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Critical behavior of a class of nonlinear stochastic models with cubic interactions
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A theoretical analysis based on the method of system-size expansion of the master equation is

carried out for a generalized nonlinear stochastic model with cubic interactions. The resulting

Fokker-Planck equation enables us to derive the relevant probability distributions in the critical re-

gion as well as away from it; in the former case, the distribution turns out to be non-Gaussian and is

dominated by fluctuations which are non-negligible. The onset of a first-order phase transition in

the system is investigated in some detail. In particular, a Maxwell-type "theorem of equal areas" is

discovered which might hold for a much wider class of systems with cubic interactions.

I. INTRODUCTION

The phenomena of phase transitions in open physical
systems have been extensively investigated during the last
two decades. ' ' The major ingredients in these investi-

gations have been the role played by nonlinearity in the
underlying structure of the problem in bringing about the
phenomena in question and the recognition that, when the
macroscopic state of such a system is driven beyond a
critical distance from the state of transient equilibrium,
initially microscopic fluctuations and random forces may
give rise to the onset of instabilities which in turn lead to
the emergence of a new state of macroscopic order. Such
an instability may be symmetry breaking, in which case,
beyond a critical affinity, the response of the system to an
infinitesimal disturbance leads ultimately to a new operat-
ing regime characterized by temporal or spatial organiza-
tion. For instabilities which are not symmetry breaking,
the macroscopic kinetic equations involve a nonlinearity
of at least cubic order and predict a region of overall af-

finity andlor influence in which a trio of homogeneous

steady states become accessible to the system. '" ' In
the latter case, the middle branch of the resulting S-
shaped steady-state curve is infinitesimally unstable, while

the lower and upper branches remain stable throughout
the region of coexistence.

A common meeting ground for macroscopic models
with multiple steady states, ranging from the ones in phys-
ics, ' ' chemical kinetics, ' ' and biochemistry'
to those in population dynamics, ' ecology, and sociolo-

gy, is that they all deal with populations involving a
large number of units interacting nonlinearly. An impor-
tant question in this regard is as to when a general, real
system with accessibility to multiple steady states will ac-
tually jump from one stable branch to another. As the
relevant parameter of the problem is increased, will the
system remain on the lower branch until it reaches the ex-
treme point of infinitesimal instability Bl (see Fig. 1) or
will it be driven to the upper branch at some earlier point,
for example, 8,? For the vapor-liquid phase transition of
a van der Waals gas, the well-known Maxwell construc-
tion of equal areas, which is based on the equality of
chemical potentials of the two phases in coexistence, pro-
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FIG. 1. Steady-state solutions of the macroscopic equation
(48) vs the pump parameter B, with P =10 and R/P=1, 5, 9,
15, and 20. Critical point is shown for R/P=9 and the turning

points Bl and B2 are shown for R /P=20.

vides the desired answer. For a general system, however,
this question is still largely unanswered. In the present in-
vestigation we have approached this problem from a sto-
chastic point of view and have shown that a rigorous cri-
terion based on the division of probabilities does ultimate-
ly lead to the conclusion that, in the zeroth approxima-
tion, the transition from one stable branch to another
takes place when the response curve of the problem carves
out equal areas with the deterministic S-shaped curve, i.e.,
a sort of "theorem of equal areas" is indeed obeyed.

In a recent paper we have analyzed the critical behavior
of a class of nonlinear stochastic models of diffusion of
information with quadratic birth and death rate con-
stants and have shown that, in spite of the fundamental
differences in the structure and conception of open and
closed systems, they display identical mathematical
behavior in their critical regions. In other words, open
and closed systems may be regarded as locally isomorphic
at their critical points, with the result that the relevant
features emerging from the nonlinearity of the problem
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are independent of the underlying structures of the sys-
tems in question and, in their critical regions, are model
invariant. Our analysis dispelled the notion that the
birth-and-death type of a model is in itself inadequate to
give a complete description of critical fluctuations in a
nonequilibrium system. In fact, a modified version of van
Kampen's method ' of system-size expansion of the
master equation, as recently developed by Fox (while
elucidating the relationship between Keizer's theory of
nonequilibrium thermodynamics and the master equation
approach) and by Dekker (in connection with a study of
the Malthus-Verhulst process with spontaneous genera-
tion), was successfully applied to the birth-and-death type
of stochastic models for examining the statistical behavior
of both equilibrium and nonequilibrium systems in their
critical regions. In this paper we propose to extend that
study to systems with cubic interactions. Though our
analysis is intended to apply to a general nonlinear system
with cubic interactions, we find it convenient to couch it
in the language of our previous paper which addressed it-
self to the problem of diffusion of information in a homo-
geneously mixing population.

