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This is an extension of a recently developed quantal theory of laser-induced Penning and associa-

tive ionization. Its purpose is to construct cross-section formulas which are specific to a semiclassi-

cal description of the heavy-particle motions. The photoionization transition amplitudes occurring

in these formulas involve electric dipole matrix elements which connect the initial electronic state of

two colliding atoms to the final, ionized state. Which matrix elements appear in the cross-section

formulas is dependent upon how the state of the ejected photoelectron has been specified. In our

previous theory this specification included both the energy and momentum (direction of motion) of

the photoelectron. Here we include the cross-section formulas and collision theory which are ap-

propriate when the direction of motion of the photoelectron is left unspecified.

I. INTRODUCTION

The dynamic events with which this study is concerned
may be considered either as collision-induced photoioniza-
tion or as laser-induced chemi-ionization (LICI). They
can be represented schematically as follows:

A +8 [(A . 8) (A . 8)++e —
]

Ace

A +B++e, LIPI
AB+ +e, LIAI

(F 1)

with A and B indicating two atoms and Ac@ the energy of a
photon produced by a single-mode linearly polarized laser.
The frequency of this laser is less than the ionization lim-

its of both A and B and is not resonant with any electronic
transitions of the two atoms.

When the products of reaction are the three widely

separated species A +B++e, we shall call the process
laser-induced Penning ionization (LIPI). The photoab-
sorptive process which produces the diatomic AB+ ion
will be called laser-induced associative ionization (LIAI).
As indicated in Fig. 1, neither of these events is energeti-

cally possible unless, in the course of a collision, the inter-

nuclear separation becomes less than the critical value
R*(co). Which, (if either) takes place during a given col-
lision is determined by the laser frequency, the initial rela-

tive kinetic energy of the two colliding atoms, and the
value of the internuclear separation at the instant when

photoionization occurs.
We' recently presented a quantal theory of these pro-

cesses in a paper which henceforth will be identified as I.
The cross-section formulas generated by this theory in-

volve solutions of heavy-particle scattering equations as
well as (internuclear) separation-dependent amplitudes for
photoionization. The nature of the information which is
available about photoionization depends upon its source.
That which is semiempirical often is expressed in terms of
photoionization rates rather than amplitudes. Further-
more, some theoretical studies provide more detailed in-

formation than do others about the relevant electric dipole
matrix elements. Thus, the first objective of this paper is

to present (in Sec. II) LIPI and LIAI cross-section formu-

las adapted to the different types of photoionization infor-
mation which are apt to be available. One of these adapta-
tions requires a modification of our earlier theory which is

presented in the Appendix.
Our second objective, to which Sec. III is devoted, is to

eliminate the need for solving the heavy-particle scattering
equations of the "exact" quantal theory by replacing the
associated wave functions and phase shifts with suitable
semiclassical (JWKB) approximations. There is little
reason to doubt the adequacy of numerical predictions
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FIG. 1. Examples of situations where LICI can take place.
Curves labeled Ed(R ) and E,(R ), respectively, show the varia-

tions with internuclear separation of the energies of the adiabatic

(diabatic) electronic states of the initial AB configuration and of
the final AB+ molecular ion. Curves labeled A+B+Acu are

plots of Ed(R)+%co. E is the initial relative kinetic energy of the

colliding atoms. LICI can occur only if R &R~(co). FF chemi-

ionization is possible in the lower panel provided that R & RFF.
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based on the resulting semiclassical theory. Furthermore,
in addition to significantly reducing the computational
task, the relatively simple expressions of the semiclassical
approximation permit useful insights to be gained into the
physical mechanisms underlying the experimentally ob-
servable cross sections.

ron was represented by the partial-wave expansion

(2.1)

II. QUANTAL CROSS-SECTION FORMULAS

The theory of I and the modification of it (needed in
Sec. II C) which is outlined in the Appendix of the present
paper, incorporates a number of approximations. One of
these, the Born-Oppenheimer (BO) separation, is essential
to the entire development. However, the other approxima-
tions are less fundamental and could be discarded or at
least significantly weakened provided that one were will-

ing to tolerate a more complex formalism and to perform
more difficult computations. These additional approxima-
tions include the neglect of all channels other than that as-
sociated with the initial state and those which are specific
to the ionized configurations AB+ +e and/or
A+B++e

The wave equation descriptive of the nuclear motions
associated with the initial electronic state involves an
operator which couples to the ionized final state. It is as-
sumed that this coupling can be adequately represented by
the local approximation. Furthermore, we replace the im-
aginary part of this complex-valued local potential with its
average over all internuclear orientations. Finally, the
complexity of the cross-section formulas and the number
of matrix elements that must be computed are greatly re-
duced by assuming that the (magnitude of) relative angu-
lar momentum of the two nuclei is collisionally invariant.

Our attention will be limited to cross sections that do
not involve the angular distribution of the ejected pho-
toelectron. This restriction is discussed more fully in Sec.
IV.

A. Formulas based on partial-wave expansion

In paper I the wave function of the ejected photoelect-

with e and e, respectively, denoting the energy and direc-

tion of motion of the electron. The subscripts R indicate

that the polar axis to which the angular variables of e and

r; ( =—r;/r;) are referred coincides with the direction R of
the internuclear axis. The radial amplitudes & ~&(e, r;

~

R)
behave asymptotically as Coulomb wave functions and the
cr are the associated Coulomb phase shifts.

