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Classical dilute relativistic plasmas in equilibrium. II. Thei-trtodynamic functions
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With the use of the two-particle distribution function calculated in a preceding paper, some ther-

modynamic functions (energy, free energy, pressure, specific heat, compressibility, and the speed of
sound) are calculated for a two-component, classical, dilute, and slightly relativistic plasma up to or-

der kT/mc . The results are discussed and compared with previous work of other authors.

I. INTRODUCTION

In this paper II, we remain within the framework of
classical relativistic statistical mechanics given in Ref. 1.
Using the two-particle distribution function calculated in
Ref. 2 (we shall refer henceforth to Ref. 2 as paper I), we
find here the thermodynamic functions of a neutral,
moderately hot, dilute plasma, up to order kT/mc .

The main matter in dealing with systems of such a plas-
ma is that the interaction is a long-range one. This has, as
a consequence, that no thermodynamic limit exists a
priori. In fact, unless some sort of screening can be shown
to exist, a magnitude such as the macroscopic energy
grows with N faster than N, where N is the number of
particles of the system, and so the energy "per particle"
grows with N. This problem can be avoided in nonrela-
tivistic plasmas taking a system with vanishing total
charge. Nevertheless, it can be easily seen that terms like
N are present, in principle, when we consider the rela-
tivistic corrections to a Coulomb plasma, even in the case
of vanishing total charge. So, in order that the well-

known thermodynamics of a neutral Coulomb plasma-
the Debye-Huckel distribution function and so on—makes
sense, it must be assumed that the effective relativistic
correction to the Coulomb interaction is screened enough.
In this paper we shall prove that this assumption is con-
sistent by calculating the specific energy in the thermo-
dynamic limit for a moderately relativistic neutral plasma
and showing that this limit exists, i.e., the energy per par-
ticle is finite. In doing so, we shall use the two-body dis-

tribution function given in paper I.
In the framework of predictive relativistic mechanics,

let us consider the perturbative expansion for the elec-
tromagnetic energy H of N particles, in powers of the cou-

pling constant e (e standing for the typical charge of the
I

particles). This expansion has the form '

H(1, . . . , N)=+Ho(i)+QH&(i j)

+ g H, (~j,k)+. . . ,
i,j,k

where Ho(i} is the free-particle relativistic energy and

H, (i,j) stands for the e terms, Hz(i,j,k) for the e terms,
and so on. The expression for H~ (i,j ) can be found in Ref.
3. H2(i,j,k) and higher-order terms will not be needed
here.

As has been pointed out in Ref. 5, the perturbative ex-
pansion (1}can be assumed to be an expansion in the di-
mensionless parameter e~ ——e /mh where m is the typical
mass of the particles and h the mean impact parameter in
the collisions (we take c, the speed of light, equal to 1).
Then, since h is of the same order as the mean distance r
between particles, i.e., r =( V/N)'~ where Vis the volume
of the system, and we deal with the case of a dilute plas-
rna, we will see that it is sufficient to work to first order in

Then in Eq. (1) only two-particle interactions will be
taken into account. We can also remember that Eq. (1) is
not the usual v expansion (v stands for the typical velocity
of the particles): Actually each term may contain all
powers in v.

Another approximation that we make is the decoupling
of the relativistic Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy, used in Refs. 1 and 2. In
these references only two-body correlations are considered,
which means that we take the first term in an expansion
of the distribution functions in powers of the dilution pa-
rameter ed ——e /kTr (k is the Boltzmann constant and T
the absolute temperature). Thus the reduced S-body dis-
tribution function can be expanded in the form

F' '(1 S)=F'"(1) F"'(S) 1+ g G~»(i j)+ 6"'(i,j,k)+0 (Eg)
(i (j (k)=1

In the expansion (2), the R-particle correlation function
G'"' is of order e~ '. Then in a dilute plasma, we can
work with only two-particle correlations.

The two parameters e~ and e~ introduced here are relat-
ed by

E'p =GdkT/m (3)

If the plasma is slightly relativistic e=kT/m is another
small parameter of the same order as the mean-square
velocity {v').