II. MODEL

pg
——a'+b'n +c'0 'n +e'0 n (2)

where 0 is a measure of the overall size of the system.
We may add that, in order to avoid the eventual "extinc-
tion" or "blowing up" of the process, we must have

To begin with, we observe that, for the occurrence of a
first-order phase transition in the given system interactive
processes must generate nonlinearities which are at least
cubic in nature. In view of this we consider a model in
which the growth and decay of the variable of interest,
n (t), is governed by birth and death rate constants, A,„and
p„, which are cubic in n; this will encompass several
models encountered in chemical kinetics and in physical,
biological, and sociological problems as special cases. In
the context of diffusion of information, n(t) will denote
the number of active spreaders of information at time t
Thus, we write

Ag ——a +bn +cn 'n +en n

and

In the spirit of the system-size expansion technique, we
split the random variable n(t) into a deterministic com-
ponent and a stochastic component,

n (t) =QP(t)+Q"x (t), 0 & v & 1 (6)

such that the stochastic variable x (t) =O(1). The proba-
bility distribution p (n, t) now transforms into II(x, t),
where

II(x, t) = Qp[ Qp(t) +Q"x,t],
while

Q
—2v Q2(E-"—1)=+Q + + (8)

Substituting (6)—(8) into (5) and using (1) and (2), we ob-
tain

+ —,Q' " [a2(p, x)II]+

where

a&(tI),x) =(a —a'}Q '+(b b')(P+Q—" 'x)

+ (c —c')(P+ Q" 'x }

+(e —e')(P+Q" 'x)'

and

a2(p, x)=(a+a')Q '+(b+b')(p+Q" 'x)

+(c+c')(P+Q" 'x)

+(e+e')(Q+Q" 'x)3 .

(9)

(10)

The leading terms in (9) are of order Q' " and lead to the
deterministic equation

dt
= (b b')P+ (c c')—P'+ (e —e')P',— (12)

with the assumption that the term (a —a')Q ' does not
contribute to this order. Terms of the next order lead to
the Fokker-Planck equation

and

a &a'

e &e'.
(3)

BIT 8 l 8'
Bt Bx 2 /~2[f(P,x)II]+— [g (P,x)II]+

(13)

E+ 'f (n)=f (n+1), -
(4)

the master equation of the (one-step) process can be writ-
ten in the form

The precise genesis of the rates (1) and (2) depends on the
actual problem at hand; a detailed example will be dis-
cussed in Sec. V.

Introducing the translation operator E, defined by

where

f(P,x) =(a —a')Q "+[(b b')+2(c c')P- —
+ 3(e —e')P ]x

+[(c—c')+3(e —e')P]x Q"

+(e —e')x Q"
p(n, t) = [(E ' —l lA,„+(E—1)p„]p(n, t) . (5) and
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g(P, x) =(a+a')0 For c —c'=[4(e —e')(b —b')]'~, we have

+ [(b +b')P+(c +c')P'+ (e +e')P']&'

+ [(b +b')+2(c +c'}/+3(e +e')Pi]xQ

(c —c')
2(e' —e) Ie —e

+[(c+c')+3(e+e')P]x 0
+(e+e')x 0"

Moreover, along b =b' and c & c',

(c —c')
(e' —e)

(19)

For this we examine the deterministic Eq. (12) whose
solution, with the initial condition $(0) =$0, is given by
the implicit relationship

4'0 01 00 02 40 03

=exp[(e —e')(Pi —$p)(Pi —$3)($3—P, )t], (14)

where Pi & Pz & P& are the steady-state solutions of (12):

)
——0,

1
j (c —c')

2(e' —e)

+ [(c—c') —4(e e')(b —b—') ]' I .

