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Quantum statistics of a multiphoton-laser amplifier at low intensity level
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Numerical results for the statistical properties, and time-intensity correlation function, of
a multiphoton-laser amplifier operating at very low intensity level are obtained and
analyzed. Comparison with the rotating van der Pol oscillator model is made. Time varia-
tion of the second-order cumulant of the photon number displays a maximum at a time
which is approximately evaluated.

I. INTRODUCTION II. CrENERAL EQUATIGNS

Photon statistics of a single-mode laser radiation
continue to be the subject of several publications
both experimental and theoretical. As a matter of
fact, in seeking the most precise description of the
laser field, it is necessary to study all the physical
processes involved in the interaction between atoms
and field. For instance, effect of cooperative atomic
interactions on photon statistics has been examined
by Huang and Mandel' and subsequently by Zu-
bairy. More recently contributions froin multipho-
ton processes have been investigated but exact re-
sults are well established only when absorption and
emission processes are studied separately. ' If both
processes are taken into account, analytical solutions
for the master equation which describes the evolu-
tion of the diagonal elements of matrix density of
the field are difficult to obtain except for the steady-
state solution and within the condition of detailed
balance between absorption and emission. Very re-
cently, in order to investigate possible relations be-
tween photon antibunching and strong saturation,
Mohr has studied the photon statistics in saturated
M-photon amplification and attenuation of coherent
light. But here again effects of emission and absorp-
tion have been analyzed distinctly and, to obtain
analytical results, only the case of high intensity lev-
el has been considered. It is the purpose of this pa-
per to treat the general problem and to present nu-
merical results on the photon statistics of multipho-
ton lasers which obey the detailed balance condition
at the low intensity level.

We consider some interactions between a field and
a homogeneous set of N-independent two-levels
quantum systems. For the sake of simplicity we
shall call such a system an atom. We assume that
the atoms make transitions between these levels, and
M-photon processes of absorption and emission are
possible. To simplify the theory we restrict our-
selves to the case of a single-mode field whose fre-
quency is resonant with the atom transition frequen-
cy. We suppose that the number of excited atoms
can be held constant by some external pumping pro-
cess.

A. Master equation

Following the method initiated by Scully and
Lamb for the one-photon laser, it is possible to
derive the equation of motion for pf the density ma-
trix of the field and then to obtain the master equa-
tion governing the evolution of the diagonal ele-
ments P (n, t) = ( n

~ pf (t)
~

n ), which is the probabil-
ity distribution to find n photons in the field at time
t Let us very .briefly outline the method.

In the interaction picture, we start with

i A p,f ( t ) =[H,p,f ( t )],Bt
(1)

where H is the interaction Hamiltonian and p,f ( t) is
the density operator of the atom-field system. It is
usual to assume that the field and atoms are un-
correlated at the initial time to. Scully and Lamb
have shown, using perturbation methods, that Eq.
(1) can be rewritten as
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T

pf (to+t)=pf(to)+Tr.
p=l

p t

J, dr, J dt~[H(f, ),[H(r )2, . . . [H(t )pf, (t,D)] ]] (2)

with pf (to) =Tr, I pgf (t[])I. Now, Eq. (2) requires solution of the expression of H. Under the rotating-wave ap-
proximation and for the case of interest here, we make use of

O aM
~gM

( t)M ()
(3)

where gM is the coupling constant for an M-photon dipole transition, a is the photon annihilation operator, and
a is the photon creation operator. With the given initial distribution p,f (to) for the atom-field system and the
decorrelation condition

p,f(to) =pf(to)Sp, (to) =
N, f(to)

Nbpf (to) (4)

where N~ and Nb are constants. Therefore the calculation of (1) using (2) is done with the help of the property
(55) of the Ref. 6 (see p. 295). For r=2, in Eq. (2) with (3) and (4), the equation obtained describes an M-
photon laser in linear approximation. As we expand Eq. (2) to the fourth-order approximation (r=4), terms of
saturation begin to be non-negligible. For higher-order terms in Eq. (2), the master equation for the matrix ele-
ments PM(n, t) of pf could be written in the form given by McNeil and Walls. It is an appropriate generaliza-
tion of the M=1 equation [see Eq. (17), p. 285 of Ref. 6]

dP~(n, t) M

1jl (n +l)[FM(n)PM(n, t) pMPM(n +M—, t)]
1=1
M —1

where

~ I

1=a
(n l)[G—M(n)PM(n M, t) PM—P~(n,—t)],

t

P, (nM+ j)=0;

(5)

(8b)
M

+M(n) = &+X~ $ (n +l)
1=1

and

(6) for n =0, 1,2, . . . and j =1,2, . . . , M —1.

