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A systematic study of the temporal evolution and of the power spectrum of the output intensity
produced by a hybrid bistable system with a delay in the feedback loop has shown that self-pulsing
and chaotic oscillations are the result of the nonlinear coupling among an infinite number of modes
of the linearized system. The main qualitative differences observed both experimentally and in
computer simulations between short- and long-delay-time regimes are caused by the emergence of
progressively more unstable modes as the delay of the feedback is made larger. The fairly abrupt
changes in the temporal patterns, which in earlier numerical studies have. been interpreted as period-
icity windows are, instead, the result of frequency locking among a large number of modes of the
system. From this work we conclude that the short- and long-delay-time regimes do not differ fun-
damentally from one another, and can easily be described in terms of a common analysis.

The delayed action of the feedback mechanism in a bi-
stable system driven by a constant input field is known to
produce periodic or irregular self-pulsing in the output in-
tensity under appropriate conditions. ' Experimental evi-
dence of this effect was first provided with a hybrid
electro-optic device in which the delay of the feedback
loop was made considerably larger than the inverse band-
width (response time) of the system. In this case the in-
stability was observed to generate an output train of near-
ly square pulses, with a period approximately equal to
twice the delay time, which progressed into a chaotic
structure upon varying the intensity of the external cw
field. In these experiments no clear evidence was found
for the existence of an infinite sequence of period-
doubling bifurcations, although the investigators have re-
ported the unexpected appearance of frequency locking.

Independent experimental tests on a similar type of bi-
stable system have uncovered a very different
phenomenology, unfortunately without the benefit of a
clear clue for understanding the origin of the observed
differences. An important aspect of the experiments dis-
cussed in Ref. 4 is that the delay of the feedback loop was
comparable in magnitude to the system's response time,
thus suggesting that perhaps the nature of the self-pulsing
instability and the mechanism for the emergence of chaos
might depend in a sensitive way on the length of the de-
lay.

A theoretical analysis of this problem was carried out
by Gao et aI. in an attempt to clarify some aspects of
this problem. As anticipated, their computer simulations
of the output intensity for long-delay times displayed the
characteristic square wave shape reported in Ref. 3. For
short delays, however, the situation was considerably more
complicated, as one might expect on the basis of the re-
sults of Ref. 4. Computer scans corresponding to a fixed
value of the (unstable) steady-state output intensity
displayed nearly sinusoidal oscillations just beyond the in-
stability threshold; these were followed, for larger delays
(but not uniformly for all values of the incident intensity),
by what appeared to be bifurcated solutions of the 2P and
4P period-doubling type, at least judging from the shape

x(t) = —,y [1—a cos[8+ V(t)]],
dV(r) + V(r) =x(r T), —

dt
(1.2)

where y and x (t) represent the input and output intensity
levels and V(t) the feedback voltage; T is the delay time in
the feedback loop, 0 measures, in units of the half-wave
voltage, the fixed bias applied to the electro-optic element,
and x is the modulation depth of the device. Both T and
the time variable are scaled to the response time of the hy-
brid system, and, thus, are dimension-free. The stability
of the steady state [dV/dt=0, x(oo)= V(ao)] is con-
trolled by the transcendental equation

S+ 1 ——y sin[8+x( 00 )]e =0
2

(2)

of the time-dependent solutions. On the other hand, no
evidence again was found in support of the existence of an
infinite sequence of period-doubling bifurcations, such as
observed, for example, in other models or optical bistabili-

6

To complicate the picture, a very detailed theoretical
analysis of the Ikeda model, which in the dispersive limit
produces the governing equations of this hybrid device,
has proved the existence of period-doubling sequences
which are consistent with Feigenbaum s universality con-
jecture when the delay of the feedback loop becomes in-
finitely long.

