variables (J;,4;) introduces new resonance conditions.

Indeed, resonance zones introduced will be dense in the

phase space. It is useful to introduce a general resonance

condition

will have a width small compared to that of zone g=1 as

long as e is small. When @=1 it can become comparable
in size to zone g=1. To see this, let us locate and com-

pute the widths of these two zones for fp ——5.0X10
From Eqs. (3.5) and (3.21), we find that zone q = 1 is lo-

cated at J'= 1370 in J space with a half-width
bJ'"=804e. From Eqs. (4.14) and (4.15) we find that the
zone g =2 is located at J I

——462 in J~ space and
EJi"——67'. It is easy to see that higher-order even-integer
resonance zones will decrease rapidly in width because of
the exponential decrease of g„. As in Sec. IV, we can
compute the width of the stochastic layer associated with

zone g =2 due to nonresonant perturbations, but it is com-

pletely negligible (5P-10 ' P,„when e= 1).
Resonance condition (4.18) predicts that a resonance

zone will occur for g= —,
'

as well as for values of g & 1.
The zone i) = —, will first appear at fp +0.7X——10 and

should become fairly important when e-1. The zone

occurs for certain combinations of n; and l;. The

leading terms are given by n& ——nz ——ng ——1, li ——lz ——l )
——1,

and lz ——lz ———1; and n& ——3, nz ——n& ——1, I& ——1, and

12=1~=l', =li ———1. The effective interaction for these

two special cases can be written

2
I

&
12 l3 Pg1f 2gll 3 n 2 113

I

8(mpcoplz —2J'K„)(mpNplg —2J K )

X [[g„g„«„,(»—„,) ]

+[2g„«„+g„(«„)] ]' . (4.25)

It is useful to locate and compute the width of the zone
for fp ——1.0X10 . We find Jq ——639 in J2 space

and AJz"-63' . Thus, for e-1, this zone can have sig-

nificant effect on the motion of the Toda lattice.
Higher-order resonance conditions will allow more reso-

nance zones to form for fp&2.0X10 . However, they

should become less important, at least for e(1. The main

reason is that the identity «„„(J)—=0 prohibits any higher-

order interaction from depending only on products of g &
~

It must always contain many factors of g„ for n &1 or
derivatives of g„, both of which are small, and decrease

exponentially with increasing n.

@i f(e,Jii, t), —— (4.24)

V. NUMERICAL RESULTS
where f (e,J2, t) is some function of e, Jq, and t. If we now

combine Eqs. (4.4), (4.22), and (4.24) we see that J will

contain resonance denominators which go to zero when

condition (4.14) is satisfied. These denominators occur in

terms of order e . Resonance denominators which go to
zero when Eq. (4.18) is satisfied first appear in terms of
order e in the perturbation expansion of J.

Let us now locate some of these new resonance zones.
The resonance condition (4.14) does not allow resonance
zones to appear below fp

——2.0X 10 as was the case with

condition (3.5). However, it does allow even integer zones
above fp=2. 0X10 . The zone with the largest width
will occur for n~ ——3, nz ——1, I& ——1, and lz ——l& ———1, that
is, il =2 [cf. Eqs. (4.14) and (4.20)]. It will first appear at
frequency fp+4. 0X10 . From Eq. (4.15) we fmd that it

Let us now consider numerical evidence of the reso-

nance zones described in Secs. III and IV. In Fig. 6, we

give a phase diagram of chaotic regions of the (p, q) phase
space obtained from strobe plots of the (p, q) phase space.
The phase plot shows regions of "chaos" as a function of
frequency and amplitude of the applied field. To obtain
this phase diagram we always started with the oscillator at
an energy E=0.302 or Jp ——491, and then by solving the
equations of motion for the perturbed system we plotted p
versus q at time intervals I/fp. Figure 6 shows values of
E and fp for which the strobe plots appeared to contain
chaos. We have distinguished between points of obvious
chaos (the crosses), points of marginal chaos (the trian-

gles), and points of no chaos (the dots). Points which con-
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tain neither crosses, triangles, nor points have not been ex-
plored. We have found that the theory developed in previ-
ous sections gives us a good qualitative idea of where the
resonances lie, at least for small eg„(J„').

Let us examine some of the strobe plots which gave rise
to the phase diagram in Fig. 6. We note that the reso-
nance zone g=1 should emerge at Jz &

——306 at a fre-
quency of fp ——2.0X10 (cf. Fig. 4) and for E small it
should give the strongest perturbation in the phase space.
As we increase the frequency it moves to larger values of
Jz i. We are observing the phase space at J=491. Thus
we do not expect to observe the first resonance until a fre-
quency fp )2X 10 . As e increases, it will widen and we
expect to see evidence of it at lower frequency the larger e
is.

