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Numerical evaluation of path-integral solutions to Fokker-Planck equations.
II. Restricted stochastic processes
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A path-integral solution is derived for processes described by nonlinear Fokker-Planck equations

together with externally imposed boundary conditions. This path-integral solution is written in the

form of a path sum for small time steps and contains, in addition to the conventional volume in-

tegral, a surface integral which incorporates the boundary conditions. A previously developed nu-

merical method, based on a histogram representation of the probability distribution, is extended to a

trapezoidal representation. This improved numerical approach is combined with the present path-

integral formalism for restricted processes and is shown to give accurate results.

I. INTRODUCTION

The development of a theory of nonequilibrium thermo-
dynamics has received considerable attention in the past
several years. The apparent onset of ordered structures
out of random or chaotic systems is a clear example of na-

ture driven far from the equilibrium state. Such non-

equilibrium systems must be supported by a continual
flow of negative entropy into the system to prevent it
from relaxation. ' This is usually supplied by the presence
of external forces or by some type of externally applied
boundary conditions. This latter mechanism acts as a
coupling between the system and the surrounding environs
and is the focus of this paper.

One of the dominant mathematical models of non-

equilibrium systems is provided by the nonlinear Fokker-
Planck equation. A formal solution within the natural
boundaries in terms of a covariant path integral has led to
interpretations of the Onsager-Machlup functional as a
nonequilibrium thermodynamic potential. Standard
equilibrium thermodynamical concepts such as thermo-
dynamic potential, entropy, and entropy production rate
can thereby be extended and quantitatively defined for
systems far from equilibrium. '

In these previous investigations, however, the nonequi-
librium systems were modeled as unrestricted Markovian
processes which require no additional boundary condi-
tions. For many physical systems, external boundary con-
ditions are in fact the forces which drive the system to a
state far from equilibrium.

Examples of such systems described by the nonlinear
Fokker-Planck equation subject to external constraints are
the following: the velocity distribution of particles in a
magnetically confined plasma, " the growth of small gas
bubbles in solids, ' the diffusion of a penetrant into a
semi-infinite body of polymer, ' the deposition of an aero-
sol on a surface, ' and the nucleation and growth of de-
fects in an irradiated material' to name but a few.

It is the aim of this paper to provide the means to find
the time-dependent solution of the Fokker-Planck equa-
tion in the presence of external boundary conditions. In
Sec. II, a forrnal solution to the Fokker-Planck equation

II. FORMAL SOLUTION

As a starting point, consider the multidimension,
Fokker-Planck operator acting on a probability distribi

tion function p ( q, t),

Lp= — ' — [&'( ) ( t)]
c)t Qq'

+—,(Q "(q)p(q t)l
a'

2 Bq'Bqj

= —p(q, t), i j =1, . . . , N

where p is a distributed source term and q is assumed 1

lie within some X-dimensional volume V. Note that r
peated indices imply summation. Also imposed on p(q,
are some type of boundary conditions at the surface S i

the volume.
The Green's function G(q, t;qo, to), satisfying tl

Fokker-Planck equation with an impulsive point source,
defined by the equation'

LG = —5(q —qp)5(t —tp) . (2

subject to external boundary conditions using th

Green's-function method is presented. In Sec. III, th

short-time propagator, taken from the path-integral fo~

malism, is shown to be an appropriate Green's functio
for the general nonlinear Fokker-Planck equation. In Se(

IV, the various types of boundary conditions and the cor

struction of suitable Green's functions are discussed. I
Sec. V, a boundary integral technique is introduced in o:

der to avoid the complicated and often impossible task (

developing Green's functions specific to certain types (

boundaries. Also in this section, a numerical technique
introduced in a previous paper' is refined and generalize

to include the effect of the boundary conditions. Numer
cal results for some specific problems are given in Sec. V
Finally, some examples utilizing Green s functions coI
structed to suit the boundary conditions are solved exact]
in the Appendixes A and B.
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L G = —5(q —qp)5(t tp—), (2b)

The adjoint to the Green's function satisfies the equation As a consequence of this relationship for the boundary
conditions imposed on the Green s function and its ad-

joint, the following reciprocity principle may be proven':

where the adjoint or backwards Fokker-Planck operator L
is given as

G(q, t;qp, rp)=G(qp, rp,'q, r) . (4)

L =—+K'(q) +—Q"(q)a, a
Bq' 2 ()q'()q'