We deal with a homogeneous plasma in equilibrium.
Then for the one-particle distribution function I'"', ap-
pearing in Eq. (2), we take the expression
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i

4irVKz( 'm
(4) Gii(1,2) = diQi 2 i (n vl}(n v2) vl v2

(1+n v )(1+n v )

I r
25 n.——are- ~" '~, (5c)

6' '(1,2) =Gc(1,2)+Gii(1,2), (sa)

peiei
Gc(1,2)=-

r
(5b)

where y=(1 —v )
'/ and Kz is the modified secand-

order Bessel function with argument p'm. As has been

pointed out in paper I, Eq. (4) is the relativistic Maxwelli-

an distribution functian except for the constant P' which

replaces here the Boltzmann factor P=1/kT. We shall

discuss this point in Secs. II and III.
On the other hand, the two-particle correlation function

G' '(i,j) has been calculated in paper I for a homogeneous
plasma in equilibrium. For a two-component plasma
whose particles have masses m ~

and mz and whose

charges have the same absolute value e, the results are

where

«=(4'irpp'e )'~ (p=N/Q

and

0(p'm, )
Q =iK

i (P'm, ) K~(P'm, )

where Eo and Eq are the modified zeroth- and second-
order Bessel functions, respectively. Here G~ and G~ are
the Debye-Huckel and the relativistic correlation functions
given in paper I. The constant ~ is the inverse Debye-
Hiickel screening distance (except for the change P~P')
and a the inverse relativistic one.

According to Eqs. (1) and (2} we can write for the exact
(i.e., to all orders in e) macroscopic energy of a dilute plas-
ma

E = y f d6i d6j d6k[HO(i)+Ho(j )+Ho(k)+H, (ij )+Hi(j, k)+H, (i,k)+Hq(i j,k)]
i,j,k

&(F' '(i)F'"(j)F'"(k)[1+G' '(i j )+G' '(j,k)+G' '(i, k)+G' '(i j,k)], (8)

where in an evident notation d i means d r;d u; and
u =yv. In the integrand of Eq. (8) we have retained terms

up to order e~ in the dilution parameter ed (remember that
e« =eed and that Hi is of order e«and Hi is of order e«)
Next we give some arguments to show why after integra-
tion these terms should be sufficient in order to calculate
the energy up to order e~ in the dilution parameter. Ac-
tually the Hz and G' ' terms will not need to be con-
sidered.

Let us consider the normalization condition

fF' '(1,2, 3)d 2d 3=F"'(1) .

In particular this implies according to Eq. (2) that

fF"'(2)G' '(1,2}d 2=0.

y f [H,(i)+Ho(j)+Ho(k}]F"'(i)F'"(j}
i,j,k

&&F"'(k)G' '(ij, k)d i d j d k=0. (12}

Actually, with 6' '(1,2) given by (Sa)—(Sc), we find that
(11) is only satisfied for a neutral plasma. There is no in-

consistence in this, since for a non-neutral plasma we have
no thermodynamic equilibrium and then the stationary
correlation function G' '(1,2) given by (Sa}—(Sc) loses all

its meaning.
According to this, we assume that the unknown three-

particle correlation function G' '(1,2, 3) will satisfy Eq.
(12), at least for a neutral plasma. Let us come back to
Eq. (8) giving the macroscopic energy of the plasma E
Taking into account Eqs. (11) and (12), we obtain

E =ED+a +b +c,

a =g fF'"(i)F'"(j)Hi(i j)d i dj,
I (J

b =g fF"'(i)F'"(j)Hi(i j)G~ '(ij )d i d jg fHo(i)F'3'(ij, k)d6j d k=EO, (10)

It can be seen that 6'i'(1, 2) given by (Sa)—(Sc) verifies
this identity in the thermodynamic limit. Fram Eq. (9) we where
readily obtain

(13)

(13')

where Eo is the energy of the plasma as if the interaction
was absent, but changing P to P'. When substituting in
Eq. (10) an expression like (2) for F' ' we obtain the identi-
ties

g f [Ho(i)+Ho(j ))F"'(i)F"'(j)G' '(i j)d i d j =0

(13")

c = g fF'"(i)F"'(j)F"'(k)Hq(i j,k)d i d j d k .
i &j&k

(13'")

