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6p photoionization in high-Z elements and the influences of relativistic Cooper minima
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Relativistic Dirac-Slater calculations of the photoionization of the 6p subshell in elements in the

range 82&Z & 100 have been performed, examining cross sections, branching ratios, and angular

distributions. The zero (Cooper minimum) which appears in the 6p ~ed nonrelativistic matrix ele-

ment is split into three relativistically, for the matrix elements 6p3/2~ed3/2 6p3/2~F5/2, and

6p&/2~ed3/2. The outstanding feature of our results is the huge energy splitting between these

minima, more than an order of magnitude larger than the discrete 6p3/2 6p&/2 splitting. The origin

of this phenomenon is discussed along with its consequences for angular distributions and branching

ratios.

I. INTRODUCTION

During the past two decades, the overall systematics of
photoionization of low-Z atoms has become largely under-
stood through the continued interplay of theory and exper-
iment. ' However, the calculations of the process, at
various levels of approximation, have been predominantly
nonrelativistic. Thus their ability to deal with high-Z sys-
tems (where relativistic effects are of importance and ex-
perimental work is sparse) is not well known. We have,
therefore, embarked upon a project of calculation of vari-
ous aspects of the photoionization process for heavy
atoms over a wide range of subshells, within an explicitly
relativistic framework. Our main effort is toward eluci-
dating the effects due specifically to relativistic interac-
tions and how these effects depend upon atomic number
Z. To this end, we compare calculations made nonrela-
tivistically, based on the Schrodinger equation, and rela-
tivistically, based on the Dirac equation, using the same
atomic model in each case.

One of the features of the photoionization process
which is most sensitive to the details of the interaction,
and on which we therefore focus in the present work, is
the so-called Cooper minimum (or, perhaps,
Dichtburn-Bates-Seaton-Cooper minima), characterized
by a photon energy for which the dipole matrix element in
the dominant i~1+1 channel has a zero. These minima
occur extensively in photoionization of outer and near-
outer subshells; we have chosen to study the 6p subshell
initially. In this case the single nonrelativistic p-d matrix
element splits relativistically into three matrix elements,

p&/2 ~d»2, p3/z~d3/2, and p3/2~ds/z', each has its own

Cooper minimum (zero) at a different position and some
recent preliminary work has shown that the splittings in
energy of the positions of these three zeros are much
larger than originally anticipated. To understand the sit-
uation more fully, we present herein a more systematic
study of the energy dependence of 6p photionization ma-
trix elements for 82 (Z ( 100. The cross sections,
branching ratios, and angular distribution asymmetry pa-
rameters are also examined to identify the observable
consequences of the splittings and relativistic motion of
these minima.

In the next section we give a brief review of the calcula-
tional methodology and the atomic potentials employed.
Section III presents and discusses our results. Section IV
gives a summary and a prospectus for future work.

II. THEORY AND METHOD OF CALCULATION

In the central field approximation, the relativistic cross
section for photoionization of an electron in an (n, l,j)
subshell of an atom by electric dipole radiation (a fairly
good approximation for hv (500 eV) is given, in atomic
units and jj coupling, by

IRi-i I
+477'C +nlj 2j —1 2 1 2

cok 2j +1 12j t 12j(j+1)

+ 2j+3
12(I+1) ' '+''
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where co is the photon energy, the photoelectron rnomen-
tum k =[(E+c )(E c—)/c ]'i, with E (gm0c ) the to-
tal energy of the ejected photoelectron, N )j is the occupa-
tion numer of the subshell, and the Ri are the (complex)
single-particle radial matrix elements corresponding to
transitions into final continuum states of angular momen-
tum j. The continuum functions are normalized such that
the asymptotic amplitudes of the large and small com-
ponents are [(E+c )/(2E)]'i, respectively; this corre-
sponds to unit amplitude in the nonrelativistic limit. We

sg.
can write Ri Rie——' where Ri is real and gJ is the sum of
the Coulomb phase shift gc and the non-Coulomb phase
shift 5J. The details are given elswhere. ' In the cases of
pizza and p3/2 electrons, Eq. (1) reduces to