B. Intensity correlation function

GM(n)= 1+XI J [ (n —l) (7)

PM is the loss parameter and XM is the saturation
parameter which is essentially proportional to gM.
The time t is defined by t =AMz where AM is the
gain parameter. Very recently Eq. (5) has been es-
tablished in a different way by Singh (see Ref. 7).

The general solution of Eq. (5) is difficult to ob-
tain except in some special situations. For example,
if only absorption (or emission) terms are con-
sidered, exact results are reached and given in (Ref.
3). Also by invoking detailed balance considerations
and given the initial photon distribution depending
only on P(nM), n=0, 1, . . . , the steady-state solu-
tion P, (n) can then be evaluated. One obtains4

n
1

P, (nM) =P, (0) g [
k=1 M —1

p~ 1+XM J J (kM —j)
j=0

P(I, t) =P(I)T(t), (9)

so that the problem consists in solving the eigen-
value equation

LPq (I): A qPq (I) (10)

where L is the appropriate operator and A.
q

the

Since it is interesting to understand how the pho-
ton statistics are modified by the M-photon process-
es, it is also worthwhile to study how the multipho-
ton processes affect the time-dependent properties of
the field.

It is usual to associate with Eq. (5) the continuous
nonstationary Fokker-Planck-type equation. A
rigorous derivation of this equation is not simple.
However, it is a useful way to determine the evolu-
tion of the laser not too far from the threshold.
Therefore given the Po(I, to) initial intensity proba-
bility distribution, the P(I, t) describes completely
the dynamical evolution of the light intensity. It is
also usual to seek P (I, t) in the product form
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eigenvalues. For the classical model of rotating-
wave van der Pol oscillator (RWvP), k„

I I2(2I —2aI —4) + (4I),

where a is the pump parameter.
With the 5 function as the initial distribution,

P(I, t) is then the transition probability P(I, t/Io, to)
given in the form"'

Pq(I)Pq(IO)
P(I,t/I, ,t, )= g

q=0 s 0

1LI L I II ~ll I I I II ~ I I J I I Ljl I \ Ill I I I L
10 10 10 10 10 1 10 100

FIG. 2. Variation of the reduced second-order cumu-
lant of the photon number vs undimensioned time for
M=1, 2, 3, and 4.

xexP[ A,q(t —t—o)], (12)
with

where P, (Io) is the stationary light intensity distri-
bution. Now it is possible to calculate the required
intensity time correlation function using the rela-
tions

P(I2, t2,II, t1)=P(I2, t2/I„t( )P(I),t) )

C, = f, IP, (l, t(dl .

The behavior of the normalized correlation function
given by Eq. (15),

A(r)= [6(r) G(a—o )]/[G(0) —G( oo )], (16)

(lIl, ) = f f lII2P(l~, t, ,lI, tI)dIIdlz,

where

(14)

will be computed for various M at time t for which
the stationary region is well approached.

and

I, =I(t+r) .

For the Markovian processes that are of interest
here, it is well known that Eq. (14) actually takes the
simpler form

(15)

10

Equation (5) has been solved numerically using
the computational method described in Appendix A.
It is adapted from the method that we already used
for the one-photon process. '

The main results we want to discuss are summa-
rized in Figs. 1—4. The values of the parameters are
determined so that the mean number of photons at
the steady state is approximately the same for all
values of M and the loss parameter is chosen con-
stant for all M: P=0.9, X ~

——7.1 && 10
72=5&&10 ', +,=2.9~10 ', and X,=1.8SX10 '.
The mean number of photons at the origin of time
axis &n )o is taken equal to 1.

In Fig. 1. we plot semilogarithmically the steady-
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FICx. 1. Steady-state photon probability distribution
PP(n) for M= 1, 2, 3, and 4.