In going from Eq. (8) to Eq. (13) we have neglected the
terms whose integrands go as Ed OI E'g, i.e., terms of the
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form H2G' ' and Hi G' ', on one hand, and H26' ', on the
other hand. We will say something about the order in Eg

of the integrals of these kinds of terms in a moment.
The integrals a and c are obviously of order ed and E'd,

respectively. However, the integral b is not of order E'd

which is the order of the term in the integrand H2G' '. In
order to see this, notice that Hi behaves like 1/r times a
function which does not depend on r (see Ref. 3 where the
expression for H~ can be found}. Then, let us substitute
(Sa)—(Sc} in the integral b and change the integration vari-

able r to the new variable Kr when evaluating the integral
which contains G~ and similarly from r to ar in the in-

tegral containing Gz. This produces an overall factor K

or a ', respectively, out of the integrals. Now, according
to (6), a can be written s=(2v ~/r)ed, i.e., it goes as

e& in the dilution parameter, and the same is true for a
[see Eq. (7)]. This means that b is, in fact, of order ed '.
So, we can neglect c in front of b, i.e., we calculate E up to
order ed and so we only retain a and b.

What about the order of the remaining integrals, i.e., in
short, terms H2G' ', HiG' ', and H2G' '? From the above

argument we see that the integral of H2G' ' will be of or-
der ed and so we can neglect it. As long as terms H& G' '

and H2G' ' are concerned we do not know the expression
of G' '. Nevertheless it seems natural to assume that its
contribution to the energy E will be of higher order than

eq (see also the general comments at the end of Sec. V).
Hitherto, we have not said how hot, i.e., how relativistic

our plasma is, and so we have been working with an arbi-

trary parameter e=k T/m. Henceforth we deal with

slightly relativistic plasmas. Then, in Sec. II we find the
macroscopic energy of a neutral dilute plasma to first or-
der in e. In Sec. III and in the same approximation, we
find the equation of state and we obtain the new
Boltzmann factor p' using the virial theorem.

Section IV is devoted to the study of two response func-
tions (compressibility and specific heat), from which the
stability of the plasma follows. The speed of sound is also
calculated.

Comparison with other works on relativistic plasmas
and the discussion of the results are done in Sec. V.

II. ENERGY UP TO ORDER e

For the sake of simplicity, let it be a two-component
plasma whose particles all have the same square charge e .

I

Also let us assume that the plasma is a neutral, dilute,
slightly relativistic one, which is homogeneous and in
equilibrium.

In this section we evaluate the energy of such a plasma
to first order in e. To this goal, we expand Hi(1, 2) in
powers of v, and so we have for the energy H(1,2) of any
two particles labeled 1 and 2, the following expression:

H(1 2) =Ho(1)+Ho(2)+Hc(1, 2)

+HD(1, 2)+O(es, u ),
where

(14)

Hp(i) =m;y;,
eie2

H, (1,2) =

(lsa)

(15b)

eie2 (r vi)(r v2)
HD(1, 2) = v 1 vp+

2T 2
(15c)

are the relativistic kinetic energy, the Coulomb interac-
tion, and the Darwin interaction. Here m;, e;, and v; are
the mass, the charge, and the velocity of particle i, while
r=—r~ —r2. For later convenience in (15a) we have con-
sidered the exact relativistic kinetic energy.

The one-particle distribution functions, corresponding
to the noncanonical variables x;, u;, have been given in
Eq. (4). As explained before, the modified Boltzmann fac-
tor comes from the presence of relativistic terms in the in-
teraction. In particular, the change from canonical coor-
dinates p;, q; (see Ref. 7) to the usual coordinates x;,m;u;
(which, as is well known, are not canonical for the case of
relativistic interaction) can change P to another parameter

P as is discussed in Ref. 1. Also, the interaction by itself
can give rise to a similar effect. The new parameter P'
will be some function of P, the density of the plasma
p=X/V, and mechanical parameters. In addition, P'
must become P when p~0 (free-gas case). In fact, we
shall see in Sec. III that p'/p= I+0(ed V) by using the
virial theorem [see Eq. (42)]. We must also remark that
the distribution function (4) is normalized with respect to
the variables r;, u;.

