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Growing interface in diffusion-limited aggregation
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When an aggregate grows by the irreversible attachment of diffusing particles, only a small frac-
tion of the N aggregated particles will collect new particles. These constitute the growing interface.
We study the properties of this interface by computer simulation and analytical estimates. The
mass N; of the interface grows as N and to the 0.6th power in two dimensions and as N to the
0.74th power in three dimensions. Several other masses characteristic of the interface are found to
scale as the same power of N. We argue that these powers represent a critical exponent 5 indepen-
dent of the Hausdorff dimension.

I. INTRODUCTION

In diffusion-limited aggregation' (DLA) particles ag-
gregate to form a large cluster by diffusing to the cluster
one at a time and sticking there. This model is thought to
describe aggregation phenomena in particle dispersoids '

such as soot or dust. A striking feature of DLA is that
the new growth is confined to the periphery of the clus-
ter. The interior is screened from the incoming diffusing
particles. Without this screening effect the aggregates
could not have the tenuous, scale-invariant form which
one observes. Any attempt to understand the scale invari-
ance must thus take account of the screening. In particu-
lar, one must know how much of the cluster is in the in-
terfacial region where growth is occurring. We find that
the number of particles in the interface N; scales as the to-
tal number of particles N to a power which depends on
the dimension of space. The measured power is in clear
disagreement with the simplest mean-field prediction, but
is consistent with a naive geometrical argument.

The interfacial region investigated here should occur
generally when a fractal object absorbs a diffusing field.
This is the situation when a long flexible polymer in solu-
tion reacts with a chemical substrate, or in electroplating
of ions onto a random conductor describable as a percolat-
ing cluster. The same question arises in the electrostatic
field distribution around a conducting fractal or the
scattering of a Schrodinger wave from a fractal object.
Thus, the problem of the diffusive interface is one of con-
siderable practical importance.

If the Hausdorff codimension d —D of a fractal in spa-
tial dimension d is greater than 2, the object should be
transparent to a diffusing field; the screening effect is
small and the whole object is exposed to the field, so that
N; -N ~R, where R is the radius of the object. Clearly,
diffusion-limited aggregates cannot have D in this range.
In the opposite limit of a condensed object, D =d, the
diffusing field would be absorbed within a distance A. of
the surface where A. is

independent
of N. Then

N; /N —A. /R and thus N; —R '. For intermediate
values of D we also expect N; to vary as a power of N,
which we denote as 6. It is not clear how 6 must vary, or
even whether it can be expressed in terms of D alone. D

values in this intermediate regime occur in the important
cases of percolation clusters and flexible macromolecules.

To define N; precisely we consider the growth of a clus-
ter initially of "mass" N particles. An (N+1)th particle
is placed at a large distance from the cluster and it walks
randomly in space until it touches the cluster. It then be-
comes part of the cluster. Particles N+k added subse-
quently to the cluster have a decreasing probability Piv(k)
of touching the first N. The number of particles which
touch the first N as k ~ ao attains some finite limit N; (N).
Evidently the average N; can be expressed in terms of the
Ptv(k),

Another way to define a characteristic range ko of k is

P~(kp) =e

We expect these three measures of the interfacial
"mass"—N;, k»2, and ko—to increase indefinitely with
N. Thus Pz(k) must scale with N for large n:

Py (k) = P~ ( 1 )p(k /kp(N) ) (4)

where kp is some function of N. The scaling function
p(x) is independent of N. Evidently, p(0)=1. Further,
P~(1)=1, since the first particle added is certain to touch
one of the first N. Then, using Eq. (3) to define kp,
p(1)=e '. In view of this scaling behavior, (N;), k~~2,
and ko must become proportional for large N. From Eq.
(1)

(N;)=kp f dxp(x),

and

(N;)= g P~(k) .
k=1

We call (N; ) the average mass of the interface. The mass
attains this asymptote over some characteristic range of k.
We may define this range as the mass k»2 required to
half saturate the interface,
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k
& /2 /ko

(N;)l2=ko I p(x)dx .

Some of the qualitative behavior of p (x) can be antici-
pated. If the interface consisted of N; sites each being in-
dependently filled with equal probability, then p (x) would
be a simple exponential. ' The ratio (N; ) Iki~i would ap-
proach 1. In a given cluster the actual mass of the inter-
face will show statistical variations from its average (N; ).
In the simple model above, where the placement of each
particle N+k is an independent event, ((N; —(N; ) ) ) is
of order N;. "

The spatial dilation invariance of DLA clusters shows
up chiefly in the density correlation function (p(x)p(y) ),
which appears" to vary as (x —y) ". It is natural to
ask whether the interface has any special dilation invari-
ance of its own. We are thus led to consider the spatial
distribution of the N; particles in a typical interface of a
cluster of mass N. The density p;(x) of interface particles
has a correlation function (p;(x)p;(x+r)) which can
readily be measured. Since we are interested in the depen-
dence of the separation r, we may simply measure the
average density of interface particles C;(r) at distance r
from an arbitrary interface particle. The simplest
behavior of p; would be that it has no correlations beyond
that of p itself. If we treat p; as merely that subset of p
lying within some smooth surface representing the inter-
face region, we would find a local interface density C;(r)
equal to the total density C(r)=r times the fraction of
sites at r lying on the interfacial surface. This fraction
falls as r ' Thus we. expect C;(r)=r '. If the inter-
facial surface has a width A, , then C; should become equal
to C(r) for r &&k.