(2)

and

respectively.
The angular distribution of photoelectrons produced in

an electric dipole process is given by"'

[1+PP2(cos8)],
6f0 0'

dQ 4~
(4)

where cr is the total cross section, P2 is the Legendre poly-
nomial [P2(x) =(3x —1)/2], 8 is the angle betweeen the
photoelectron direction and the photon polarization, and P
is the asymmetry parameter. The same form of expres-
sion is also applicable for unpolarized photons if now 8 is
the angle between photon and photoelectron directions
and the replacement P~P/2 is inade. '

The expression for the asymmetry parameter p in j-j
coupling in the central field approximation is

(2J —3}(2j—1} R (2j —1}(2J+3}
~R

~
~ (2j+3}(2J+5)
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~

(
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+
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In the cases of p i' and p3/2 electrons, Eq. (5) reduces to

R ~2R
1/2 3/2

and

(6)

Pq
——[36Rg, , 4Rg, ~ 18R—g, Rg cos(gg, ,—gg, , }y 10R, Rg, ,cos(g. . gg, ,}-

y 90R, Rg, cos(gg —gg ) ](25R, +5Rg ~45Rg, )

In the nonrelativistic limit where R~ ——R~, and
3/2 5/2

Eqs. (6) and (7) are both identical to the non-

relativistic expression for P.
Central field Dirac-Slater (DS) wave functions, corre-

sponding to pure jj coupling, were used for our calcula-
tion. The central field DS potential, along with the
discrete wave functions for the initial states, was generat-
ed using the code of Lieberman et al. ' The wave func-
tion for the final continuum orbital was generated using
the same central potential in which the initial bound orbi-
tal was computed, i.e., the potential that a test charge
would see in the field of a DS ground-state charge distri-
bution, modified by a Latter tail, solving the single-
particle Dirac equation using our own codes. ' '

One question that arises is the specification of occupa-
tion numbers of the j=I+ —, spin-orbit doublets in partial-
ly filled subshells within this central field model. This is
not a crucial point if the open subshell(s) is not the one be-

ing photoionized; some tests run with varying occupation
numbers confirm this view. It can obviously be quite im-
portant, however, when the photoelectron comes from an
open subshell, at least for predictions of the relative mag-
nitudes of the j=l+ —, cross sections. In this work, the
problem arises only for the range of Z's from 81 to 85,
where the 6p subshell is not filled. One possible choice is
to assume that the lower-energy j=l——, state fills first.
This, however, is not consistent with the observation of
both 6p)/2 and 6p3/p electrons in the 6p subshell of lead'
(Z =82), which indicates that the "true" wave function is
an admixture of 6p»2 and 6p3/2 although the former is
certainly the somewhat larger component. We have thus
chosen, for simplicity, with Scofield, ' ' to use statistical
occupation numbers for open subshells, i.e., to keep the
occupation numbers of the j=l+ —,

' and j=l ——,
' states in

the statistical ratio of 1+1:las it is in the closed subshell.
In practice this leads to fractional occupation numbers.
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III. RESULTS AND DISCUSSION

We have seen that the physically observable cross sec-

tions, branching ratios, and angular distributions are to be
understood in terms of continuum phase shifts and transi-
tion matrix elements. Thus we will begin in the sections
which follow by discussing the relativistic modifications
of these quantities. This will lead us to focus on the rela-
tivistic changes in positions of Cooper minima, identify-
ing the relativistic changes in wave functions which are
responsible, and then continue with the discussion of the
consequences for the physical observables.

In a relativistic treatment of the photoionization of the

6p subshell of heavy atoms the 6p ~as and 6p ~ed nonre-
lativistic transitions split, as we have already discussed,
into 6p3/2 ~ES i/2 6d 3/2 ed 5/2 transitions and 6p &/2~6$ i /p, Ed 3/2 transitions; the 6p & /2 ~ed 5/2 transition is
dipole forbidden since 4j =2. Thus the two nonrelativis-
tic dipole transitions become five when relativistic interac-
tions are considered. In the Dirac-Slater (DS) atomic
model employed in these calculations, the continuum
wave function of the ejected electron is uniquely specified
by its energy and angular momentum, independent of
which electron of the initial state is ejected in the pho-
toionizing transition. Thus we are dealing with only three
continuum states es&/2 Ed3/2 and ed5/2.