Up to order edu, the correlation function reads as

G' '(1,2) =Gc(1,2)+G2(1,2)+G4(1,2),
where Gc was defined in (Sb) and

p'eleq (r vi)(r vq) 1 (r vl)(r vz)
62(1,2) =

2
—V ' 2+ 3

2
—V]'V2

r ar T

1+ a T

(r vi)(r'vq) p'eleq
3 —v] v2 +2 T 22 Vl V2 —3

2a r T
(17a)

25 n ——are
T

(17b)



28 CLASSICAL DILUTE RELATIVISTIC PLASMAS IN. . . . II. 3033

are their v and v relativistic corrections, respectively.
Let us substitute H (1,2) and G' '(1,2} given by (14) and

(16), respectively, in Eq. (13). Then, it can be easily seen
that these terms in (13) which do not contain the terms

G2(1,2) or G4(1,2) in the integrand, once the integration is

performed, change the expansion in powers of v to an ex-

pansion for E powers of e, in such a manner that v be-

comes proportional to e. When terms G2(1,2) or G4(1,2)
are present, after integration, an overall a ' factor comes
out of the integral. Now, according to (7), a goes as e.
Then, those terms containing G2 or G4 are one order less

in e than the corresponding ones where they are absent.
In all, up to order Ed E, there are six terms that can

contribute to the energy,

f d 1 d 2[HO(1)+H11(2)]F"'(l)F"'(2), (18a)

f d 1 d 2HC(1, 2)F"'(l)F"'(2),

f d 1 d 2HC(1, 2)F"'(1)F"'(2)Gc(1,2), (18c)

fd 1 d 2HC(1, 2)F'"(l)F ' (2)[G2(1,2)+G4(1,2)],

(18b)

(18d)

f d 1 d 2HD(1, 2)F"'(l)F'"(2)[1+Gc(1,2)], (18e)

fd 1 d 2HD(1, 2)F'"(1)F'"(2)G2(1,2), (18f)

where the integrations must be extended to all the volume
of the system and to all possible velocities. At the end,
one must sum over all the particles in the plasma.

Now, we discuss each possible contribution. The term
(18a) is the relativistic energy of an ideal gas except for the
change P~P' and gives to the energy per particle the fol-

lowing contribution:

K2(p'm, ), K'2(p'm2)
=E./N= —,——2m) ——,m2p' ' K2(p'm )

' K2(p'm2)

3 15 1=M+,+, +O(e'),
2 ' 16 (p')2p

(19)

where we have used the expansion of the modified Bessel
functions for large argument. Here E'(x) means
dE(x)/dx and we have defined M =(m&+m2)/2 and

p =(mim2)/(mi+m2).
The term (18b) gives for any pair of particles 1 and 2

4~ R2V —'e e
2

(20)

where R is the radius of the spherical vessel where for the
moment we imagine that the plasma is contained. Actual-

ly, the integral (18b) depends on the form of the volume.
Nevertheless, this raises no difficulty, since because of the
neutrality of the plasma, the sum over all pairs of particles
of terms like (18b) gives no contribution to the macroscop-
ic energy.

Contribution (18c) gives' an energy per particle E~/N,

Ec/N= —&m.P'p'/ e3, (21)

which is the interaction energy of a nonrelativistic
Coulomb plasma.

The terms (18d) and (18e) give no contribution, because

by symmetry reasons the angular integrations over the ve-

locities vanish.