II. SIMULATION

We measured the interface exponent 5 in two and three
dimensions using the lattice simulation of DLA developed
previously. ' The random walker makes nearest-neighbor
steps on a cubic lattice and becomes part of the cluster
when it is adjacent to another cluster site. In the two-
dimensional study nine large clusters of about 9400 parti-
cles per cluster were generated. The Hausdorff dimension
D of these clusters, measured by N=R, was' 1.72+0.06,
taking R to be the radius of gyration and using the last
50% of the intermediate clusters obtained during the
growth of our final clusters. This result is in good agree-
ment with our earlier value for D of 1.73+0.06. The
mass N; of the interface was determined for N ranging in
increments of 20 from 200 particles up to 70% of the fi-
nal mass of each cluster. The lower limit was selected to
avoid large statistical fluctuations in the smaller clusters,
and the upper limit was selected to ensure that the inter-
face was always saturated, so that the k~ao limit had
been substantially attained. The log-log plot of Fig. 1

shows that 1V;(N) is well described by a power law. The
ln(N;) vs ln(N) data from each of the nine clusters were
least-squares fitted to a straight line to obtain the ex-
ponent. The nine values of 6 averaged to 0.603+0.021.
The power is thus in good agreement with that expected
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FIG. 1. Average mass of the interface N; vs the cluster mass

N for two-dimensional clusters. Each N; is the average over six
clusters.
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FIG. 2. Mass N»2 required to half saturate the interface
(denoted kl~2 in the text) vs N;.

for a condensed object, viz. , N;=R. The mass k&&2 re-

quired to half saturate the interface was found (Fig. 2) to
be proportional to N;, as anticipated. The data in Fig. 2
are on a 9045-particle cluster with N ranging from 20 to
7000 in steps of 20. The ratio N;/k&&z was about 0.9, in
near agreement with the hypothesis that Pz(k) is a simple
exponential. Our preliminary measurements of P~(k) it-
self show a slower-than-exponential falloff for large k.
The statistical fluctuations of N; and k~~2 are also evident
in Fig. 2. The variance of either quantity is roughly pro-
portional to the quantity itself. Thus, e.g.,
((N; —(N; )) )=3N;. This is in agreement with our hy-
pothesis of statistical independence.

The bunching of the points in Fig. 2 is noteworthy. It
indicates significant memory effects in the growth of the
cluster. We believe this is related to the instabilities
present in dendritic growth, ' a continuum counterpart of
DLA.
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0.0 TABLE I ~ Growth exponents in the Eden model.

ln {[C(R)]]

Mass N
(thousands)

50—100
25—50
12.5—25

5—10

Number
of

clusters

6
14
21
21

Hausdorff
dimension

D

2.0064+0.003
2.0096+0.002
2.0173+0.003
2.0305+0.008

Interface
exponent

5

0.529+0.05
0.521+0.022
0.542+0.035
0.552+0.04

III. DISCUSSION
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FIG. 3. Interface correlation function C;(r) defined in the

text plotted vs the distance r for two-dimensional aggregates.

The function C;(r) giving the correlations of the inter-
face density p; is plotted in Fig. 3. For this plot the mass
N ranged from 35%%uo to 70%%uo of the final mass of the clus-
ter. For r & 50 lattice sites, the C;(r) had a form indepen-
dent of N and followed a power law: C;(r)-r . The
average power for the six clusters was B =1.13+0.07 for
5 & r & 50. The expected power for distances r much
greater than the interface thickness is B=4/3. For dis-
tances r & 5 the C; (r) tended to fall below the power-law
line as we would expect for r &A, , but no clear short-
distance power-law behavior was evident.

Nine clusters averaging 7600 particles each were used
for our three-dimensional study. These had D =2.52
+0.08 as determined by the radius of gyration, in agree-
ment with D =2.49+0.08 from previous work. Again
the mass N; of the interface varied as N, with
6=0.744+0.018. Here the fitting was performed over the
range N=100 up to half the mass of the cluster. For a
condensed cluster, with N; -R, one would have
6=0.74—0.82. This prediction is not inconsistent with
the data. In three dimensions the ratio of N; to k»2 was
about 0.8; the plots of N; vs k&&2 show the same scatter
and the same bunching of points seen in two dimensions.
We did not study the correlations of the interface in three
dimensions.