FIG. 3. Variation of the reduced second-order cumu-
lant of the photon number calculated at the steady-state
regime vs the mean number of photons for M=1, 2, 3,
and 4.
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model as a function of the pump parameter a [see
Eqs. (9) and (10) of Ref. 10]. In our notation

1/2

(21a)

P (I)=Poexp b.I — I—
2

(21b)
-1

1P

3xl)p
0 2

FIG. 4. Behavior of the reduced-time intensity correla-
tion functions vs the reduced time y~~ for M=1, 2, 3,
and 4.

state solutions to Eq. (5) for M =1, . . . , 4. These
have been obtained for t~ ——60, t2 ——5, t3 ——0.9, and
t4 ——0.3. As recalled with Eqs. (5)—(7), the model
chosen here for the M-photon amplifier is a process
involving exchange of blocks of M photons. There-
fore the curves are plotted for n =Q,M, 2M, . . . ,
qM. The probability for other n's is, according to
(8), equal to Q. This is the case when the initial dis-
tribution is the Kronecker symbol. However, the
numerical results show that P, (qM+j) are very
small but not equal to 0 for the initial distribution of
Poisson (see Appendix A). All the results given here
are obtained with the initial distribution of Poisson.

We point out that all distributions are not correct-
ly fitted by a Gaussian shape. The Poisson distribu-
tion does not fit either the steady-state distribution
for M=1. This deviation has already been noted for
high (n )0. Also the limit value for the mean num-
ber of photons which has been taken as

is not correctly verified for M) 2. So in order to
compare our numerical results with the theory
developed for high intensity level, we computed the
normalized second cumulant of the photon number

(19)

It is well known that this quantity is identical to the
normalized intensity variance

(20)

The coefficient kr is calculated from the RWvP

where Pe is obtained from f P(I)df = 1.
In Fig. 2, the curves k„ for M= 1, 2, 3, and 4 are

plotted semilogarithmically versus t. We observe
that for all M, the curves k„(t) display a maximum
at a time tM which can be roughly approximated as
shown in Appendix C. This approximation scheme
seems reasonably good for M=1,2. For other M,
the discrepancy comes from the exponential
behavior retained for the gain which is valid only
for the very-short-time range. The exponential as-
sumption is then clearly inadequate. Also it is im-
portant to note that for (n )0) (n ) with ( n )
given by (17) there is no maximum for k„(t), and
k„(t) increases smoothly from 1 to k„( Oo )=1.30.

In order to test the validity of the RWvP model
for M= 1, we plot k„vs (n ) for the steady-state re-
gime in Fig. 3 together with the kr derived from (20)
and (21b). Now, for M = 1, . . . , 4, we note that for
(n ) )40, k„given by our results and those derived
from the RWvP model are in excellent agreement
for all M. We notice first that k„((n )) displays a
maximum for 5 & ( n ) & 10 and M varying from 1 to
4. Also at high (n), k„ is independent of M, al-
though ( n ) and ( n ) are functions of M. For
small values of (n), the deviation becomes larger
and the RWvP model is clearly incorrect. Specially
for (n ) -0.1, the RWvP model leads to k„-rr/2
instead of k„—1, which is the exact result that we
have found numerically.

On the other hand, as recalled with the Eq. (15),
the intensity correlation function, given M, can be
expressed as a series of decreasing exponentials. The
coefficients appearing in Eq. (15) can be calculated
(Appendix B) in terms of the eigenfunctions Pq(I, t)
given by Eq. (12). The behavior of the normalized-
time intensity correlation functions given by (16) for
each M is illustrated with the Fig. 4, where yM is the
inverse of the time correlation. This has been calcu-
lated as the abscissa at which A~(rM)=e '. We
found ~~ ——7.5, rz ——0.14, ~3 ——6X 10, and
r4 —5&&10 . Another definition of r~ [see Eq. (5-
28) of Ref. 9] would not give very different results.
We see that for M=1, A, ~(~) is very close to a single
exponential profile and as M increase the profile
tends to be of constant value except in the immedi-
ate vicinity of the origin of the time axis. We found
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that the eigenvalues A,q, which are of importance in
(15), are for q = 1, . . . , M together with A,o