1 1
E2(ar11 )+

roa a ro
(22}

where Ei(roa) and E2(roa) are the "exponential integrals"
defined in Ref. 9. Now, both E] and E2 diverge when we

take the limit ra~0. However, we can use the expansions
of these functions given in Ref. 9 for small argument.
Doing this one can see that (22) becomes

e44~ 2

p'mim2 a
(23)

Summing over all the pairs of particles and expanding a
to the lowest order in e, we find a contribution to the ener-

gy per particle Ez /N,
1/2

3 1/2 1

(pi )
1/2

(24)Ez/N =—

Thus the energy per particle up to order @ed reads3/2

E/N =M+ 3 15

16(P') p
1/2

e

( pii )
1/22P

p~ }1/2 3

(25)

corresponding formally (i.e., except for the change p~p')
to the energy of an ideal relativistic gas (the three first
terms), the Coulomb correction, and the relativistic correc-
tion, respectively. Therefore we have found a finite value

for the specific energy of the plasma in the thermodynam-
ic limit, i.e., the thermodynamic limit exists, according to
our initial assumption (see the Introduction). Actually
this was to be expected since, as is pointed out in paper I,
the relativistic two-particle distribution function (17a),
which we use here, goes like 1/r for large values of r. On
the other hand, as we have discussed before, the corre-
sponding two-particle interaction relativistic energy
H](1,2) behaves like 1/r. Then, the integral giving the en-

ergy of a dilute plasma must converge for large values of

However, our result does not agree with that of Refs. 11
and 12. This point will be discussed in Sec. V.

III. PRESSURE AND VIRIAL THEOREM

In this section we find the equation of state of our di-

lute, slightly relativistic plasma, and we give the corrected
Boltzmann factor P' as a function of P, p, and mechanical
parameters.

To this goal, let us consider the partition function'

N

Z =const f gd x;d u;e (26)

The most difficult term to evaluate is (18f), since there

are divergent integrals in d r. This term can be calculat-

ed, introducing a cutoff in the lower limit of integration,

say, ro. However, we shall see that the result does not de-

pend on the cutoff. The four terms appearing in the right
side of (17a) give us the following contribution when we

integrate them with (15c):

1 (ele2) 1 1
y —1 4m ———Ei (aro )

p' mim2 a a
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If we define, as usual, the free-energy function by have
F= ( —I IP)lnZ, we see from (26) that

E E— 3—(P P—) V
a(PF) E(P, )a' = (27) N

= gm;[((I —v )' ) —((1—v )' ) ], (36)

Integrating Eq. (27) we obtain the free-energy function

PF= J E(P")dI3"+F (28)

where F does not depend on P. Then, we shall compute
the pressure by

aF
av (29)

taking into account that P' may depend on V.

First, the "ideal"-gas contribution to the pressure [term
(18a) for the energy] is

Pd= 1 aP' Ed(P} 1 aF'(V)
(30)

p av ~ p av

because E' (P) does not depend on V. We choose the in-
tegration constant F ( V) so that for p~O, we recover the
ideal-gas pressure. Therefore, aFO(V)la V= —p. Then,
for the Coulomb contribution, we have

P 3 3/ 1/2 3(13i)1/2( 1 i3iIi3)av&p u F
' 1/2

—2 — p'/ +O(e } .
(pi )1/2

(37)

Let us define now C—:P' —P. Then, Eq. (37) reads

mT ac kTc W~ / kTc
av M 3 M

' 1/2
2 n. 3/2 kT

E'd
3 2 p

kT
M

where the superscript zeros mean magnitudes or averages
in the ideal-gas case. Carrying out the one-body averages
appearing in the right-hand side and substituting the
above results, we arrive, after some tedious calculations, at
the following equation for P':

pF~ N , v ~——e —p'/ —(p'}3/2

and so

(3 l)
+O(e') . (38)

3 3/2(pi)3/2

3 P

+NM~ l, (p)/ ap'+ pp' av,

Pc=—

(/ti )
1/2

13F„= Nv2rre 3p'/2 "—
p

and

For the relativistic contribution we find

(32)

(33)

First, we see that in the nonrelativistic case [i.e., Eq. (38)
without the last term] the only solution of Eq. (38} fulfil-
ling the boundary condition C(p=O}=0 is C=0 as it
must be.

On the other hand, we see from (30) that terms of order
e in (aC/av)~ can contribute to the pressure and so we
must retain them in Eq. (38). Then we write

'2

C=C, (p,p) +C2(p,p) +O(e ) . (39)
kT kT
P P

7rPR
2

1/2
3/2 (p~ }1/2

3

pP

Substituting it in (38), we have the two following equa-
tions for the unknown functions C1 and C2.