Since e & e' it follows from (14) that, as t~ oo, /~Pi, Pi,
or Ps accordingly as $0 is less than, equal to, or greater

than Pz.
We observe that the steady-state solutions P„of (12)

represent two-parameter families of curves in the bc plane,

the point (b', c') being the critical point of the system. Of
course, P„must be non-negative and, for linear stabili-

ty, ' we must have

5= [(b b') +2(c c')P—„+3—(e —e')P„] & 0 . (15)

Regarding b' and c' as fixed, and b and c as variable, the
stable solutions then are as follows.

(i) For I(b b') &0, (c ——c') & [4(e e')(b ——b')]' I,

(16)

(ii) For {(b—b'} &0, (c c') & [4(e—e')(b —b')]—'~ I

and for [(b b') & 0, c & 0], —

1
f(c —c')

2(e' —e)

Far away from the critical region, the conventional
scheme of van Kampen, with v= —,', applies. In the criti-

cal region the scaling index v depends upon the detailed
nature of the functions ai(P, x) and aq(P, x). Before im-

mersing ourselves in the investigation of this particular
question it seems advisable to first examine the macro-
scopic or phenomenological evolution of the process.

III. MACROSCOPIC EVOLUTION
OF THE PROCESS

while along c =c' and b & b',
1/2

b —b'
Ie —e

(20)

IV. SCALING INDICES AND THE CRITICAL REGION

The study of the situation in the close vicinity of the

critical point (b=b', c=c') needs some special care. First
of all we recall that, while writing Eq. (12), we have al-

ready assumed that (a —a') is at best o (0); now it can be

seen that the limiting forms, a, (P) and ai(P), of the first
and second jump moments ai(P, x) and ai(P, x), as

Q~ oo, possess several vanishing derivatives in the steady

state at the critical point (b =b', c =c'). Suppose that the

first nonvanishing derivatives of ai(P) and aq(P} at P =P„
are of order q and p, respectively; then the drift and dif-

fusion coefficients f(P,x) and g(P, x) in the Fokker-
Planck equation (13) turn out to be of order O'" 'I'~ 'Ix~

and Q'" '" " "x, respectively. Since the variable x is

supposed to be O(1), we must have

q —p+1
(21)

At the same time, the critical slowing down index p,
which implies that the approach towards the steady state
is slowed down by a factor of order 0", is given by

q —1P=
q —p+1

(22)

Far away from the critical region we have the standard

situation, viz. , q=1 and p=O, with the result that v= —,
'

and p=O. With quadratic interactions we found that in

the critical region q=2 and p=1, with the result that v

was still —, but p became —, as well. In the present case

we find that if a =a'=O(1) then q=3 and p= 1; accord-

ingly, both v and p turn out to be —', . However, if
a,a'=O(Q) such that (a —a')=0(Q), we then find the
following instead: q=3 and p=O, whence v= 4 and

p= —,'. In both these cases, the situation in the close

neighborhood of the critical point will be very different
from the one encountered far away from the critical point.
To have an inkling of this, let us look at the equation of
motion of the first moment, which can be readily obtained

by substituting the rate constants (1) and (2) into the mas-

ter equation (5), multiplying throughout by n, and sum-

ming over all values of n; we thus obtain

di'
—,(n ) =((a —a'}+(b b')n+(c c—')f}, 'n—

+ [(c—c') —4(e e')(b —b')]'—(17) +(e —e')0 n ) . (23)
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It follows that in the steady state of the system, and at the
critical point (b =b', c =c'),

In terms of the variable p(=nQ '=(t}+Q ' x), Eq. (31)
takes the very suggestive form

(n')...,= I

Q =0(Q )e' —e
(24)