(2c)
Thus G may be interpreted as describing the effect at q of
a point source located at qp while 6 describes the inverse
effects. Using Eq. (4), we may operate on G by L p to find

The boundary conditions on the adjoint functions are
defined to be those which are adjoint to the original boun-
dary conditions. The relationship between these two sets
of conditions can be found from

aG, aG 1,, a'6
LpG(qt, ;qp, tp)= +K'(qp), +—Q' (qp)

~tp ()q p 2 gqp()q p

n'P'(G, G) =0 (3a) = —5(q —qp)5(r —rp) .

on the surface S. Here n' is the outward normal vector
and P' is called the bilinear concomitant' given for the
Fokker-Planck operator as

Replacing the variable q by qp in Eq. (I) and integrat-
ing the quantity

P'(u, u)=uvK'+ —uQ'i, ——v . (Q'Ju) .
1;BU18
2 ()q' 2 ()qj (3b)

p(q pt)L Gp(q, t;q tp)p—G(q, t;qp rp)Lpp(qp, tp)

over subscripted space and time yields

l

f dtp f d qp P +G + f Chp f d qp PK +G
atp a~p p v

+ & f Chp f d qp pQ . . —G . . = f drp f d qppG —p(q, t).
0 V BqpBqp BqpBqp

The first integral may be performed over time. The second and third integrals may be combined and written in the
form

f drp f d qp . [Pp(p, G)]= f drp f dSpn pPp(p, G)

where Pp is again the bilinear concomitant defined by Eq. (3a) but qp has replaced q. Solving for the distribution func-
tion p(q, t) yields

p(q, t)= f dtp f d q p(qpt p)Gp(q, t;q t p)+pf d qpp(qp, 0)G(q, t;qp, 0)
r

dtp f dSpnp J'(qp, tp)G(q, t;qp, tp)+ —,p(qp rp)Q (qp) . (q, t;qp tp)
p Bq Jp

where

J'( q t) K,'( q=)p ( q, t) —— . [Q;, ( q )p ( q, t)]
2 Bq'

is the probability current.
Physically, the first two terms represent the effects of

the volume source distribution and the initial conditions,
respectively, while the third term represents the effects of
the boundary conditions. Therefore, the boundary condi-
tions may be regarded as source distributions at the sur-
face in analogy to problems in electrostatics, fluid
mechanics, etc. '

Because Eq. (1) is a parabolic partial differential equa-
tion, the problem would be overspecified if both the prob-
ability current n'J', and the value of the distribution p are

specified at the surface. In this case, a solution may not
physically be possible. Either one or the other or a linear
combination of n'J' and p form a sufficient boundary con-
dition to provide a unique solution to Eq. (I). Because of
this, there will, in general, be unknown terms in the sur-
face integrals of Eq. (7). Either of two approaches may
remedy this shortcoming. If the boundaries are simple
enough, the construction of a certain Green's function, via
the superposition principle, can cause the unknown terms
to vanish. Some specific examples of this technique are
shown in the Appendixes.

However, in many instances, such a Green's function
cannot be found. In these cases, an integral equation must
be solved. Such a technique is well established in the
theory of elliptic partial differential equations and is
known as the boundary integral method. '
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III. PATH INTEGRALS AND SHORT-TIME
PROP AGATORS

Unfortunately, Green's functions satisfying Eq. (2) even
without the presence of external boundary conditions can
only be found for selected choices of drift and diffusion
coefficients. However, the general nonlinear Fokker-
Planck equation may be expanded in time and solved to
order (ht) . The resulting solution, although not uniquely
defined due to an ambiguity in the evaluation of the
Fokker-Planck coefficients, is a Green's function
valid within the singular boundaries (see Sec. IV) for short
time, ~=t —tp.

For longer times the solution may be found iteratively.
This is the basis of the path-integral formalism. ' From

this Green's function, often called the short-time propaga-
tor, other Green's functions appropriate to the boundary
conditions may be constructed or a boundary integral
method developed (see Secs. IV and V).