VkT =0,ac,
1/2

7r+N—
2

1/2 I
3 P (pi) —1/2 aP

Pp av ~

N
E —3PV = y m; (( I —v, ) '/2) .

In order to evaluate P', consider the virial theorem'

(35)

VkT
ac
av, M'

2

3 2

' 1/2
3/2~
d M

(40b}

In order that this theorem be fullfilled, we must have the
plasma contained in a vessel (large enough since we take
the thermodynamic limit), in such a manner that the elec-
tromagnetic field vanishes at infinity. Furthermore, since
we work to first order in the product of the charges, we
are neglecting the electromagnetic radiation and so the
field will go to zero fast enough at infinity.

Let us consider Eq. (35), both in the case of our in-
teracting relativistic plasma and in the case of an ideal re-
lativistic one, and then let us subtract both equations. We

(41)

and therefore the "effective" temperature in the plasma

From (40a) we see that the only solution for C1 fulfilling
C1(p=O)=0 is C1 ——0. Actually, this was to be expected,
since if C1&0, there could be a zeroth-order contribution
in e to the pressure (30) coming from P'.

Then (40b) can be solved with the condition
C2(p=O) =0 given for C,

' 1/2

C= 4 m 3/2(kT)
3 2 Mp
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reads

T'= (kP')

4 vr
1 ——

3 2

]/2

+O(e')3/2 ( kT)
Mp

(42)

where we see that Cv &0.
The isothermal compressibility is

Kr = —V '(BV/BP)r . Then, we obtain

1 kT 1

Kp ——pkT 1 — gd 1+
2 v2 p

defined by

(47)

In the same approximation we can write
T'=T[1—2e a/3M+0(e )]. Written in this way this
result coincides formally with that obtained by Trubnikov
and Kosachev, (except for the sign of the correction), but
they have a very different relativistic screening constant a,
which makes their correction to T independent of the tem-
perature. We shall discuss their results later.

From (42) we see that the only e-order correction to the
pressure, due to the correction of P, comes from the first
term of (30), because corrections to other pressure terms
are of order ed or e at least.

Then the total pressure, including this correction, reads
as

Therefore, as long as ed is a small parameter (as we have

assumed) the stability of the plasma is ensured.
Now we evaluate the speed of sound in the plasma, W,

i.e., W = (BP/BD )& where D is the mass density

(D =Mp) and S is the entropy. After some manipula-

tions, using only thermodynamic properties, we find
'2

W= ——K1 1 ) T BP
(48)

M p p'Cv ~T p

Evaluating (BP/BT) from Eq. (43), and using (46) and

(47), we arrive at

P =kTp 1 —— gd 1+ 1 kT
3 W2p

(43)
kT 5 1T

W = 1 ———
M 3 2 p

v m 3yp 1 kT

IV. OTHER THERMODYNAMIC FUNCTIONS

In order to discuss the stability of the plasma, we shall
calculate the second derivatives of the free energy and we
shall check that they are always non-negative, as it must
be.

The specific heat is defined by Cv=1V '(BE/BT)v.
Then

Cv(T) =Cv(T)+Cv(T)+Cv(T),

where

(44)

Cv(T) =( —, + —", kT/p)k,
3 1/2

Cc(T) P k,2(kT)'"
' 1/2

Cv(T) = ——1 m. e p'
k

2 2 p(kT)'

(45a)

(45b)

(45c)

are the free, Coulomb, and relativistic contributions,
respectively. Then (44) can be written as

t

3 5kT ~m. 3gz 1 kT

(46)

which behaves correctly for 6d ol E going to zero.
Equation (43), again, disagrees with the result given by

Krizan and Havas" and with that of Trubnikov and
Kosachev. Concretely, instead of the term

[I+(I/v 2)kT/m] in (43), Krizan and Havas" get

[1+0(e )] while Trubnikov and Kosachev obtain

[1+O(e )]. In the first case the reason is that, as point-
ed out by the authors themselves, in Ref. 11 only short-

range correlations are considered. In the second one, ' the
authors start with a noncoherent Darwin Hamiltonian,
and therefore their results are meaningless. We shall dis-
cuss these points in more detail in Sec. V.