Most of our understanding of the behavior of transition
matrix elements results from studies of the simpler nonre-
lativistic form. In what follows we will discuss the conse-
quences of relativity in terms of this simpler formalism.
Therefore, before proceeding, it is important to point out
that, in addition to the calculations performed as
described in the preceding section, we have done some test
calculations of this nonrelativistic form using only the
large components of the initial and final radial Dirac wave
functions in this formalism, i.e., using the large parts of
the relativistic wave functions we have done a nonrela-
tivistic calculation. The results were quite close to those
from the full relativistic matrix elements. (This would not
have been true for photoionization of inner shells. ) Thus
we conclude that the important relativistic effects in this
problem may be understood simply in terms of these large
components of the discrete and continuum wave func-
tions. This allows us to carry out the analysis of the re-
sults in the nonrelativistic manner without examining the
small components of the wave functions, the relativistic
dipole operator, etc.

A. Phase shifts

In Fig. 1, the F5~2 and ed3/i non-Coulomb phase shifts
are shown for uranium (Z=92). We see that the phase-
shift difference is both relatively small and roughly con-
stant as a function of the energy. The consequence is that
in Eqs. (5)—(7) the main differences in angular distribu-
tions are due to changes in R, not 5. We note that the
spin-orbit interaction, which splits the ed s, is energy in-

dependent (in contrast to, for example, the exchange in-

teraction in a Hartree-Fock calculation, which is explicitly
dependent upon the energy ). The phase-shift differences
can be expressed in terms of an integral involving the
spin-orbit Hamiltonian and the continuum wave func-
tions. ' The important part of the range of integration is
near the nucleus where the spin-orbit force is large. In
this region the continuum wave functions are virtually in-

dependent of energy over the range of energies we are con-
sidering (at very high energies this would not be true).
Thus it is reasonable that the phase-shift difference is

roughly energy independent. Note that 5d & 5d indi-

cating a more attractive potential for ed3/2, this, of
course, is a manifestation of the fact that the spin-orbit
force is repulsive for j=l+ —,

'
(ed&&2 in this case) and at-

tractive for j=I——,'.
These features are qualitatively the same in every case

we have studied, the ed 3/2 phase shift always being
greater than the ed5/2 and their difference being nearly
constant. We do however find that the difference in-

creases with Z, as we expect, since the spin-orbit interac-
tion increases with Z. The values of this splitting are
0.026, 0.029, 0.031, 0.034, 0.037, and 0.040 (in units of m.

radians) for Z =82, 86, 88, 92, 96, and 100, respectively.
Also shown in Fig. 1 is the nonrelativistic d-wave phase

shift for uranium obtained from a Hartree-Slater (HS) cal-
culation. ' This is the nonrelativistic analogy to our DS
results in that each electron "sees" the field of the other
electrons along with a local density approximation to ex-

change but within the framework of the Schrodinger
equation. The relativistic and nonrelativistic non-
Coulomb phase shifts can be compared directly since the
low-energy Coulomb phase shifts for an electron in the
field of a singly charged ion and low energies hardly differ
in the two cases (by an amount of order a ). The results
show that the nonrelativistic ed is pulled toward the nu-

cleus as compared to either of the relativistic ed's and that
the nonrelativistic phase shift is always greater than the
relativistic; the difference, furthermore, is inore or less en-

ergy independent. This indicates that the net nonrelativis-

Since the non-Coulomb phase shifts characterize the de-
viations of the outer parts of the continuum wave func-
tions with respect to Coulomb functions, important in dis-
cussing the zeros of transition matrix elements, and since
they also play an important role in determining the pho-
toelectron angular distribution asymmetry parameters, it
is appropriate to begin by discussing relativistic effects on
the non-Coulomb phase shift. (The relativistic effects on
a Coulomb phase shift of charge Z =1 are very small. )

While some of these points have been noted earlier in gen-
eral terms, we believe a discussion focused on this partic-
ular case will be helpful.
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FIG. 1. d-wave phase shifts for uranium vs photoelectron en-

ergy e. Relativistic d3/2 and d5/2 results are shown along with
the nonrelativistic value.
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tic potential for d waves is more attractive than either of
the relativistic effective potentials. We observe this for all
cases studied; the result is just the opposite of the hydro-
genic (point Coulomb) case where all wave functions,
discrete and continuum, contract under the influence of
relativistic interactions.