11(p)=constp" 'exp(2)1Q' 'p+ —,
'

2)2Q' 'p' ——,
' (Qp'),

(33)

and hence

(n)„„=O(Q'") . (25)

which at the critical point reduces to

II, (p) =constp 'exp( ——,
'

gQp ) . (34)

It is then natural to define the critical region in the bc
plane as one in which (n )„=0(Q / ). Equations
(16)—(20) and (23) then tell us that in this region

~

b b'
~

=—0(Q ' '),
~

c —c'
~

=0(Q ' '), (26)

with ((}„=0(Q '/ ). In the other case, we have instead

~

b —b'
~

=O(Q-'"),
~

c c' —
~

=O(Q-'"),
with $„=0(Q '/ ). It is important to observe that in
each case, in the critical region defined as above, the two
parts of the randoin variable n (t), viz. , the deterministic
part Qg„and the stochastic part Q x (t), turn out to be of
the same order of magnitude.

We shall now examine the probability distribution
II(x, t) for these two cases.

3

gQ
pc=

and
2/3

3 I ((co+2)/3)
gQ I (to/3)

(36)

Further, the rate of growth of p with the parameters g&
and g2 is given by

P Q1/3( [ 2] —2) (37}

The moments of the distribution (33) can be obtained in
the close vicinity of the critical point by using standard
forms of the integrals involved; at the critical point itself

1/3
I ((/o+1)/3)

I (~o/3)

A. Case I (v= 3 ) and

Setting

b —b'= g ib'0, c —c'= g2b'0

e' —e =b'g & 0,
we obtain

Q„=Q '"A, A = [rt2+(r12i4rt, g)'"] .
2g

The Fokker-Planck equation (13) then reduces to

a
I [to+(2)1+2A2)2 —3A g)x2

BX

(28)

(29)

(38)

Equation (37) shows that the rate of growth of the order
parameter p with respect to g& is directly proportional to
the variance of p; the variation with F12, however, is more
intriguing.

B. Case II (v= 4 )

When a,a'=0(Q) such that (a —a')=o(Q), we may
then set

+(g2 —3A g)x' —gx']ll I

b —b'
a'

C —C 5'0
a

a2

, [(A +x)11]
BX

(30)
so that

where co=(a a')/b'&—0. The common factor Q 2/3 on
the right-hand side of (30) signifies the phenomenon of
critical slowing down mentioned above. In the steady
state we obtain

Q
—1/4B B [P+ (P2+4&g)1/2]1

Now the Fokker-Planck equation reduces to

11(2)1,2)2,x) =const(A +x)'"

Xexp[ —(2)2+4'),g)' x ——,gx ] .

(31)

BH =a'0
at I [a(B +x)+f3(B +x )

a'rr
g(B +x )']ll I +-

OX
At the critical point (2)1 ——2)2 ——0), A =0 and hence

II,(x)=constx 'exp( ——,
' gx3) . (32}

(39)
The common factor a'Q, which is 0(Q '/

), on the
right-hand side of Eq. (39) determines the critical slowing
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down of the system. In the steady state, we obtain for
p=nn-'

II(p)=constexp( —,'aQ'/ p + —,'PQ /
p ——,'(Qp )

(4O)

and

A,„=k)An (n —1)+k3A

p„=kqn(n —1)(n —2)+k4n .

(46)

and

II, (p) =constexp( ——,'gQp } . (41)

Obviously, in order that all the processes involved here are
of comparable significance, we must have

k, /k, , k4/k, =O(n')
At the critical point, the moments of the distribution are
given by

'1/41( i
)

and

k,A/k„k, A/k4 ——O(n) .

and

pc= (42)
In the notation of our Eqs. (1) and (2),

a =k3A, b = —k&A, c =k&AQ, e—=0,
a'=0, b'=(2k2+k4), c'= —3k2Q, e'=k2Q

(43)

Further, we obtain

Comparing orders of magnitude, one can readily see that
for a large system b'=k4, b/b'=0, and c'/c=O. It fol-
lows that

and

(44)