8(a)—8(e)]. At a=0.01, the system remains at constant en-

ergy. There appears to be no resonance zone nearby to af-
fect its behavior. When @=0.1 the system trajectory is
pulled to higher energies. This is due to zone n=1 which
lies at higher energy but is beginning to broaden and affect

1.5

I.O-

0.5-

Let us now examine the strobe plots. At a=0.01 we do
not see evidence of the first resonance zone at
fp ——2X10 or fp=3X10 . However, we do see it at
a=0.1. In Fig. 7, we give the strobe plots for a=0.1 and

fp 1X10 4, ——2X10 4, 3X10 4, and 4X10 4. At

fp ——1X10 [Fig. 7(a)] we see no evidence of the reso-
nance zone. The strobe plot is an ellipse centered at the
origin, indicating that J =const and the energy of the os-
cillator is roughly constant (see the discussion at the end
of Sec. II). At fp ——2X10 [Fig. 7(b)] we see the reso-
nance zone passing through. The ellipse is distorted and
displaced. The value of J for the oscillator varies between
J=327 and 493, so the top of the resonance zone has en-
tered the region we are exploring (see Fig. 5). At
fp ——3 X 10 [Fig. 7(c)] we are inside the resonance zone.
J now varies between J=493 and 800, and the oscillator
experiences large regular variations in energy. Finally, at
fp=4X10 [Fig. 7(d)] the resonance zone r)=1 has
passed through but is still influencing, slightly, the phase
space. Thus, for small e the theory does predict correctly
the frequency of emergence of the resonance zones.

Let us next examine the strobe plots at fp ——5X 10 for
field amplitudes @=0.01, 0.1, 0.5, 0.7, and 0.8 [cf. Figs.
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FIG. 6. Phase diagram of regions of field-induced chaos (as a
function of amplitude e, and frequency coo, of the applied field).
Crosses show regions of obvious chaos. Triangles show regions
of marginal chaos. Stars show regions for which chaos lies be-
tween marginal and obvious. Dots show regions with no chaos.
No strobe plots were obtained for unmarked regions.
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FIG. 7. Passage of the first resonance zone at a=0.1 as fre-
quency is varied; (a) fp= 1 X 10, (b) fp

——2X 10, (c)
fp=3X10 ', (d) fp=4X10
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the region at J=490. As e increases this effect becomes
stronger until at a=0.8 the n=1 resonance zone actually
enters the region of phase space which we are exploring
[cf. Fig. 8(e)]. Here we see the shape of the separatrix for
n=1 resonance zone. It is useful to introduce a quantity
A which we define [see Eq. (3.9)] as

relative momentum

p= —(J —4mpp)'/ sn(4, k),

and relative position

2 dn(4, k}—k cn(4, k)
(1 k2)1/2J A cop J—4—+Egi c'os(K i@ to—pt ~/2)—

mp B K)
at times t =2Nnicop where N =(0, 1,2, . . . ). Thus the

(5.1) quasienergy is always given by

where K&
——m/2E. If we neglect variations of g~ and K)

with J (these are in fact small), 4 is a constant of the
motion, dA /dt—:0, and is sometimes called the quasien-
ergy. At frequency fp ——5 X 10 the resonance zone n = 1

is located at J;=1370. For this value of J&, K~ ——0.54 and

gi ——0.665. In the strobe plot (Fig. 8) we are plotting the

J A—4 +Eg)cos KI4-
mp B 2

cop J
(5.2}

for the strobe plot in Fig. 8(e) and is approximately a con-
stant of the motion. The allowed values of J and 4 are
constrained by Eq. (5.2). That is why we see rather well-

(c)

0—
Ns
I

O

G.

4j

LLI
K

0.5-

0—

(b)

Ns
I

O

Q -I-
4I

4J
K

0

-0.5-

-0.$
I

0
RELATIVE Q

I

0.5
"2

-2 0
RELATIVE Q

2,

(e)
I.6

l.4-

le
I
O

4.

2- l.2-
I

O
I.O-

LLI

0—
4k

UJ
O

+0.8-
O.

0.6-

0 4

0
RKLATIVE Q

6 O. I 0.2
(IO')

I

0.5 0.4

A sequence of strobe plots showing the emergence of resonance zones at f0= 5 && 10 ~ as e increases; (a) a=0 01, (b) @=0.1,
(c) a=0 5, (d) a=0.7, (e) a=0.8, (f) spectrum of relative momentum time series for e=0.8 and fp =5 X 10
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defined curves in the strobe plots. Let us now write Eq.
(5.2) in the form

1.0

(J —Jt)
mo

—& Igi Icos Klc — E lgi I
.

