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One-component plasma structure factor in tabular form
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The one-component plasma structure factor S(g,I') has been computed with a hypernetted-chain
equation modified by the hard-sphere bridge function. The structure factor is tabulated for reduced
wave number 0.1 < g <25.0 and Coulomb coupling parameter 0.1 <T" < 180. The hypernetted-chain
results are in excellent agreement with Monte Carlo calculations. This table should be useful for

calculations on dense plasmas and liquid metals.

I. INTRODUCTION

A real plasma is a two-component system of charges of
opposite sign, i.e., electrons and ions, with a Hamiltonian
of the form

H=K;+K,+U;+ U+ U,
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for ions of mass M; and charge Ze. Charge neutrality re-
quires N,=ZN;. Obviously this two-component system
requires a quantum-mechanical treatment to prevent a
collapse that would occur in classical mechanics. At high
density, Fermi statistics for the electrons cause a degen-
eracy and an effective decoupling of the electrons from
the ions. At sufficiently high degeneracy the internal en-
ergy of the system can be written as
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where the angular brackets indicate an ensemble average,
and U is the internal energy of the ion-ion Coulomb in-
teraction in the present of the electron fluid. The electron
term above includes the kinetic energy 3eg/5, exchange
energy €., and correlation energy €., In the limit of
very high density the Fermi energy is sufficiently large
that the electrons approach a uniform background distri-
bution of charge. This limit is the one-component classi-
cal plasma (or OCP). The Coulomb energy becomes
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where the ellipsis stands for unspecified background terms
and I'=(Ze)?/kTa, x =r/a, and a =(47N;/3V)" /3. Be-
cause the OCP represents the high-density limit of real
plasma, it has become very useful as a reference system
for thermodynamic perturbation theories, and the OCP
thermodynamic properties and distribution functions have
been computed to high accuracy.!?

II. CALCULATIONS AND RESULTS

Recent Monte Carlo (MC) simulations have given very
accurate results, i.e., five figures, for the OCP internal en-
ergy as a function of T, and this can be expressed as an
analytic function® of I'. Monte Carlo simulations also
give the OCP pair distribution function g(x,I") directly
out to a distance of x =N'/3/2, where N is the number of
particles used in the simulation. The OCP structure fac-
tor is defined as

Stk,D)=1+4p [ d*r e'* T[g(r,T)—1] @)

or, in reduced units,
S(gT)=1+3 [ " x2ax S0 ) (o py (5)
0 qx

where ¢ =ka and h(x,I')=g(x,I')—1. The recent MC
results do not give S(g,I") directly. It can be obtained in
practice from the MC g(x,I") data where these data are
extended to x = o with a hypernetted-chain tail.*

The formal theory of liquids is now sufficiently well
developed that the thermodynamic properties of any
liquid can be calculated accurately if the interparticle po-
tential @(r) is known. A widely used approximation is the
fluid variational theory. In this theory the configurational
Helmholtz free energy may be approximated using the
Gibbs-Bogolyubov inequality>¢

ASAO_'I"(U_UO)O' (6)

This states that the free energy of the actual system (A4) is
bounded above by the free energy of the reference (4,)
plus the difference in the potential energy between the ac-
tual system and the reference system averaged over all
reference configurations. Calculations have been made us-
ing hard spheres’ and the OCP*? as reference systems.
By employing hard spheres, molecules are approximated

2990 ©1983 The American Physical Society



28 ONE-COMPONENT PLASMA STRUCTURE FACTOR IN TABULAR FORM

as “billiard balls” with an infinite repulsion for separa-
tions less than or equal to the hard-sphere diameter d, but
with an interaction ¢(r) for r >d. The value of d is
chosen as the one that minimizes A. A convenient feature
of the hard-sphere system is that both the reference free
energy and pair distribution function (or structure factor)
can be expressed analytically. Thermodynamic properties
are computed numerically by taking the appropriate
derivatives of the free energy. In general, the use of hard
spheres introduces repulsions that tend to be too large.
This can be overcome by using inverse power or ‘“‘soft-
sphere” reference fluids. The “softest” of these is the
OCP. It has been found useful for calculations on dense
plasmas and liquid metals where the principal forces are
Coulombic.*%°

It has not yet been possible to describe the OCP struc-
ture factors and pair distribution functions in an analytic
form that is as convenient for calculations as for hard
spheres. In an earlier paper we demonstrated the useful-
ness of the OCP as a reference system for liquid-metal cal-
culations and made comparisons with MC simulations.®
For these calculations we used a tabular form of Hansen’s
OCP MC S(qg,T") results.* Tosi and co-workers!? have at-
tempted to fit Hansen’s data but their analytic expressions
are less accurate and are computationally much slower
than our table look-up scheme.