(45)

A,„+p„=+k2(n +Bn +Rn+PB),

where

kiA
B = =O(Q),

k2

P= =O(Q ),
k)

(47)

Equations (44) and (45) show the manner in which the rate
of growth of the order parameter p with respect to the pa-
rameters a and P is related to the higher moments of the
distribution.

and

R= =0(Q ).k4

kq

The macroscopic rate equation, for the steady state, now
reduces to

V. A MODEL WITH FIRST-ORDER
PHASE TRANSITION

n —Bn +Rn —PB =0. (48)

We shall now examine certain important statistical as-

pects of the Matheson-Walls-Gardiner model (MWG) of
first-order, nonequilibrium phase transitions in chemical
reactions. The formal similarity between this model and
the one we have been considering for the process of dif-
fusion of information in an open population is such that
we can develop a common line of analysis appropriate for
both these systems. In fact, with proper transliteration,
the results of this analysis may be applied to problems in
other areas as well.

By allowing three-body interactions in a homogeneously
mixing population, the nonlinear reactions, as given by
Eqs. (1) and (2) of MWG, describe equally well the con-
version of "ignorants" into "spreaders" by two different
processes: (i) through interpersonal contacts and (ii)
through a mass-mediating effect. Both these processes
have their inverses as well, viz. , (i) a rebuff (or disenchant-
ment) on meeting other spreaders and (ii) a spontaneous
loss of interest (out of sheer boredom or whatever). The
system in question is supposed to be in contact with an
"infinite" reservoir A comprising the general populace.
With this analogy in mind, we have

Treating B as the "pump parameter, " the nature of the
roots of this equation depends on the ratio R/P. We en-
counter three distinct possibilities.

A. Case(a) R/P&9

n =QP+Q'/ x,
we obtain for the steady-state probability distribution

(49)

11„(x)~ exp
(3Q2$ —2BQQ+R)Qx

(Q'P'+BQ'P'+R QP+PB)

(5O)

where P denotes P„. In the particular case when R /P= 1,
we find that (QP) =B; in that event, Eq. (50) reduces to

QxII„(x)~ exp
2B

(51)

In this case we have only one real root of Eq. (48} and
the jump moments are such that q= 1 and p=O, with the
result that the conventional scheme of van Kampen, with
v= —,, applies. Accordingly, writing
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The exact probability distribution in this case is known to
be the Poisson distribution,

gn
~& =~0

pg I
(52)

600

which, for large 8, does in fact reduce to the Gaussian dis-
tribution

J'„o.exp
(n —8)

28

in agreement with (51).

n, nIt'

400
I

I

(

J
*~

!
i

I

I

I

~3Q'x'
H„(x)=const exp 72'"" (54)

This case is critical in that, with 8 =&27I', we obtain
three identical roots: (QP& z 3)=V'3P. This leads to q=3
and p=O, so that v= —,'. We note that, although v= —,

here, the detailed situation of this case is very different
from case II discussed in Sec. IV. The steady-state proba-
bility distribution is now given by

800
I I

S75 ~ ~ F50
8 Bc Elo

I

(025
8,

FIG. 2. Deterministic solution n„as obtained from Eq. {48),—.—,and the stochastic mean n„, as obtained from Eq. (63),
, for P =10 and 8=2& 10~. Probabilistic construction

yields 8,=912.3 while the Maxwell-type construction yields
Bo—-916.1

with

"'-=
~3Q

4

H„(x) ~ exp
(ai —a2)(ai —a3)Qx

2ai(ai+ap)(ai+a3)

cf. Eqs. (42) and (43) of Sec. IV. A qualitatively similar
situation will arise in the close neighborhood of the criti-
cal point, i.e., for ~ =O(Q '~ ), except that x as well as

2[x j,„will be O(1). Away from this neighborhood, the sit-
uation will be of the type discussed under case (a).