——0.
Moreover, for M~ oo, ~~ —1/M so that

(22)

as it begins to be verified for M=4.
In summary, we have considered and numerically

studied the statistical properties of M photon laser
amplifier at low intensity level and it is found that
the RWvP model is not valid at very low intensity
level. It is also proved that the correlation time de-
creases with M and shown that, for high M, each
block of M photons can be treated independently.

dual space of N "left" (or "row") eigenvectors de-
fined

(A5)

We recall the usual relations between the vectors of
the dual spaces

(A6a)

(A6b)

Using these relations, a straightforward calculation
leads to the expression

APPENDIX A: CQMPUTATIQNAL METHQD
FQR CALCULATION

OF THE PROBABILITIES P(n, t)
DEFINED BY EQ. (5)

N
P' '(s) = g ~

i,k ) (s —A, ,
'"')

(A7)

The system of N )&M first-order linear differential
equations governing the time evolution of the distri-
bution P(n, t) in a M photons amplifier, as defined
by Eq. (5), can be written in the closed form
[P(n, t) —=P„(t)],

(k)
=A'"'P'"'(t), k =0, . . . , M —1 (A 1)

P'"'(s)=(sI —A' ') 'P' '(0), (A3)

where I is the N &C N identity matrix.
We assume that any matrix A'"' is nondefective.

Therefore it has a set of N "right" (or "column" )
eigenvectors ( ~

i,k) j associated with the N eigen-
values A, ,

'"' and defined by the identities

(A4)

The space of vectors
~
i, k ) is complete and it has a

where P'"' is a vector of dimension N whose com-
ponents are the functions P„M+k(t). The associated
matrix A '"' has its elements defined by Eqs. (5)—(7).
They do not depend on the time. Each system of
equations defined by Eq. (A 1) can be solved in-
dependently. The Laplace-transform method allows
us to solve easily these equations. The Laplace
transform of Eq. (Al) is

sP' '(s) —P'"'(0) =A '"'P'"'(s), (A2)

where P' '(s) is a vector whose components are the
Laplace transform of the components of P'"'(t), s is
the variable associated with t in the Laplace
transform. The vector P'"'(0) contains the initial
value of P' '(t).

The formal solution of Eq. (A2) can be written

The inverse Laplace transforiri is easily performed
and we obtain

P (t)= y ~

t k )(l k
~

P (0))

&&exp(A, ,' 't) .

Xexp(A, ,' 't) . (A9)

We emphasize the practical interests of this method:
The calculation is performed for any initial condi-
tion without the necessity of rediagonalizing the ma-
trices. The relative accuracy of the computed values
is only dependent on the accuracy of the diagonali-
zations of the A' ' matrices. This remains constant
whatever the given time t is when the distributions
P„'~+k(t) are computed. In our case the relative ac-
curacy of the diagonalizations is at least 10

The method described above and the results ob-
tained apply to any system of linear differential
equations with time-independent coefficients. For
the paiticular Eqs. (5)—(7) we consider in this paper,
two features have some consequences on the long-
time solution of Eqs. (5)—(7). First, there is a limit
solution P' '( oo ) when t goes to infinity. This
implies that in each matrix A ' ' an eigenvalue,
say A, ',"', is zero and all others are negative. The lim-
it solution is given by solving the system of algebraic
equations

Now let us call u„~+k; the nth component of the(k)

column vector ~i, k). We easily obtain the expres-
sion for any P„~+k(t) element of the distribution
P(t)

P„~+k(t)= g u„'M+k;(i, k
~

P'"'(0))
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)=0 (A10) ui i=, l =I,X(k) (A14)

or by the relation, from Eq. (AS),

P'"'( ao ) =
i
l, k ) ( l, k

i

P'"'(0) ) . (Al 1)

Also summing Eqs. (5)—(7) over n leads to the re-
lation

gP I+k(t) =0 . (A12)

0 & g P„~+k(t) & 1, k =0, . . . , M —1

n=0
(A13a)

g P ~+k(t): 1. —
nik

Using relations (A 1 1)—(A13), we have

(A13b)

On each k block of probabilites the sum of proba-
bilities is a constant. Since there are physical proba-
bilities of counting n photons, we have the quanti-
cally induced relations

when the u are the elements of the bra vector (i,k i:
P'"'( oo ) =

i
i,k ) g P„M+k(0) .

n

(A15)

Equation (A15) has important physical implica-
tions in the case of the multiphoton amplifiers. We
see that the long-time distribution is dependent on
the eigenvectors of the matrix and on the sum of
probabilities in each block k at initial time. So in
the one-photon amplifier, as g„P„—:1, the long-
time distribution is only dependent on the eigenvec-
tors i.e., the physical characteristics of the amplifier.
On the contrary, in the multiphoton amplifiers the
long-time solution is also dependent on the distribu
tion of the photon probabilities in euery block at time
t=Q. This can have important consequences when
the input mean number of photons is very small. In
particular, the amplifier noise, i.e., the field obtained
by amplifying zero photon input, has nonzero prob-
abilities in the sole k =0 block.