In this paper we report the results of further studies of
this problem based on the analysis of the power spectra of
the output intensity. As we show below, the spectral
analysis, coupled to a precise knowledge of the complex
eigenvalues of the linearized problem, and further aided
by the corresponding time-dependent output intensity
solutions, provides a powerful tool for describing some of
the general features of this system. With the help of these
tools, we have gained a qualitative understanding of the
origin of the periodic and chaotic oscillations and clarified
the relation between the short and long delay limits of the
bistable model. The system is described by the coupled-
delayed equations,
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as discussed in some detail in Refs. 4 and 5. An impor-
tant point for the present discussion is that Eq. (2) admits
an infinite number of solutions. The real part of each root
measures the characteristic (amplification or damping)
rate of the corresponding linearized mode, while the ima-
ginary part measures the oscillation frequency. When
ReS &0, the linearized mode, corresponding to the eigen-

value S, is unstable.
A convenient way to survey the distribution of the roots

of the secular equation (2) is shown in Figs. 1(a) and 1(b).
Figure 1(a) is a representative of all the unstable situations
corresponding to a delay time T of the order of unity.
The characteristic feature of this range of delay times is
the existence of no more than one unstable mode for all

values of the input field for which one can observe a self-

pulsing output. On the contrary, when T becomes suffi-
ciently large, the real parts of the eigenvalues cluster to
such an extent that even a small change in the input field
can cause a large number of modes to become unstable all

10at once. Furthermore, the imaginary parts of the roots
approach values that are odd multiples of ~/T and be-

come nearly commensurate, a circumstance that greatly
favors the onset of frequency locking. This feature of the
spectrum (i.e., the existence of only the odd multiples of
the fundamental frequency) is at the origin of the observed
square wave pattern for large delays. Thus, the very dif-
ferent appearance of the periodic self-pulsing outputs ob-
served experimentally in Refs. 3 and 4 is easily traced
back to the different structure of the eigenvalue spectrum
in the small- and long-delay-time regimes. Surprisin 1gy
as we shall see, the power spectra of the output intensity
are not as qualitatively different from each other in the
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FIG. 1. Graphical display of the complex roots of Eq. (2).
Solutions of the secular equation lie at the intercept of the two
families of curves. Horizontal and vertical axes label the irna-

ginary and the real parts of the roots, respectively. Thus the
points of intercept located above the horizontal axis correspond
to unstable modes of the system. Figure (a) has been drawn for
x(ao) 3.6 and T=0.7. Figure (b) corresponds to x(ao)=2. 6
and T=40. In all our computer simulations, we have selected
x =0.8 and L9=m. /2.
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FIG. 2. Power s ectrumower spectrum of the output intensity corresponding to x( oo ) =3.6 and T=0.7. The horizontal fre uenc axis is scaled
in units of the system bandwidth (same units as used for the calculation of thee ca cu a ion o t e eigenvalues). Main components of the spectrum are la-
c e in e figure. The remaining components have also been identified, but have not been labeled for clarity
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two regimes as one might expect.
We now summarize our findings with the help of two

typical scans, the first corresponding to a fixed value of
the intensity and variable delay times of the order of uni-

ty, the second corresponding to a large fixed value of T
and variable input intensity. In all cases, the solutions of
the time-dependent equations have been obtained by for-
mally integrating Eq. (1.2) and then solving numerically
for the time-dependent voltage V (t) from the accumulated
knowledge of the previous history of this variable. Several
standard and not so standard tricks have been developed
to make the calculation as efficient and accurate as possi-
ble; in addition, we have carried out all the normal checks
to ensure the reliability of the time-dependent solutions.

A typical spectral output corresponding to a periodic
signal for T=0.7 is shown in Fig. 2. The large and easily
recognizable features are of the fundamental frequency
and its harmonics. Several other frequency components
of the spectrum are rather close to the imaginary parts of
the stable eigenvalues of the linearized problem. The
small differences are due, almost certainly, to the non-
linear coupling among the linearized modes. By way of il-
lustration, we have listed in Table I a number of eigen-
values and the corresponding frequencies from the calcu-
lated power spectrum. " The additional smaller spectral
features, besides the ones already discussed, are easily in-

terpreted as combination tones of the various components.
A few of them have been identified in Fig. 2 (the others
which also result from frequency mixing have not been la-
beled for clarity). Needless to say, the close match of the
main spectral lines with the imaginary parts of the linear-
ized eigenvalues offers an extremely convenient way to
identify all the essential features of even very complex-
looking spectra.