Recently, we found that our tables occasionally pro-
duced irregularities in the pressure and energy and more
frequently in their derivatives. Calculations of (3P/dT),
showed an unrealistic scatter. We subsequently deter-
mined that these were the result of statistical fluctuations
in the MC S(q,I") data. It was for this reason that we de-
cided to recompute the S(g,I") table using a new modifi-
cation of the hypernetted-chain equation.

The pair distribution function for a liquid is given by

g(r)=exp[ —Bp(r)+h(r)—c(r)+B(r)], (7)

where h(r) is the total correlation function, c(r) is the
direct correlation function, and B(r) is the bridge func-
tion. The total and direct correlation functions are related
through the Ornstein-Zernicke equation according to

h(k)=¢(k)+ph(k)E(k) , (8)

where the tilde indicates the Fourier transform. Due to
the complexity of calculating B(r) it is frequently set
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equal to zero and an iterative solution to Egs. (7) and (8) is
carried out. This is referred to as the hypernetted-chain
(HNC) approximation.

Rosenfeld and Ashcroft'!! have produced a simple
method for including B(r) in an augmented HNC equa-
tion. They argue that the B(r) for monotonic repulsive
potentials form a universal set and propose using the
hard-sphere bridge functions to represent B(r). They fur-
ther note that the Percus-Yevick hard-sphere bridge func-
tion has the same analytic form as the true hard-sphere
bridge function and suggest that it be used in actual calcu-
lations. B(r,7) is a rather complex algebraic function of r
and the hard-sphere packing fraction 7, and is described
in Ref. 11. In order to select the B(r,n) that should be
used in a particular situation, the Rosenfeld-Ashcroft pro-
cedure requires the compressibility obtained by differen-
tiating the pressure equation to match the corresponding
result from the compressibility equation. This is accom-
plished by iterating on 7 until this condition is satisfied.
We used 2048 points and a grid size Ax=0.025 in each
solution of the HNC equation. Once the hard-sphere di-
ameter was located within an uncertainty +Ax /4, the ac-
cepted value 7 was obtained by quadratic interpolation.
The tabulated values of S(g,I") were then obtained from a
similar interpolation to obtain S(g,I") at np. Lado'? has
recently proposed an alternative procedure in which the
free energy is minimized. In the present work we have
followed the Rosenfeld-Ashcroft procedure. Our HNC
computer code produces both g(x,I') and S(q,I"). Table I
compares the results of the current work with the most
accurate Monte Carlo internal energy calculations.® The
agreement is very good. Figure 1 is a comparison of
g(x,170) obtained in the present calculation with the MC
result. Very close agreement is observed with small differ-
ences occurring at the peaks and valleys.

The tabulated values of S(gq,I') for 0.1 <g <25.0 and
0.1<TI" <180 are given elsewhere.!> Note that S(0,I")=0.
For I < 1, we used the unmodified HNC equation because
it is very accurate in this range. We terminated the table
at ['=180 because of the large amount of computer time
required [5 min of Cray-1 CPU (central processing unit)
time for S(g,180)] and because the OCP freezes to a solid
phase’ at ' ~178.

For liquid-metal calculations we compute the right-
hand side of Eq. (6) using the tabular S(q,I'). The exact
expressions are to be found in Ref. 8. An interpolation

TABLE 1. Comparison of reduced internal energies from unmodified HNC, Monte Carlo calcula-
tions, and the modified HNC equation. Values of the hard-sphere packing fraction used in the bridge

functions are also given.

U/NkT

r HNC MC HNC bridge 7
2 —1.315 —1.320+0.000 —1.323 0.095
5 —3.732 —3.757+0.000 —3.762 0.158
10 —7.935 —7.998+0.001 —8.004 0.215
20 —16.538 —16.673+0.001 —16.677 0.278
50 —42.788 —43.102+0.001 —43.103 0.364
100 —86.974 —87.522+0.001 —87.525 0.435
150 —131.364 —132.11040.002 —132.106 0.466
170 —149.152 —149.970+0.001 —149.975 0.480
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FIG. 1. Comparison of Monte Carlo and modified HNC
OCP g (x,T') for T =170.
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scheme is used to find the I' corresponding to the
minimum value of the expression. This value is then tak-
en to be the configurational Helmholtz free energy. With
the new tabular S(g,T"), the problem of smoothness in the
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computed thermodynamic functions has been solved, and
the results are in excellent agreement with Monte Carlo
calculations® on ions interacting through pseudopotentials.

We have found in comparing calculations on liquid al-
kali metals’ with experiments that the I values span a
range almost as large as the table itself. Thus the liquid
near the melting curve reaches I' =180 at moderate pres-
sures, and on the shock Hugoniot near 1 Mbar pressure;
the temperature is so high that I' =~ 1.
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