(49)

where we have retained only relevant terms, i.e., terms up
to order ed e into the square brackets.

V. CONCLUDING REMARKS

For all the thermodynamic functions that we have
found, we see that in the limit e=kT/m~0 we recover
the well-known Coulomb behavior, and in the limit where
the dilution parameter ed ~0, the ideal-gas thermodynam-
ics. In Ref. 12 Trubnikov and Kosachev, using the
Darwin Lagrangian, obtain a relativistic correction to the
pressure of a classical Coulomb plasma, of order e . Let
us look at this point in detail. In Ref. 12 (as well as in
Refs. 14—16), starting from the Darwin Lagrangian, the
authors calculate the canonical momenta in order to write
the Hamiltonian as a function of the canonical coordi-
nates. In doing this calculation they keep all powers in eI, .
Now it is clear from Refs. 3 and 4, that the expansion of
the canonical momenta in powers of e~ will involve two-

particle terms of order e~ and higher which do not come
from the Darwin Lagrangian. Such terms are of the same
order, even in the thermodynamic limit, as those con-
sidered in Refs. 12 and 14—16 when these authors extend
the expansion of the canonical momenta beyond order eI, .
Therefore, we think that their results are not correct (for
other criticisms on this point see Sec. IV in paper I).

In our opinion, when doing calculations in a system
governed by long-range interactions, as is the case of a
plasma, one must begin considering the (electromagnetic
in the case of a plasma) interaction to a given approxima-
tion in the velocities, in the e~ parameter used here or
another convenient parameter and then proceed systemati-
cally in the expansion in order not to neglect terms of the
same order as those considered. Now, in such long-range
systems, when N~m, it could happen that the small
correction terms in the basic interaction give terms in the
macroscopic quantities growing faster than N, which
would mean that our expansions are in fact macroscopi-
cally meaningless and the thermodynamic limit does not
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exist. If one does not know a priori which is the real situ-

ation in the system considered, one can assume for the
moment that the expansion used will be also valid when

N~ao (in which case some sort of screening must take
place in the system} and then verify that the results ob-

tained in this way are consistent with the previous as-

sumption, i.e., it must be found that the thermodynamic
limit exists and that the correction terms obtained for the
thermodynamic functions are actual corrections in the
sense that they are smaller than the leading terms.

Therefore, we think that the Jones and Pytte' ' criti-
cisms to Krizan and Havas, "' ' as well as those from
Trubnikov and Kosachev' ' are groundless in the sense

that in Refs. 11, 17, and 18, Krizan and Havas start
correctly with the usual Darwin Hamiltonian.

Now, the two-body distribution function given in paper
I, as well as the thermodynamic functions calculated here,
do not agree with the corresponding results in Refs. 17
and 11, which are grounded in the ring approximation.

However, when they sum all the ring graphs, for exam-

ple, in order to calculate the correlation function, they
have series expansions which are only convergent for wave

numbers k )~ in the nonrelativistic part, and for k greater
than their inverse relativistic screening distance in the
relativistic part. In both cases, the long-range contribu-

tions (corresponding to small k} to this series have no

meaning in principle. Nevertheless, in the nonrelativistic

case, by interchanging integrations and infinite summa-

tions, one can obtain a finite result for the correlation

function —the standard Debye-Huckel correlation

function —which, on the other hand, coincides with the

one calculated using the BBGKY hierarchy. This shows

that the ring calculation, in the nonrelativistic case, is ac-

tually correct. However, in the relativistic case, both
calculations —the ring diagram and the BBGKY ones—do
not give the same result.

Then, since in the BBGKY approach there is no prob-

lem with short values of k, we think that in the relativistic

case, our results (which are obtained in this way) are more

reliable than the Krizan ones.
In all, we think that, since our results are coherent, the

method developed here is a good one to deal with relativis-

tic plasmas.
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