C. Case {c)R/P&9

In this case we have three distinct real roots if
~81', here 8~ and 82 are the turning points of the

deterministic curve (48), shown as points M and N in Fig.
2. %'e find that

on the lower branch, and

(a3 —ai )(a3 —a2)Qx
H„(x) cc exp

2a3(a3+ a ) )(a3+a2)
(60)

(n —a, )
H„(n) cc exp

20 )

(58')

on the upper branch; here, a j g n2 ~ o;3 are the roots of Eq.
(48) arranged in the ascending order. It is obvious that the
distributions (59) and (60) are local Gaussian distributions
centered at 0.

&
and a3, respectively; see Fig. 3. They may,

in fact, be written as

8, ,= [(R +18RP 27P')+(R P—)' '(R —9P)'—'j .2=1
8I'

II„(n) ~ exp
(n —a3)

20 3

9(B; —3R )Qx
II„(x)~ exp

8RB;
(i =1,2) .

At points L and Q of the curve, q= 1 and P=O, so that
v= —, and the steady-state distribution is given by the
Gaussian expression

z 2a~(a~+a2)(a~+a3)
0»=

(u~ —aq)(u& —a3)

(61)

At the turning points I and X, q=2 and p=O, so that
2v= —, and the steady-state distribution turns out to be

non-Gaussian:

[(8'—3R)j' 'Q'x'
II„(x)~ exp

28;(R —3P)
(i =1,2) . (58)

Of course, in these states the system is only marginally
stable. In the region of three distinct roots, we have

2a3(a3+a»(a3+ a&)
0'3 =

(a3—a~ )(a3 —a2)

It is well known that if there is only one stationary state
accessible to the system then the probability distribution
II„(n) possesses a sharp peak around n =Qg„which, in
the thermodynamic limit (Q~oo), tends to be a delta
function at n =Quest. In the present case II„(n) is biInodai
over the entire interval (82+& ); see Fig. 3. As 8 increases
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so that

(n ), = —,
' (ai+a3) (67)

0.020— —B= 910
and

(a'„),= 4(a3 —al)2+ z(a21+a3) . (68)

For B significantly less than B„~&-1and m3-0, and for
B significantly greater than B„~&-0and m3-1. Thus,

0.015—

—8= 912
a&(B) for 82 &8 &8,
a3(8) for 8, &8 &Bi (69)

TT„(n)

0.010—

and

a&(B)+cr &(8) for 82 & 8 & 8,
a3(B)+cr3(8) for 8, &8 &B~ . (7O)

0.005—

= 915

= 912

Combining Eqs. (63) and (64) we find that, in general,

2= 2 2 2rc„=sr ir73( a3 ai) +7ricr'j+rr3cr3

crf=O(Q) for 82 &8 &8,

(71)

B= 917
B=910 —,'(a3 —ai) + —,'(oi+o3)=O(Q ) at 8 =8,

I

200 400 600
1

800 cr3 ——O(Q) for 8, &8 &8, . (72)

FIG. 3. Steady-state probability distribution H„(n) for vari-
ous values for the pump parameter B in the vicinity of the criti-
cal value B,.

II„(n)=Ciexp

+C3exp

(n —a~) 2

20 )

(n —a3)

2o3
(62)

where C& and C3 are the "mixing coefficients" which vary
critically with B. We thus obtain

from Bi towards Bi, with fixed values of R and P, the
distribution 11„(n) continues to be dominant in the region
around n =Qgi (i.e., ai) until 8 enters the critical range
B=B, when the dominance shifts rapidly to the region
around n =QP3 (i.e., a3), and the system jumps from the
lower branch of Fig. 2 to the upper branch. With this in
mind, II„(n) may be written as

Equation (72) shows quite clearly that in the vicinity of
the critical point (8=8, ) fluctuations become
macroscopic —an essential ingredient of a phase transition.
We also note the general relationship, which can be de-
rived from the master equation itself, viz. ,

Bn
&n ~ (73)