We first need to show that in the limit of infinitesimal
time, the Fokker-Planck equation together with the boun-
dary conditions are reproduced from Eq. (7) when a
short-time propagator is used as the Green's function.
Such a propagator function can be written in its simplest
form for the infinite space, according to Dekker, if one
selects as the Green's function the solution to Eq. ( I) as-

suming that the drift vector K' and the diffusion tensor
Q'1 are functions of the source point qp but not the field

point q. G ( qq, pt), then has the form

1
G(q, qp, r)=(2vrr) " [detg'(qp)] ' exp — Qz(qp)[q' qp ——rK'(qp)][qj —qjp —7K (qp)]

2~

where Q,J is inverse of Q'J.
Rewriting Eq. (7) for a short-time interval r suggests the following form reminiscent of the path sum:

T

p(q, t+r)= f d qpp(q pt) G(q, qp, r) dr' IIi dSpnp J'(qp, t+w')G(q, qp, 7 )

+ , P(q„—t+r'}Q' (qp) . (q, qp r )
Bq Jp

where p( q, t) =0 for clarity.
To begin the proof of such a restricted path sum we subtract p (q, t) from Eq. (8), multiply by an analytic but other-

wise arbitrary function, R ( q ), divide by ~ and integrate over the volume in q space resulting in

f d q R (q)—[p(q, t+r) —p(q, t)]=—f d q f d"qpG(q, qp, r)p(qp, t) —p(q, t) R (q)

——f dr' f d qR(q} f dSpnp J'(qp t+r')G(q, qp, r')
7

Expanding the arbitrary function into a Taylor series about qp such that

R(q}=R(q)+ g (q —qp) (q —qp)
3"R (qp)

1
n! aq~ . . Bq~

and taking the limit ~~0 yields

f d+qR(q)p(q, t)=lim —f d q f d q p(Rq )Gp(q, q , p)pr(q tp)

+ —,'p(q„t+r')g"(qp) . (q, qp, r )
Bq Jp

(9)

—lim — d qR qp qt+ d qpAk. . . , l qpp qot —

k l

8"R(qp)

r—+0 7 V n=1 chqp Bqp

—lim —f dr' f d qR(q) f dSpnp J'G+ —,'pg'~
~-0 ~ Bq Jp

(10)

where the nth-order transition moments are defined to be

A .k. . , (qt)=p, lim f d q(q" —qp) . (q' —qt)G(q, qp, r)pn! g V

and I is the nth index.
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Owing to the 5-function nature of the short-time propagator, G(q, qo, r), as x~0 the integration limits of the in-

tegrals over q may be taken to include all space. Hence, the first two terms cancel since the propagator is generally nor-
malized to unity. The Gaussian character of the propagator in this limit allows the transition moments to be calculated
such that'

E', n =1

0, n)3.
(12)

The term involving the transition moments becomes after partial integration

f a2
d qop(qo, t) K'(qo) . +—Q'~(qo) . . R(qo)= f d qoR(qo)

aqp 2 c)q~dq~

a2
;

&' qo + 2, , Q"(qo p(qo t)

+ dSpnp qp R qp K' qp —— . 'J
qp P qp t

2 Bqjp

+ 2Q "(qo)p(qo t) R(qo)
Bqp

(13)

To evaluate the final term of Eq. (10) note that the follow-
ing limit formula

1 '+' . 1
lirn — F' s ds =lim —F t+7 —F t =F' t
r~p 7 r~0 7

enables the time integration to be performed. The previ-
ously mentioned 6-function character of the short-time
propagator simply extracts the integrand from the volume
integration to result in

dSpn p qp R qp J qp, t

+ —,'Q'~(q )p(q, t) . R(q )
Bq~p

(14)
for the final term of Eq. (10).

Owing to the arbitrariness of R (q) and its gradient
both in the interior and on the boundaries, the surface and
volume integrands must both identically vanish. Equating
the left-hand side of Eq. (10) to the sum of the right-hand
side of Eqs. (13) and (14), we conclude that the Fokker-
Planck equation is indeed satisfied in the interior while

limJ'(qo, t +r) =K'(qo)p(qo, t)r-0
a
,. Q'~(qo)p(q, t)

~90

and

limy (qo, t +r) =p ( qo, t)
r—+0

must hold on the boundaries. We have thereby successful-
ly reproduced both the Fokker-Planck equation and the
boundary conditions from a path-integral approach. The
sole requirements made on the propagator function in this
section are a properly normalized 5-function nature and
that it produces Gaussian character transition rnornents in
the limit of small time intervals. Such functions satisfy-

ing the Fokker-Planck equation to order 0 (r ) are avail-
able in a wide variety of forms in the literature in addition
to the simple form by Dekker mentioned above. ' '

This proof extends and generalizes the path sum to expli-
citly include boundary conditions.