The relativistic interactions are strongest near the nu-
cleus and get rapidly small with increasing r. Thus, for a
given energy, the contraction effect is greatest for s states,
whose amplitudes are greatest near the nucleus, and gets
progressively smaller for p, d, and f waves, respectively,
since the amplitudes decrease at small r with increasing
orbital angular momentum. For multielectron atoms the
extra relativistic attraction at small r is still there and all
the subshells from 1s to 3d contract. However this causes
the nucleus to be more screened, so that outside these sub-
shells the net electrostatic attraction is less, relativistically,
than in the nonrelativistic case. Outer subshells respond
to the combination of these effects, which act in opposite
directions. For the higher s and p orbitals, which have ap-
preciable amplitude near the nucleus, the net effect is con-
traction, while f orbitals, which are small near the nu-
cleus, expand. For d orbitals the two effects come closest
to canceling, and the direction of the net result changes
with increasing r; the 3d contracts and the higher d's (in-
cluding the low-energy continuum) expand. These ideas
are discussed in more detail elsewhere in connection with
Hg. The energy independence of the difference between
nonrelativistic and relativistic phase shifts may now be
understood in the same manner as for the discrete split-
ting, but now considering both the spin-orbit interaction
and the change in the potential due to interior relativistic
contraction.

In Fig. 2, relativistic d3/2 phase shifts are shown as a
function of atomic number Z; the d5/2 results are not
shown since, as discussed above, they lie just below and
are parallel to the d3/2 values. The systematics in Z is ex-
actly the same as the nonrelativistic case ", at and just
below a noble-gas configuration (Rn, Z =86) there is a
slight rise above threshold before the eventual fall, while
for higher Z the phase shifts decrease monotonically. A
detailed discussion for the nonrelativistic case has been
given elsewhere. ' The s-wave phase shifts, shown in Fig.
3, which we will also need in determing angular distribu-
tions, are also very similar to the nonrelativistic cases.
However, for the reasons discussed above, the nonrela-
tivistic phase shifts are slightly less than the relativistic
phase shifts and are parallel to them.
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FIG. 3. Phase shifts for the s&/2 wave for a variety of ele-
ments vs photoelectron energy t .

B. Transition matrix elements and cross sections

The cross sections for 6p3/2 and 6p&/2 photoionization
of U are shown in Fig. 4, plotted versus photon energy.
Two imporant features of the energy dependence emerge
clearly from this data. First, for both cross sections one
may distinguish a near-threshold region of extremely ra-
pid drop with increasing energy and a high-energy region
where the falloff is much more gradual. Second, the 6p3/2
cross section falls off more rapidly than the 6p&/2 cross
section near threshold and then reaches the region of slow
decrease at a much lower energy than does the 6p&/2.
Both of these features are due to the existence of zeros in
the p~d dipole matrix elements, generally referred to as
Cooper minima, ' which we will discuss in detail in Sec.
III C. The key fact is that the p3/2~d3/2 and p3/2~d5/2
minima occur at much lower energy than for p&2~d3/2 a
fact indicated by the change of shape of the 6p3/2 at much
lower energy than 6p&/2.

The reasons for the change in shape of these cross sec-
tions can be better understood from Fig. 5, where the
cross sections for the individual final-state subchannels
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FIG. 2. Phase shifts for the d3/2 wave for a variety of ele-
ments vs photoelectron energy e.

FIG. 4. Photoionization cross sections for 6pl/2 and 6p3/2
subshells in uranium.
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FIG. 9. 6p&/q photoionization cross sections as in Fig. 7, but
with an expanded energy scale showing detail of the threshold
region.

FIG. 7. Same as Fig. 6 for 6p&/2 photoionization.