2
(5.3) 0.5-

If we choose
~ gi ~

=1.04, Eq. (5.3} reproduces the curve
in Fig. 9(e) to a very good approximation. The fact that
we must use an experimental value of g& rather than its
value for J=Jt is reasonable since in Eq. (5.2) the value of
gi varies over the range of values of J traced out by the
curve in Fig. 8(e). The hyperbolic fixed point in Fig. 9(e}
(located at p = —592 and q=0} occurs for 4=X. We see
that there is a relatively broad stochastic layer surround-

ing this point. The width of this layer can be estimated
from Eq. (5.34). We find that bp, the half-width of the
stochastic layer at the hyperbolic fixed point, is hp=198.
Note that hp denotes the width of the stochastic region of
the momentum of the Toda oscillator. This is in good
agreement with what we observe in Fig. 8(e).

In Fig. 8(fl we give the spectrum of the time series for
the relative momentum of the oscillator at a=0.8 and

fo=5X10 . Here we see that the spectrum, while dom-

inated by a few well-defined spectral lines, has begun to
broaden. Thus the motion of the oscillator is still predom-
inantly quasiperiodic but it also contains small-scale chaos
as is evident in the strobe plot [Fig. 8(e)]. It is interesting
to show the strobe plot and spectrum for a=5.0 and

fo=9X 10 (see Fig. 9). Here the strobe plot indicates
chaotic behavior on a larger scale and the markedly
broadened spectrum reflects this fact.

The most dramatic evidence for the existence of the
secondary resonance zones can be found by examining
strobe plots of the Toda lattice at frequency fo 1X10——
where no odd-integer resonance zones exist. In Fig. 10, we

give a sequence of strobe plots for frequency f=1 X 10
and a=0.01, 0.5, 0.7, 0.9, 1.1, 1.3, 2.0, 3.0, 4.0, 5.0, and
10.0 [the case a=0.1 is given in Fig. 7(a)]. We see that for
@=0.01 and 0.1 [Figs. 10(a) and 7(a)] there is no resonance
zone evident in the strobe plots. However, at E=O 5[Fig. .
10(b)] a resonance zone is approaching from below. At
@=0.7 [Fig. 10(c)] we appear to be inside a resonance
zone. At a=0.9 [Fig. 10(d)] we appear to be at the center
of a higher-order resonance zone. At a=1.1, 1.2, and 1.3
[Figs. 10(e)—10(g)] the higher-order resonance zone is
becoming wider as e increases or we may be seeing a se-

quence of zones going past. At a=3.0 [Fig. 10(h)] we find
a narrow instability zone with small-scale random fluctua-
tions. At E=4.0 [Fig. 10(i)] we are at the center of a new

resonance zone and at @=5.0 and 10.0 [Figs. 10(j) and

10(k)] the phase space is chaotic with large-scale fluctua-
tions in the energy of the oscillator.

The appearance of resonance zones as e is varied, hold-

ing fo fixed, is consistent with the theory of secondary
resonances. The strobe plots show the behavior of the
Toda oscillator in terms of physical variables (p, q) or (via
an e-independent transformation) the variables (J,4). The
secondary resonance zones are located in (J;,4;) space
which is related to (J,N) via an e-dependent canonical
transformation. Thus not only do we expect to see reso-
nance effects for fo ——1.0X10 due to secondary reso-
nance zones but also when viewed in (p, q) space we expect
to see them change as e is changed.
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FIG. 9. (a) strobe plot at e=5.0 and f0=9X10; (b) the

spectrum of the relative momentum of the oscillator at this am-

plitude and frequency.

Let us now focus on Fig. 10(c}. This plot appears to be
an g = —,

' resonance zone. The quasienergy associated with

this zone is
r

J2 0—Vcos ~4—3coot ——— J,
P7l O 2 K

(5.4)

where V is an effective interaction. For fo ——1X10
Jz——640. For small e, Jz-J'. The relative momentum
corresponding to this critical value is p, =870. This value
lies within the figure in the strobe plot. The trajectory in
the strobe plot lies inside the separatrix for the q = —,

' reso-

nance zone. The separatrix itself will have a shape similar
to that in Fig. 8(e). Its hyperbolic fixed point will be at
about p =870 and q= 0.

VI. CONCLUDING REMARKS

Our purpose in studying the effect of a dynamic exter-
nal field on the two-particle Toda lattice was to show the
mechanism by which a dynamic field can disrupt even the
simplest, most stable, nonlinear system. In the presence of
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a dynamic field a network of resonance zones is induced in
the system. The specific form this network takes is deter-
mined by the spectrum of the unperturbed system. These
resonance zones introduce large fluctuations in the energy
of the oscillator. As we have seen, the external field also
introduces chaos in the Toda lattice in the sense that the
energy of the lattice begins to wander in an apparently
random manner and the spectrum becomes broadened.
For low-amplitude fields, the theory we have developed
gives a good qualitative idea of the behavior of the phase
space.

The spectrum of the Toda potential consists of equally
spaced lines, whereas the spectra of potentials such as the

Lennard-Jones or Morse potentials become more closely
spaced at higher frequencies. Thus, the Lennard-Jones
and Morse potentials should be more susceptible to the in-
duction of chaos in an external field than is the Toda po-
tential.
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