The construction of a continuous-time path integral
from the discrete path sum is not nearly as concise for re-
stricted stochastic processes as it is for unrestricted pro-
cesses. In a numerical procedure this does not pose any
significant problems to implementation since any time
evolution must be based on discrete time steps (see Ref. 16
and Sec. V). However, many authors have analyzed the
unrestricted path integral as a basis for a nonequilibrium
thermodynamic theory. ' The exponent in the propaga-
tor function can be shown to correspond to the classical
Lagrangian for the most probable value of q(t). Develop-
ing the correct functional integral form from Eq. (8) for
restricted processes is a significant task but may provide
information into how systems interact with their external
environments (through the boundary conditions).

IV. CLASSIFICATION OF BOUNDARY CONDITIONS

In dealing with the coordinate space over which Eq. (1)
is valid, two generic classes of boundary conditions arise.
Those which are contained implicitly in the Fokker-
Planck coefficients themselves are known as singular
boundaries. Such boundaries arise because of certain
types of zeros or singularities in K'(q) and/or Q'J(q). In
these cases, given regions of space may be precluded from
a nontrivial solution and are inaccessible to the stochastic
process. Obviously,

~ q ~

~co forms such a boundary
since a physically real process cannot extend beyond this
limit. Singular boundaries have been further classified by
the existence or nonexistence of the integrals of certain
functions of E' and Q'J. ' For the purposes of this pa-
per, we note that the contribution to the surface integral
in Eq. (7) by these boundaries is zero, thus the solution to
Eq. (1) can be found easily if the correct Green's function
is known.
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GD(q t'qp, tp)=0 (15)

for qp on the surface. Then the solution to the Fokker-
Planck equation with a Dirichlet-type boundary condi-
tions becomes

t

p(q, t)= f dtp f duop(qo, to}GD(q, t;qo, to)

+ QUpp qp 0 GD q, t;qp 0

f dtp f dSpbD(qp rp)npg"(qp)

a
X . GD(q, t;qp, tp) .

Bq~p
(16)

(b) Neumann condition Anothe. r frequently encoun-
tered type of boundary condition is that of a specific prob-
ability current normal to the surface, i.e.,

(qo }= x(qo (17)

Again using Eq. (3), the corresponding homogeneous ad-
joint boundary condition is found to be

The second class of boundary conditions encountered
are referred to as being regular. These are externally sup-
plied within the singular boundaries in addition to Eq. (1}
and may represent a variety of physical situations. For-
mally, to be able to solve Eq. (7), the Green's function
must be chosen in such a way to cause the unspecified
terms in the surface integral to vanish. This can be ac-
complished by constructing a Green's function satisfying
the homogeneous boundary conditions adjoint to those ap-
plied to the distribution function, p (q, t).

Many physical problems can be characterized by the
following two types of regular boundary conditions. '

(a) Dirichlet condition In. this case the value of the
probability distribution is specified at the surface to be

p(q~, t)=bD(qs, t), where bD is a known function and q&
defines the surface. From Eq. (3), it is easily shown that
the homogeneous boundary conditions adjoint to this re-
quirement are

P(q t}=f dto f d"oP(qo to}G~(q t qo t.}

+ dUpP Ip0 G~ l t ipO

drp f dSpb~( qp rp)G~( q t qo tp)
p

(19)

V. BOUNDARY INTEGRAL METHOD

In actual practice, the construction of Green's functions
satisfying the requirements of the preceding section may
be difficult or even impossible. In particular, multidimen-
sional problems or those involving complicated boundaries
are often awkward. In these cases an integral method of
evaluation Eq. (7) can be developed. Combined with the
path-integral formalism, a technique to numerically solve
nonlinear Fokker-Planck equations with regular boun-
daries is possible.

Consider as an example the slab geometry or one-
dimensional problem. The path-sum solution is given by
Eq. (8). From the short-time propagator, the Green's
function appropriate to the two boundary conditions could
be constructed. However, they generally are cumbersome
series expressions.