The more detailed behavior of these cross sections near
threshold is shown in Figs. 8 and 9 for 6p3/2 and 6p&/2,
respectively. A great deal of variation of the cross sec-
tions with Z is evident, which we shall not attempt to dis-
cuss in detail at this time. We do note, however, that the
most rapid drops with energy are for Z =82 and 86 for
both 6p3/p and 6p & &2, where more of the oscillator
strength is concentrated near threshold. This can be un-

2

I I I I I I I I I I I I I I I I I-

10

10

10-1

I I I I I I I I I I I I I I I

0.5 1.0 1.5
6 (a.u. )

FIG. 8. 6p3/2 photoionization cross sections as in Fig. 6, but
with an expanded energy scale showing detail of the threshold
region.

derstood by noting that the cross sections in this region
are primarily p~d as seen in Fig. 5 for uranium, and that
the drop in cross section is a result of the ed's moving in
toward the nucleus with increasing energy. Thus anything
which accelerates this moving in will make the cross sec-
tion fall still more rapidly. In these two cases the d-wave
phase shift is increasing from threshold (as shown in Fig.
2) moving the ed's inward more rapidly. Thus the energy
dependence is accelerated, in these cases, as compared to
the others which have d-wave phase-shift energy depen-
dences which decrease from threshold. Other correlations
between the energy dependence of the cross sections and
of the d-wave phase shifts can also be seen; the more rap-
idly the phase shift decreases, the more slowly the cross
section falls with energy in the threshold region.

The total 6p subshell cross sections are shown in Fig.
10; these are simply a sum of the 6p&/2 and 6p3/2 cross
sections discussed above. A selected comparison of these
results with nonrelativistic results using the same atomic
model (which however does not mean the same potential)
is given in Fig. 11. We have verified that the difference
between relativistic and nonrelativistic potentials used in
the same model calculation (whether relativistic or nonre-
lativistic) is small. Although the general systematics of
the nonrelativistic cross sections is qualitatively similar to
the relativistic, two important differences in detail emerge,
which have the consequence that nonrelativistic predic-
tions are quantitatively poor throughout the low-energy
regime. (This is in contrast to the low-energy region of
inner shells for which, contrary to one's first expectation,
relativistic effects are small. ) First, the relativistic cross
sections are considerably larger than the nonrelativistic at
threshold, owing to the fact that the nonrelativistic d-
wave phase shifts are greater than the relativistic (cf. Fig.
l), so that the nonrelativistic d wave is pulled in relative to
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I- of these minima.

Before proceeding to that discussion, it is worthwhile to
note that all of the above results are from calculations in
the electric dipole approximation, ' higher rnultipoles have
not been included. We have, in fact, calculated the higher
rnultipoles but their effect on the total cross sections in
the energy range we are considering is very minor.

C. Cooper minima
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10-'—

10-2 I

100 200
hv(eV}

300 400

FIG. 10. Total 6p photoionization cross sections for a num-
ber of elements.

2

110

the relativistic which decreases the matrix element. This
is further enhanced by bound-state effects which pull the
relativistic 6p's in compared to the nonrelativistic.
Second, the change of slope comes at a much lower energy
in the nonrelativistic calculation, indicating that the non-
relativistic Cooper minima are much lower in energy than
the relativistic. In the next section we present a discussion

As we discussed previously, the single nonrelativistic
p~d matrix element is replaced by three separate rela-
tivistic matrix elements, each exhibiting a change in sign
(Cooper minimum) but at a different photoelectron ener-
gy. The trajectory in energy of these minima in the rela-
tivistic and nonrelativistic matrix elements, as a function
of Z, is shown in Fig. 12. There are several striking
features in these results. First, we note the strong Z
dependence of the 6p&/z-~ed3/z minimum. For Z=82 it
is located about 200 eV above threshold, while by Z =100
it appears about 460 eV above. Second, the energy split-
ting between the 6p3/2 minima and the 6p&/2 is huge, be-
ing 100 eV for Z =82 and increasing to more than 300 eV
by Z = 100. There is also a splitting between the
6p3/z~ed3/p and 6p3/p~ed5/2 minima which increases
slowly from about 20 eV at Z =82 to almost 50 eV at
Z= 100, as can be seen from Fig. 12. Further, the locus of
the nonrelativistic p~d minima lies below any of the re-
lativistic minima, roughly a constant 10 eV below the
p3/2~d3/2 minima independent of Z. Thus the effect of
relativistic interactions is both to move the minima to
higher energy and to introduce a very significant energy
splitting among them.