Clusters grown using an Eden' model were also
analyzed. In the Eden growth process, particles are added
with equal probability to any vacant site adjacent to the
cluster (including interior vacant sites). The radius-of-
gyration exponent D is shown for various sizes of clusters
grown by the Eden mechanism in Table I. From these
data we conclude that the limiting (N~ ~ ) value of D is
2, i.e., equal to the Euclidean dimensionality d. In this
sense the Eden clusters are "classical. " This table also
shows the results obtained for the interface exponent 6. In
the case of the Eden clusters, our measure of the interface
size is the number of unoccupied sites next to cluster sites.
The results shown in Table I indicate that there is a signi-
ficant finite size effect for the exponent 5 for Eden clus-
ters. However, the results indicate that the limiting
N~ ~ value for 5 is the classical value of 0.5.

N; ~ —N-[p(R)]
R R

Since p(R) -N/R, this gives

N 1/2R d/2 —1 N 1/2+(d/2 —1)/D
l

(6)

(7)

In this mean-field approximation the power 5 is predicted
to be 0.5 in two dimensions (cf. 0.6) and 0.7 in three di-
mensions (cf. 0.74). The mean-field model neglects corre-
lations: It treats the cluster as a cloud of independent par-

Our various measurements of the mass of the DLA in-
terface are for the most part consistent with our simple es-
timates made in the Introduction. But two of our findings
require further discussion. The first is the behavior of the
correlation function C;(r). The observed behavior-
r "—appears inconsistent with the prediction of r
assuming no special interface correlations. The predicted
power requires r to be much larger than any skin depth A, .
If this condition were not fulfilled, one would see an effec-
tive exponent closer to 0, as we did. In view of this effect,
we see no evidence for special interface correlations.

A more serious problem is the interpretation of the
measured exponents 6. In two dimensions the measured
exponent is in good agreement with the condensed-object
behavior N;-R" '. In three dimensions the measure-
ments are also consistent with this law. We have not been
able to understand this behavior in a simple way, in view
of the known properties of fractal density profiles. The
problem becomes immediately apparent if we use mean-
field methods to predict 6. To this end we replace the
density p(r) at distance r from the origin of an N-particle
aggregate by its ensemble average. This density falls off
as r " out to the cluster radius R, and falls quickly to
zero beyond. A steady-state diffusing field u (r) gives the
probability that the random walker arrives at r. The
diffusing field is absorbed by the cluster, the local absorp-
tion rate being proportional to the probability p(r) that a
cluster particle is present. Thus u obeys

0=7' u —constXp(r)u .

For distances less than R, u falls off exponentially in a
distance A, . The scaling of A, with p may be found by us-
ing d /dr for V' and p(R) for p(r). Then
u (r)-u (R)e " ~ with A, cc p(R). The interface
particles are thus added over this depth. We expect the
mass of the interface N; to be proportional to the total
number of particles within the skin depth 2, :
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ticles. Each particle at distance r has an equal chance of'

absorbing the diffusing field. The real aggregate has clus-
tering at all length scales. This clustering should make a
particle at distance r less effective in absorbing the diffus-
ing field than it would otherwise be. Thus the total ab-
sorption rate should be reduced. ' If the clustering were
only local, so that mean-field theory could still be used for
the aggregate as a whole, a reduced growth rate would
mean an increased skin depth and, hence, an increased in-
terfacial mass. We expect the same to be true in the actu-
al case, where clustering occurs on all length scales, and
the skin depth A, becomes difficult to define. Thus the
mean-field prediction of Eq. (6) should underestimate N;,
i.e.,

5& 1/2+(d/2 —1)/D:—5MF . (8)
This agrees with our empirical observations. Along with
this lower bound on N;, there is the upper bound

N; &const)(N-R, i.e., 5& 1.
These bounds show that N; can vary as R ' within, at

most, a limited domain. Since 5&1, we can only have
N;-R ' as long as D &d —1. In fact, D must remain
strictly greater than d —1. Otherwise, if D =d —1, then
5=1 and the interface is a substantial fraction of the ag-
gregate. Mean-field theory becomes qualitatively valid,
and it can be used to estimate 5. From Eq. (8) this would

imply D =d —2, contradicting the supposition that
D =d —1. Thus, if D =d —1 for some d, the law

N; -R cannot hold.
If D merely approached d —1 as d ~ ao, as recent work

suggests, ' we still expect N; -R ' to break down. Oth-
erwise, N;/N —R ' ~R, and, again, mean-field
theory should become more and more nearly applicable.
However, mean-field theory predicts N;/N-R(
—+R ', again contradicting the supposition.

IV. CONCLUSION

This work shows that DLA clusters have a characteris-
tic scaling property besides their Hausdorff dimension,
namely, the mass of the interface. Various measurements
of this mass are consistent with each other. This mass in
turn scales with a well-defined power 5 of the total mass
N. However, we have been unable to account for this
power. It seems likely, rather, that this power cannot be
expressed in a simple way in terms of the Hausdorff di-
mension of the aggregate and the dimension of space.
Studies of the absorption of diffusive fields by other frac-
tals would clarify this question. Such studies would be of
practical interest as well.
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