For this reason we choose to use the propagator for an
unrestricted space, but subsequently must deal with some
unspecified terms. Specifically, Eq. (8) becomes an in-
tegral equation of the Fredholm type in space and of the
Volterra type in time. In the one-dimensional problem,
the surface integral collapses to the value of the integrand
at the end points. In a previous paper, ' we introduced a
numerical scheme based on a histogram representation of
P(q, t) to solve the one-dimensional path sum in the ab-
sence of added boundary conditions. The histogram im-
plies an averaged value of p over an interval of the q axis.
However, the presence of an added regular boundary re-
quires a good knowledge of the value of the distribution
function and of the probability current at the boundary
rather than for the adjacent interval in order to evaluate
the surface terms of Eq. (8). For this reason we introduce
as the next-higher-order approximation to p (q, t) a tra-
pezoidal representation such that

~o Q"(qp} GN(q, t;qo, to} —0
Bq Jp

(18) p(q, t) = q —q;
Pi+i+

q+&

q;+~ —q
Jl

q;+& —q;

for qb on the surface.
Using the function satisfying this condition, the solu-

tion to the Fokker-Planck equation with Neumann-type
boundary conditions becomes

q &q&q;+i. (20)

Inserting this representation into Eq. (8), integrating over
q from q; to q;+ ~, and dividing the integral over q into N
parts yields the iterative relation

N

p, (r +t)+p, +,(r +~)= $ [p, (r)A,,(r)+p, +, (r)B,,(r)]+S,"(r +r)+S, (t +~), (21)

where

A;J(r) = 2

Aq;Aqj

&;J(r)= 2

Aq;Aqj

q,. q.

f dq f dq'G (q, q', r)(qi+ ~
—q'),

J

dq dq'6 q, q', ~ q' —qj

(22a)
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and

S; (t+r)= Q(a) f dr'p(a, t+r') f '
dq (q, a, r') Q—(b}f dr'p(b, t+r') f '

dq (q, b, r')
S

(22b)

S; (t+r)= f d~'J(a, t+r') f dq G(q, a, r') —f dr'J(b, t+r') f dq G(q, b, r')
hq; e; 0

and

hq; =q;+) —q; .

malized for all time. This can be used as a feedback
mechanism to reduce the error.

In our previous paper' we investigated the stability of
the numerical procedure with regard to the various forms
of short-time propagator functions and found no signifi-
cant numerical differences between them. For this reason
it is sufficient to choose the simplest form of the propaga-
tor as an unrestricted Green's function. For the one-
dimensional problem, the function is

1 [q q' Eq' —]-
v'2trQ (q')r 2Q(q')r

(23)

For this propagator function, the Fokker-Planck coeffi-
cients are to be evaluated at the source point q'. Hence
the integrations over q in Eq. (22) may be evaluated in a
closed form. For a general choice of IC and Q, the integra-
tions in Eq. (22a) over q' can only be performed numeri-
cally. However, once these values are calculated, they
may be stored and used repeatedly since they do not
change with time. The derivatives in Eq. (22b) lead to
quite complicated expressions due to this dependence of
the coefficients K and Q on q'. A specific simplification
stems from the result that the terms involving the deriva-
tives are of an order higher than r . These terms may
then be neglected as a consequence of the assumptions in-
volved in arriving at Eq. (23). The path-integral formal-
ism requires that the time-step approach zero for the path
sum to represent the Fokker-Planck equation and the
boundary conditions (Sec. III). In a numerical method,
this means that ~ is a small number relative to some quan-
tity. ' Therefore, since the probability distribution and
current vary only moderately with time compared to the
propagator function, we may make the substitution
p(qb, t+r)~p(qb, t) or J(qb, t+r)~J(qb, t) for the un-
specified terms. Equation (21) then consists wholly of
known quantities and may be straightforwardly evaluated.

VI. RESULTS

I. Wiener process (constant E and Q)

2. Ornstein Uhlen-beck process (K= —ax,
constant a and Q).

For the zero-current one-dimensional Ornstein-
Uhlenbeck process the exact solution is given by

1 q —m (t)
p(q, t)=, exp

[2n.v (t)] 'i 2v (t)

[q+m (t)]
2v (t)

where
(24)

O

ID

tr O-
Q

O

o
O-i 0
O

O
C4

For the zero-current, one-dimensional Wiener process
the exact solution is given by Eq. (B4). A negative drift
force was chosen in order to drive the distribution toward
the boundary and test the accuracy in that region. Figure
1 shows the probability distribution (solid line) according
to the nuinerical evaluation of the path sum and the abso-
lute value of the difference between the exact and this nu-
merical solution (dashed line).

In order to provide a realistic test of this numerical pro-
cedure, several example problems on the half space with
exact analytic solutions representing various types of
boundary conditions were investigated.