To understand these results, consider first the
p&/2~d3/2 and p3/2~d3/2 minima. In our DS calcula-
tion for a given photoelectron energy e, the ed3/2 wave
function is exactly the same, independent of the initial
state of the photoelectron. Thus since the final state in
each of these transitions is exactly the same, the huge
splitting must result from the differences between the
6p&/2 and 6p3/2 bound-state wave functions. In first ap-

100

!d,

g 10

Z

HS, , „
P ~d

l~ /p

10 '— 86'

82 I I I I I I

0 100
e (eV)

300
I

500

hv(eV}
FIG. 11. Comparison of total 6p photoionization cross sec-

tion in relativistic (Dirac-Slater) and nonrelativistic (Hartree-
Slater) approximations for three elements.

FIG. 12. Trajectory (in photoelectron energy) of the "Coop-
er" zeros in the 6p~d dipole matrix elements, as a function of
Z. Various relativistic matrix elements are labeled, while HS
refers to the nonrelativistic Hartree-Slater results. Also shown,
for comparison, is the spin-orbit splitting of the 6p l/2-6p3/p ener-

gy levels as a function of Z.
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proximation, in regions where these wave functions are
large, the 6p»2 wave function is the same as the 6p3/2
only displaced inward towards the nucleus, because the
spin-orbit force is attractive for j=I——, but repulsive for
j=I+—,. Thus at the energy for which the overlap of the

6p3/2 wave function is such that the dipole matrix element
vanishes, the radial extent of the ed3/2 is still too great to
have the similar overlap needed for the 6p&/2 matrix ele-
ment to vanish. Since continuum wave functions move in
with increasing energy, it is clear that the 6p&/2 minimum
will occur at a higher energy.

The 6p&/2~6p3/p spin-orbit splitting of bound-state en-
ergies, also shown in Fig. 12, is an order of magnitude
smaller than the splitting of the minima. One might think
that the same energy difference by which the discrete pi&2
is displaced inward from the p3/2 should cause the ed3/2
to move in similarly, so that the minima would be split by
about the same amount as the discrete states. This is not
true, owing to the centrifugal barrier for d waves which
makes it far more difficult for continuum d waves to
penetrate the core region than the discrete p orbitals. The
strength of the centrifugal barrier for d waves, then, is re-
sponsible for the more than tenfold "magnification" of the
splitting, while the increasing strength of the spin-orbit in-
teraction as Z increases causes the increased splitting of
the minima with Z.

We see from Fig. 12 that the location of the
6p3/2~Af3/2 zero varies little with Z, while as already
noted the 6p&/2~ed3/2 shows an extremely strong varia-
tion. In examining this difference, we have observed that
both 6p wave functions move in about the same amount
with increasing Z; the displacernent of 6p»2 inward with
respect to 6p3/2 remaining roughly constant. (Although
the 6p~/2~6p3/2 spin-orbit energy splitting increases with
increasing Z, it also takes a larger energy to displace the
wave functions as they move toward the interior of the
atoms where the potential is larger. ) The d wave functions
are also displaced inward with increasing Z, and just
enough so that the 6p3/2~ed3/2 minimum has very little
variation with Z. Then, although the ed3/2 wave function
moves in the same distance for each Z to get to the point
where the 6p&/2~ed3/2 matrix element vanishes, since the
6p's are displaced inward with increasing Z it takes more
and more energy for the ed3/2 to move in that distance
owing to the strength of the d-wave potential barrier.
Thus a given energy increase has a greater effect on the
ed3/2 wave function in the vicinity of the 6p3/2 minimum
than near the 6p&/2 minimum, which occurs when the
continuum wave function is closer in. This is the reason
that the 6p&/2 minimum is so much wider than those of
6p3/2 as shown in Fig. 5.