VI. DETERMINATION OF 8,

this shows how closely the rate of growth of the order pa-
rarneter n with the pump parameter B is related to the
magnitude of the fluctuations in the system. It follows
that in the vicinity of B„n rises steeply from a value close
to a~ to a value close to a3, i.e., bn =O(Q), over a range
of 8 which is only O(1); see the solid curve in Fig. 2. We
shall now carry out further analysis of the problem with
the purpose of establishing a means of determining the
precise value of 8, .

and

n =m]a~+a. 3(X3 (63)
Since we have defined B, in terms of the quantities m~

and m3, it is necessary to obtain explicit expressions for
these quantities. In view of the fact that

[n ],„=vri(a)+oi)+ir3(a3+cr3),2 2 2 2 2 (64)

C)oi
m)++3 —1 .

C3o.3
'

We define B, as the value of B for which
1

'IT') —'IT3 —
2

(65)

(66)

where m.
&

and m3 are the probabilities associated with the
regions around the macroscopic states n =a& and n =a3,
respectively:

C)o)
7TJ-

C) o.)+C3o.3

C3o3
and F3 =

C&o &+ C3o.
(74)

and that explicit expressions for o.
&

and o.
3 are already

known [see Eqs. (61)], we need only to know the ratio
Ci /C3.

Recalling that n =0 is a natural boundary of the process
under study, the steady-state probability distribution p„, as
appearing in the master equation of the problem, and the
corresponding potential function N„[so that p(n) =e "]
are given by
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and

~i —1

p("}=pog

4„=const+ g In(p;/A, ; i) .
i=1

(75)

(76)

We note that at the turning points of the distribution

pn=pn 1, these points are, therefore, determined by the
condition A,„,=p„, which leads to the "deterministic
equation"

n (8—+3)n +(R +38+2)n (P—+2)B=0; (78)

cf. Eq. (48). Now

Equation (75) is based on the fact that in its stationary
state the system satisfies the principle of detailed balance,
namely,

Ci p(ai) =exp[4(a3) —4(a i ) ]=exp(E),ci p(as)
(79)

Pn+ 1pn+1= ~npn

a3
E= g In(p;/A, ;,)

0

I =a&

for instance. We find that
I

n [(n —1)(n —2)+R]
8 [(n —1)(n —2)+P]

= —(a3 —ai)+ —, In +2(R ——, ) tan
CX3 1/2 —1

ai

3
CX3 2

(R & )i/2
4

—tan-'
3

CX1 —2

(R i )i/2

—2(P ——,)' tan

3
CX3 2 —tan

—1

3
CX1 —2

(P i )i/2
4

(80)

Ci o.]E'= ln
C3cr3

2
01=E+—ln2 2
(73

(81)

Equations (61) and (80) completely determine E' and
hence the ratio m. 1/m3. We may now state that the transi-
tion from the lower to the upper branch of the curve in
Fig. 2 takes place at that value of 8 for which E'=0.
This value of 8 is indeed the one we have earlier called 8, .
Taking P = 10 and 8=2 X 10, we find that while

82 ——847.03 and 81 ——1055.95, 8, turns out to be about
912.3.

VII. THEOREM OF EQUAL AREAS

It is well known that the van der Waals equation of
state is cubic in v and, for T & T„ its spinodal curve in the
p-v plane is an S-shaped curve, very much like the one we
have in Fig. 2. There, the question as to which state on
the lower branch of the curve would be in coexistence
with the corresponding state on the upper branch of the
curve is settled by the Maxwell's equal-area theorem. '

The theorem states that a line parallel to the v axis, which
intercepts the S-shaped curve such that it encloses equal

Obviously, the definition of 8, through Eq. (66) implies
that the transition in question takes place when the area
under the bimodal probability distribution curve divides
itself equally between the regions around n =ai and
n =a3 (see Fig. 3). Denoting these areas by n.