A. Homogeneous Neumann boundary condition (J=O)

One of the advantages of the reflecting barrier class of
problems is that the probability distribution remains nor-

I

4.0
I

5.02.0
I I00 1.0 3.0 60

g

FIG. 1. Wiener process subject to the condition
KP(q, t) —

2 Q[t}P(q, t)/t}q]=0 at q=0 for the time t=1. The
solid line represents the distribution function and the dashed line
represents the absolute value of the discrepancy between the nu-
merical and analytical results. The initial condition (shown here
as a vertical arrow) is a 6 function centered at q=0.42. The
time step was chosen as 0.01 with K= 1.0 and Q=2.0.
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FIG. 2. Ornstein-Uhlenbeck process subject to the condition

K(q)P(q, t) —,Q—[BP(q, t)/t)q]=0 at q=O for the time t=1.
The initial 5 function is located at q=0.21. The time step is

0.0025 with a = —1.0 and Q=2.0.

FIG. 4. Wiener process subject to the condition

KP(q, t) zQ—[t3P(q, t)/r)q]=Jo ——1 at q=O for the time t=1.0.

The initial distribution is zero everywhere. The time step is 0.01
with K=1.0and Q=2.0.

and

m (t) =qoexp( at)—

v = ( g /2a )[ 1 —exp( —2at) ] .

A zero-current boundary condition at q = l reflects the
statement that the total number of particles does not
change with time. The steady-state solution is given as

Here qo is the location of the initial 5 function. This pro-
cess presents some difficulties since K(q) vanishes at q=O
causing the value of S; (t+r) in Eq. (22b) to apparently
take on an indeterminate form. However, by application
of L'Hopital's rule a definitive value can be obtained. Fig-
ure 2 shows the numerically obtained distribution function
and the absolute error between the analytic and numerical
results at time t=1.

1/2

p (q) =
1/2 1+1/2

—73

( —2q+24q )e (26)

where B is a constant dependent on the normalization.
Figure 3 shows the steady-state results for this problem
when subject to a normalization of 125.

3. Nonlinear problems

K(q) =3q'/ —q,
Q(q) =3q'/ +q .

(25)

Unfortunately, it is difficult to analytically solve for the
time dependence of nonlinear problems involving external
boundary conditions. However, in many cases steady-
state solutions are readily obtainable. A particular prob-
lem of interest, introduced by Clement and Wood' to
model the size distribution of small gas bubbles is

B. Inhomogeneous Neumann boundary
conditions

In Appendix B the exact solution for the one-
dimensional Wiener process with a constant current main-

tained at q=O is derived. The area under the probability
distribution curve is given as the time elapsed multiplied

by the current. This time dependent normalization has
been included in a correction procedure discussed previ-

ously. ' The results for this problem are given in Fig. 4.

O
CV-

O-

O
tX

LIJ

O

0 O

rL

«)
O
O
CI

o
O

O
IX
LIJ

O-0
O

O

o
N

I

40
I

70
I

10.0 13 0
I

16 0
I

19 0
I

22 0

O ~

O

10 0
I

20 0

CI
—O

O

FIG. 3. Steady-state solution to the process defined by Eq.
(25) subject to the condition K(q)P(q, t) ——, [tl[Q(q)P(q, t)]/
t)q] =0 at q=1.0. The time step was chosen as 0.01.

FIG. 5. Wiener process subject to the condition P(q, t)=1.0,

and q=0 for the time t=9.0. The time step is 0.01 with K= 1.0
and Q=2.0. The initial distribution is zero everywhere except at
the boundary.
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C. Inhomogeneous Dirichlet boundary
condition

In Appendix A the exact solution for the one-
dimensional Wiener process, where the value of the distri-
bution is kept fixed at the origin, is derived. In this case
the current and hence the normalization are complicated
functions of the time. Figure 5 shows the results obtained
for this problem.

VII. CONCLUSIONS

The effect of the boundary conditions is to add extra
terms corresponding to surface source distributions to the
solution of P(q, t). If the Green's function appropriate to
the boundary conditions is not readily available, the unre-
stricted Green's function may be used in Eq. (7) resulting
in an integral equation to be solved. For the general non-
linear Fokker-Planck equation, the short-time propagator
provides the only obtainable Green's function. The tra-
pezoidal rule of Sec. V represents a refinement of a previ-
ously introduced numerical technique to implement path-
integral concepts. Combined with the integral equation
approach, a numerical technique for treating the boundary
conditions of the Fokker-Planck equation is established.
From Figs. 1—5, it can be seen that the numerical results
are generally within a few percent of the analytic solu-
tions.