The much smaller splitting between the 6p3/2~ed3/2
and 6p3/2~ed5/2 minima is evidently due to the final
continuum states, since the initial states are exactly the
same. The spin-orbit force pulls the ed3/p in and pushes
the ed5/2 out; thus the ed3/2 minimum occurs at lower en-
ergy, as seen in Fig. 12. In addition, the increase in the
strength of the spin-orbit interaction with Z causes the in-
crease in the separation of this minima with Z.

Finally, we note that the nonrelativistic 6p ~ed
minimum behaves almost exactly like the 6p3/2~ed3/2

minimum, as a function of Z. Owing to the relativistic
contraction of the core, the electrostatic attraction be-
comes greater for p states and less for d states, as com-
pared to nonrelativistic, as discussed in Sec. IIIA. But,
the 6p3/2 also "feels" a spin-orbit repulsion makes its net
attraction similar to nonrelativistic, while the ed 3/2
"feels" a spin-orbit attraction, so its net attraction is also
close to nonrelativistic.

D. Branching ratios
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FIG. 13. 6p3/p ~ 6p&/2 photoionization branching ratios for a
nUmber of elements. Note that these are plotted against photon
energy.

The 6p3/2. 6p&/2 branching ratios are shown in Fig. 13.
A strong energy dependence is seen in all cases, along with
a very significant deviation from the nonrelativistic (sta-
tistical) ratio of 2. Just above threshold, all of the branch-
ing ratios are less than one. At higher energies, all of the
branching ratios increase dramatically, the amount of the
increase becoming greater with Z. At still higher energies
they will once again drop.

These results can be understood very simply from our
discussion of the Cooper minima. The very low values for
the branching ratios just below 100 eV are a consequence
of the fact that the 6p3/2 cross sections are anornalously
low due to their Cooper minima. The minima in the
branching ratios move to slightly higher energies with in-
creasing Z because the 6p3/2 Cooper minima move out
slightly with increasing Z (cf. Fig. 12). The minimum
values of the branching ratios decrease (less than 0.5 for
Z=100) with increasing Z (note that the 6p»2 cross sec-
tion is larger for these energies in the higher Z's since its
Cooper minirnurn has moved out very far from this ener-

gy region). At higher energies the situation reverses, for
now the 6p&/2 cross sections have Cooper minima while
the 6p3/2 cross sections have "recovered. " Since the 6p&/2
Cooper minima move out so dramatically with increasing
Z, the curves in the higher-energy region differ widely
with Z. Evidently (neglecting other energy variations of
the cross sections) the further out the 6p i&2 Cooper
minimum, the more the 6p3/2 cross section will have
"recovered, " and so the larger the branching ratio, as ob-
served for increasing Z.

For the lower Z's our calculations have been done at
sufficiently high energies that the branching ratios have
flattened out and begun to decrease. We may expect the
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same behavior for the higher Z s, albeit at higher energies,
as has been shown in our work for U. ' (For light Z, but
not heavy Z, there is ultimately still another rise in the
branching ratio at mc energies. ) The slow variation with
energy at these higher energies reflects the lack of struc-
ture, whether Cooper minima or shape resonances, in the
matrix elements.

E. Photoelectron angular distributions

The photoelectron angular distribution asymmetry pa-
rameter p is shown in Fig. 14 for six Z's; the 6p3/2 6pt/2,
and nonrelativistic 6p values are shown in each case. A11
the curves have the same general shape —a rapid rise from
threshold to a maximum of close to 2 followed by a des-
cent to a minimum and a subsequent gradual rise. The
outstanding feature of these results is the significant
difference between the p's for the 6p~/2 and 6p3/2 cases, a
difference which increases markedly with increasing Z.
These features are not due to the behavior of the phase
shifts, which vary smoothly and steadily with energy, but
to the matrix elements.

To understand these results we may begin by noting
that, from Eq. (6), at the energy of the 6p&/2~ed3/2
Cooper minimum where Rd vanishes, P6& is zero as

3/2 1 I/2
well. This occurs in the descent of the P's from their
rnaxirna near threshold; since the Cooper minima move
out in energy with Z, the 6p, /2 P curves also move out, as
is seen in Fig. 14.