A graphical summary of the above is provided in Figs.
3(a) and 3(b), where the real and imaginary parts of the
eigenvalues have been plotted as functions of the delay
time T, and where the imaginary parts can be compared
directly with the corresponding frequencies calculated
from the power spectrum. This behavior is characteristic
of all values of the input intensity, and not typical of only
the case displayed in this figure. An interesting feature of
these results is not only the unexpected small difference
between the frequencies of the linearized modes and the
corresponding nonlinear spectral components, but also the
appearance of frequency looking corresponding to a delay
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TABLE I. Real and imaginary parts of the first four eigen-
values of the eigenvalue equation (2) for x(ao ) =3.6 and T=0.7.
The column labeled co; lists the position of the appropriate peaks
in the power spectrum. The frequencies are measured in units
of the system's bandwidth (inverse of the response time) ~

FIG. 3. (a) Dependence of the real parts of the eigenvalues on
the delay time T in the small delay range for x( ao ) =3.6 Num-
bers 1 —4 label the successive eigenvalues. (b) Imaginary parts of
the eigenvalues (solid lines) are plotted as a function of the delay
time. Dots identify the location of the appropriate peaks from
the power spectra corresponding to x ( ~ ) =3.6. When T be-
cornes approximately 1.07 frequency locking occurs. When
T=0.9, a subharmonic component is observed in the spectrum.
This occurrence has no apparent influence on the behavior of
the frequencies plotted in this figure.
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in the input field cause many linearized modes to become
unstable nearly simultaneously. Typical power spectra,
calculated for T=40 and values of the input field slightly
above the self-pushing threshold, show strong locking of
all the frequencies, with the odd harmonics dominating
the even harmonics by several orders of magnitude [Fig.
5(a)]. For larger values of the incident field, a subhar-
monic bifurcation is observed [Fig. 5(b)] together with a
strong growth of all the spectral components relative to
the fundamental. Eventually, as noted in the short-delay
case, the frequency locking appears to be lost and the
spectrum quickly acquires broad and unresolved features,
while the output intensity displays aperiodic and erratic
behavior. Here again the transition to chaos is rather
abrupt and highly suggestive that the loss of synchronism
among the strongly excited components lies at the origin
of the observed behavior.

In conclusion, the spectral analysis of the temporal in-

tensity records may have taken some of the mystery away
from the origin of the erratic oscillations which have been
predicted and observed in this hybrid bistable system. The
unstable evolution, for short delays, is dominated at first
by the only unstable mode and its harmonics. The stable
modes, whose natural frequencies are incommensurate
with that of the fundamental, gradually become more im-
portant contributors to the system's dynamics, as a result
of the nonlinear mode-mode coupling which is enhanced
for increasing values of T above the instability threshold
[for fixed x( ao )]. Frequency locking characterizes a range
of delays where all the infinite modes of the system ap-
parently oscillate in synchronism, and at the end of this
range, loss of synchronism results in erratic behavior. For
large delays the picture remains qualitatively the same, ex-
cept that because of the structure of the eigenvalue spec-
trum (the imaginary parts of the eigenvalues are very
nearly commensurate) frequency locking sets in practical-
ly at threshold for self-pulsing.

The overall picture that emerges out of our study is
somewhat reminiscent of the Landau scenario: Here, also,
the linearized dynamics is characterized by an infinite
number of frequency components. However, unlike the
case proposed by Landau, we see no sharp break of con-
tinuity or additional instabilities heralding the increased
role played by new spectral features; on the contrary,
chaos appears to result merely from the loss of synchron-
ism of the many excited modes.

It may be significant that periodic behavior persists, in

our case, even after the emergence of three or even more
independent unstable modes. This differs from the
Ruelle-Takens scenario where chaos is likely to occur with
the appearance of the third instability.

It is difficult to draw a comparison between our results
and the ones presented in Ref. 7. Mention should be made
of the fact that the imaginary parts of the eigenvalues be-

come exact odd multiples of the fundamental when
T~ ap and that an infinite number of modes become
simultaneously unstable in this limit. These complications
have discouraged us from trying to draw any kind of con-
nection at this time between the finite and infinite delay
time cases. This, however, appears to be a worthwhile

project to pursue.
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