Although no exact time-dependent solutions for non-
linear coefficients combined with external boundary con-
ditions exist, the numerical method has previously been
shown to provide correct results for unrestricted nonlinear
cases also.

Accordingly, we expect our numerical method to pro-
vide accurate results for restricted nonlinear stochastic
processes, as we have demonstrated in Sec. III that the
path-sum solution to nonlinear Fokker-Planck equations
can be extended to stochastic processes with regular boun-
dary conditions.

APPENDIX A: EXACT SOLUTION
OF THE ONE-DIMENSIONAL DIRICHLET

WIENER PROCESS

Substituting Eqs. (Al) and (A2) into Eq. (8) yields

gc a
p(q, t)=

2 o Bqo
GD(q qo t)

I q =pdt . (A3)

where erfc is the complementary error function. This re-
sult is in agreement with previous works. ' '

APPENDIX B: EXACT SOLUTION
OF THE ONE-DIMENSIONAL NEUMANN

WIENER PROCESS

As a second example of a problem with an inhomogene-
ous regular boundary condition possessing a closed-form
solution, consider the same process subject to the condi-
tions

p(q 0)=0, q &qb

~(qb, t) =Kp(qb, t) p(q—b,—t) =Jp .g a
2 Bqb

Again we take qb
——0. The required Green's function must

satisfy the homogeneous adjoint boundary condition

c}
Gx(q qo t)

I q, =o=O .
~qo

(B2)

In order to construct such a Green's function, it is neces-
sary to express this condition in terms of the field point q.
From the reciprocity relation, Eq. (4), the adjoint Neu-
mann Green's function satisfies

The differentiation may be taken outside of the integral
sign and with the substitution u =t ', the integrals take
the form

—au —b/ud2 2 2 2
e dll

These integrals may be performed with the final result

p(q, t)= —e ~ erfc + erfc
C pxqgg q +Kt q —Et

2gt /2gt

Consider the one-dimensional case of constant Fokker-
Planck coefficients on a half space. We seek the solution
to Eq. (1) satisfying the conditions

or

GN(qo q t)
I &

=o=o
Bqo

p(q, O)=0, q &qb

p(qb, t)=C, t &0.
(Al)

1 —(q —qo —Kt) /2Qt
Ga(q, qo, t) = (e&2mgt.

2Kqo/Q (q +qo Kt)2/2Q—e ' e ' ).
(A2)

Without loss of generality, we will take qb
——0. The

Green's-function solution satisfying the homogeneous
boundary condition can easily be found by the method of
images from the well-known unrestricted solution. This
so-called "absorbing" barrier solution is

Bq
Gx(q qo t)

I
q=o=O.

From the defining relation of the adjoint boundary condi-
tion, Eq. (3), and the bilinear concomitant operator, the
Neumann Green's function is found to also satisfy

KG~(q, q p, t) ——
Gtv (q, q p, t) =0 .g a

2 Bq
(B3)

This reflecting barrier solution may be constructed via an
image system consisting of a point image at q = —qo and
a continuous set of images in the range —00

q
31,35
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—(q —
qp Kf) /2'

G~(q qp t)=
(2~gt) '~'

—2Kqp/Q —(q+qp —Kt) /2Qt+e ' e '
)

The first two terms in Eq. (B4) lead to integrals of the
same type as involved in the previous example. The third
term with the substitution u =(t)'~ yields integrals of the
form

/g q +gp +Et——e q erfc
v'2gt

Inserting Eqs. (Bl) and (B2) into Eq. (g) yields

I'(q t)=~p f G~(q qp t') l, =pdt'.

(B4)

(BS)

0 a
u erfc —+bu du .

0

By utilizing the definition of the error function, this
may be converted back to a double integral and performed
by reversing the order of integrations. The result is

f 0 a 1 2 a 1 a e Q ~P —(a/u +bup)
u erfc —+bu du =—u p+ —— erfc +bu p + erfc bu p

—— e
0 Q 2 b 4b up gb up 2btrrr

(B6)

The final solution to the Wiener process subject to an inhomogeneous Neumann boundary condition becomes

p (q, t) =Jp erfc
I q Kt-

2K 2gt
Kt 1+—+ e r ~lerfc +02t/gee e-" "«+Kt 2

Q Q 2K &2gt
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