The structure of P6&, given in Eq. (7) is somewhat

more complicated than P6& owing to the fact that P6&

is expressed in terms of dipole matrix elements with both
the ed3/p and the ed5/2 channel. Nevertheless, owing to
angular factors, it is seen from Eq. (7) that the eds/2 chan-
nel dominates and 136& goes to zero very close to theP q/2

6p3/p ~ed»2 Cooper minimum; the 6p3/2~ed3/2 channel
acts as a small perturbation. Since the d5/2 minimum
moves only slowly with Z (and the d»2 minima does not

move), P6& remains roughly the same, moving out only

a little with increasing Z. Thus the 6p3/p p's do not
change appreciably as a function of Z, while those of the
6p&/2 cases move out significantly.

The nonrelativistic P's show features similar to the
6p3/2 case, but correspond to lower energies, owing to the
fact that the nonrelativistic Cooper minima are at lower
energies than the relativistic. The rather good agreement
of all of the results, for each Z at threshold and just above
is a consequence of the facts that their behavior depends
primarily upon the rapid variation of the low-energy
Coulomb phase shifts, which are virtually unaffected by
relativity, and the threshold phase shifts, which are only
weakly perturbed by relativistic interactions.

The effect of higher rnultipoles on the photoelectron an-
gular distribution has not been considered in the foregoing
discussion. Higher multipoles can affect P itself, '' as
well as change the form of Eq. (5), which is only true for
electric dipole radiation. " The general form of the pho-
toelectron angular distribution from an unpolarized pho-
ton beam is"'

g B„P„(cos8),
n=0

where all of the B„reduce to zero in the dipole approxi-
mation except Bo——1, and B2 which then is ——,P as
described above. In the energy range considered in this
work, hv&500 eV, previous work on the uranium' has
shown that the only nondipole terms giving a non-
negligible contribution in Eq. (8) are B~ and B3', their con-
tributions are about S%%uo and so may need to be considered
in comparisons with experiment. Nondipole contributions
to B2 (i.e., to P of this paper) are negligible except in the
vicinity of a deep Cooper minimum. (For similar reasons,
at these energies higher multipole effects on total cross
sections or on branching ratios are also normally negligi-
ble. )

IV. FINAL REMARKS
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FIG. 14. Photoelectron angular distribution asymmetry (P)
parameters for the 6p subshells in six elements, shown vs pho-
toelectron energy, e. In each curve the relativistic 6p3/2 and
6pl/2 results are given along with the nonrelativistic Hartree-
Slater (HS) result.

In summary then, we have found that relativistic effects
introduce very dramatic shifts and splittings of the
6p~ed Cooper minima. The 6p3/p Cooper minima are
much closer to threshold than the 6p&/2 minima. In
consequence, the 6p3/$..6p&/2 branching ratios are very
strongly energy dependent, being very low (less than unity)
in the near-threshold region and rising to rather large
values ( —3 or greater) for higher energies. In addition,
the splittings of the Cooper minima lead to significant
differences in the photoelectron angular distribution
asymmetry parameter p between the 6p t/3 and 6p3/3
cases. The total 6p subshell cross sections are not affected
by the relativistic interactions nearly as much as the angu-
lar distributions or branching ratios.

Unfortunately, there is almost no experimental data on
6p photoionization [except for some HeI photoelectron
data for Tl, Bi, and Pb (Ref. 17)] so we cannot assess
our calculated results in comparison with experiment. It
is important to realize that the inclusion of correlation
and full exchange in the initial- and final-state wave func-
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tions will modify these results quantitatively. However, it
is highly unlikely that more sophisticated treatments will
alter our conclusions qualitatively. In fact, some parallel
work using the far more sophisticated relativistic
random-phase approximation for Rn and Ra has indicated
that the results presented in this paper are substantially
correct insofar as the splitting of the minima and the sys-
tematics of the branching ratios and P's are concerned.

Nevertheless, the need for experimental work, difficult
though it may be with such targets, is clear.
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