i and n.3,
respectively, we may write

m i/~3 —=exp(E'),

so that

f

areas with the two segments of the curve, determines the
states of coexistence. In the present problem, the turning
points of the steady-state probability distribution satisfy
the macroscopic equation

n (8+3)n +—(R +38+2}n (P+2)B =0—, (78)

t
a3

A1 —A2 ——
, B n —8' dn,

a&

(82)

where a] and a3 are the smallest and the largest roots of
Eq. (78} for 8 =8' whereas 8(n) is the value of 8 ob-
tained from the equation of state (78) as a function of the
variable n. Renaming the variables and using (78), we
readily find that

which is also cubic in n This equ. ation, in fact, represents
the hysteresis curve in the (n —8) plane —a well-known
characteristic of the first-order phase transitions (see Fig.
2). Impelled by this analogy, we thought it worthwhile to
investigate the present problem as well along similar lines.
The findings of this investigation turned out to be quite
striking.

For a given value of 8, for instance, 8' such that
82 g 8' &81, the deterministic curve carves out two areas,
which may be denoted by A1 and A2, respectively. Let A1
be the area bounded by the line 8' and the deterministic
curve between 8' and 81 on the right, and A2 the area
bounded by the line B' and the deterministic curve be-
tween 8' and 82 on the left; then
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A) —A2

B
p(n —1) —1 dn

p(n)

—1 dn
n [(n —1)(n —2)+R]
B[(n —1)(n —2)+P]

(aq —ai) R p . (a3 —1)(aq —2)+P= —(a3 —ai)+ + ln
28 2B (ai —1)(ai 2)+—P

3+, tan

3
G3 2

(p i )1/2
—tan

—1

3
CK) —2

(p & )1/2
(g3)

In the spirit of the theorem of equal areas, we define Bp to be the value of B for which A i
——A2. We find that, for

P = 10 and R =2 X 10, Bp turns out to be 916.1, which is fairly close to the value of B, obtained in Sec. VI. In fact, us-
ing Newton's formula, we can write

f(Bp)8 =80- f'(B )p'

where f (B) and f (B) are implicit functions of B as given by

ai(a3+a2)(a2 —ai)f(B)=—(a, —a, ) ——,
'

ln
ai(ai+a2)(a3 a2)

+2~R tan
R

n]—tan 2v P tan — —tan
a3 , ai
P P

and

ai(ai+a2)(ai+a3)f'(B)= 1—
B(ai —a2)(ai —a3)

2R 2P a3(a3+ai)(a3+a2) 2R 2P+ — 1—
R +ai P+ai B(a3 a, )(a3 ——a2) R +a3 P+a3

We observe that the function f (B) changes rapidly, from
positive values O(Q) to negative values of the same order
passing through the value zero as 8 passes through 8„
whereas f'(B) ocntinues to be of order unity. According-
ly, 80 turns out to be very close to 8, . In fact,
Bp B,=O(1) an—d, in the limit Q~oo, Bp/B, ~l. We
thus find that the first-order phase transition of the type
encountered here does indeed obey a theorem of equal
areas which might hold for a much wider class of systems
with cubic interactions. We cannot, however, accord this
theorem a status comparable to the "Maxwell's theorem of
equal areas" for physicochemical systems which rests on a
much surer thermodynamic basis.

VIII. CONCLUDING REMARKS

In line with our earlier work on nonlinear models with
quadratic interactions which showed that, in spite of the
fundamental differences in their structures, both open and
closed systems are locally isomorphic in their critical re-
gions, we have now analyzed a generalized nonlinear sto-
chastic model with cubic interactions. A modified version
of van Karnpen's method of system-size expansion of the

master equation has been employed to study the onset of a
first-order phase transition in the system. While several
features accompanying such a transition have been exam-
ined, a special effort has been made to answer the question
as to when a general stochastic system with a bistable
steady-state distribution will actually jump from one
stable branch to another. While the true answer to this
question lies in the probability distribution itself, a practi-
cal recipe in the form of a Maxwell-type theorem of equal
areas is discovered. This theorem holds weakly for all fin-
ite systems with cubic interactions and attains full
strength in the thermodynamic limit. We hope that the
generalized model considered in this paper and the
mathematical treatment developed here will provide a use-
ful framework for similar studies relating to other scien-
tific (and not-so-scientific) disciplines.
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