APPENDIX B: METHOD FOR COMPUTATION OF THE TIME INTENSITY CORRELATION FUNCTION

The second-order time correlation function can be written

(n2, t+1;ni, t)= g n2P(n2, t+r;ni, t)niP(n, , t;IP(0)I,O)
nl, n2

(81)

P(n, , t', IP(t) I, t) (82)

represents the conditional probability for counting n2 photons at time t ) t when the probability detection for
the photons at time t ( & t ) is defined by the set of variables I P (t) I. In the expression (81), in P (n2, t +r;n &, t),
n i means for a probability distribution

P„(t)=5„„ (83)

Using the fact that the Liouvillian equation is a first-order linear differential equation and referring to the
quantities defined in Appendix A, expression (81) can be rewritten

k gk~ gkt
(n, ,t+r;n„t) = g +6;je ' e i

k=1 ij

where

8'j g (n 1++k)(n2+ +k)&,k, i&n, kj ViIn, k (j k
I Po )

nl, n2

(85)

We can easily write the normalized correlation function

(ni, t+r;n2, t) no(n, t+r,—IP(0)) )
g, (t, t+r)=

(ni, t;n2 t) —no(n t+ IPrI)D
(86)
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(n &..)

3.50
3.30
2.66
2.56

~annum

7.1~ 10-'
5 ~ 10-'
2.9~ 10-'
1.85 y 10-'

2.06
0.12
0.025
0.003

4.30
3.30
2.43
2.05

2.5
0.12
0.0075
0.0006

TABLE I. Comparison of the computed t~„„ time at which k„~(t) is maximum with the
approximated values t~„~ obtained from Appendix C for M= 1, 2, 3, and 4.

M x k„(n )„„ thecal

where (n, t+r, IPpj) is the mean number of pho-
tons at time t +r, given the initial conditions IPp I
and can be explicitly computed using formula (AS).

For a sufficiently long time t, formula (84) can be
simplified, using the fact that only the terms where
AJ=0 give a contribution. Assuming that in each
block of the Liouvillian matrix this particular eigen-
value is indexed by 0, formula (84) can be rewritten

N

(n„t+r;n, , t) = g +8;"pe ' (87)
k=1 1

Except for very small values of r the evolution of
the correlation function with r is governed by the
smaller nonzero eigenvalue of each block k. So if
N= 1, the correlation time is directly given by

r, =1/A, I,
where A, I is the smallest of the nonzero eigenvalues,
whereas if N ~ 1 the correlation time cannot be sim-
ply defined and has no simple physical meaning.

APPENDIX C. APPRGXIMATIGN METHGD
TG CALCULATE THE TIME

AT WHICH THE SECGND CUMULANT
IS MAXIMUM

(C&)

with

Also by definition

(n2) =k.,~(n )2+ (n )=k„,M (n )' . (C4)

On the other hand, we have noted that the max-
imum of k„~ occurs for

d'(n )

simultaneously. Making a new derivative of (C3)
and taking into account (C4) we find

whose solution is simple for M= 1 but difficult to
derive for M) 2.

For X~&0 but small enough so that J~n &&1, it
can be shown

From Eq. (5) it is easy to calculate the derivative
of the first moment given by

(n) = gnP~(n, t) . (Cl)

We find for +~ =0 and P~ =P,

, =($$ (n+()) pI Q (n —()), (c2—)

(C5)

Now we use our numerical results to verify the as-
sumptions leading to (C5) by noting that
k„~-M + 1. These values give reasonably good es-
timates of (n ) as we can see in Table I. However,
calculation of t~ from the linear approxmation of
(n ) is clearly poor for M~2.
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