The photoionization amplitudes and cross sections of
this theory are conveniently expressed in terms of the
quantities

V,g „+ (R,co) =i (2m.I%co/c)' i

(2.2)

with co the laser frequency and I the incident photon flux.

Pq is the BO wave function of the initial AB electronic
state and P,q„ is a corresponding n-electron
configuration-interaction (CI) approximation to the ion-
ized AB++e state, with Slater determinants composed
of n —1 bound molecular orbitals taken from the same set
used to construct (()~ plus the single continuum orbital

~x„(e,r;
~
R). pp=A. —A~ equals the difference between

the (electronic orbital angular momentum) projection
quantum numbers A;(AB) and Ay(AB+) specific to the
initial and final states of AB and AB+, respectively. Fi-
nally, d = —e .g,",e r; is a spherical component
( m =0,+ 1) of the electric dipole operator of the n-electron
system.

According to Eqs. (4.15') and (4.16') of I the angle-
energy double differential and the electron-energy dif-
ferential cross section for LIPI are given by

and

d2 PI
(E,e)=[Bi (8y)+B &(8y)]+[2Bp (8I) B] (8f) B—t(8f)Icos'8u

dedKg

de
(E~E') (B] +B ] )+ (2BD B ] B] )cos

E'

(2.3)

(2.4)

respectively. Here 8—:cos (a.K; ) and Oy ——cos (E~-E; ) are the angles between the initial direction of relative motion

K; and the unit vectors a and K~, the first of which is the laser polarization and the second the direction of relative

motion of the A and B+ fragments. The functions B '(0~) and B ' are given by the formulas

2

B~ (8~
~
E,e)=g; 2 g g(2L'+1)PI (cos8I)e

' I T (EpL', EL',eA;co). (2.5)
i A, L'

and

2773 -2rm-~'
B '(E,e)= f dKIB '(8I IE &)=g 2 g(2L'+l)e 2™tg ~

T (EpL', EL', eX;co
E;

(2.6)
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wherein

,(EpL' EL', eg;cp)= gg (g, m')( —1) (Ff (Ep, N —1
~

R)
~

V~xz + (R cp)
I
F; (E,N

I
R)) (2.7)

and

1 A, J'
A (A. , m')= y (2I'+ I) ()

I

I dR Ap q (R )%II p(R )—m po+m —po J 4~
(2.8)

+(28p 8, Bi—)cos 8—] (2.9)

specific to a laser-induced associative ionization event

which produces an AB+ molecular ion in the vibronic

state (n', L'M') with energy E„.The coefficients

2773
B ~ (E)=g; (2L'+1)

I&;

—2Im-L'
Xe 2™tg ~

T (E„'L',EL', eA, A;cp) ~',
(2.10)

appearing in (2.9) are the LIAI analops of the LIPI func-
tions defined by (2.6) and eAI ——e(E,E„,co) is the energy of
the photoelectron ejected in this process.

B. Formulas involving photoionization partial widths

It may happen that the only data available (either from
empirical sources or theoretical computations) about the

I

Here, g; denotes the statistical weight of the initial elec-

tronic state, E; = (2pE/A' )
' the magnitude of the propa-

gation vector associated with the initial relative motion of
the two colliding atoms, and Eo ——Eo(E,e,co) the relative

kinetic energy of the heavy particle (A,B+) products of re-

action. Finally, the functions A'J~ (R )=A'J' (8,$,0) are

representation coefficients of the three-dimensional rota-

tion group, as defined by Messiah, F; and Ff are

heavy-particle channel amplitudes associated with the ini-

tial and final states of motions, and g; and gf are the

corresponding phase shifts. The symbols with bars above

them indicate complex-valued quantities.
Corresponding to (2.4) is the integral cross section

V„L M (E)=5M'p[(B] +8 t )
AI AI AI

electronic transitions are the photoionization partial

widths

I (e, ~R)=2 g ~V,q„, (R, )~ (2.11)

These widths are related by the formula

r(e, N 1~ R,N—)= —,'(I,+I, )

+ —,(2I o —I
&

—I 2)(a.R ) (2.12)

to A 'I (e,N —1
~
R,N), the absorption rate of a-polarized

photons by an AB "molecule" with internuclear separation

R and orientation R. [The orientation average of this

absorption rate is fi 'I (e,N —1
~

R,N)
—,
' r. (e,~

~

R).]
In order to express the cross sections of Sec. IIA in

terms of these partial widths we introduce the analog ap-

propriate to the photoionization matrix elements

~,g „,+ (R,~) of an approximation which Hickman and

Morgner applied to the autoionization matrix elements

that arise in the theory of laser-free AI and PI. Namely,

we assume that

V,g „+ (R,cp) =aI„'(R,cp)[r (e,cp
~

R)/2~]' ',
(2.13)

where, in order for (2.10) to be satisfied, the proportionali-
(Pp)

ty factors a~ (R,co) must satisfy the condition
(J 0) 2gz ~ czar (R,cp)

~

= l. Each of these factors is set equal

to its value at the point of stationary phase R, so that the
matrix element appearing in T~ [given by (2.7)] is re-

(]Lip)

placed with the product of a~ (R„co) and

(E'L', EL', e;cp)=(Ff (E',N —1 R)
~

[I (e,co
~

R)I2rr]' 'l F; (E,N R)) . (2.14)

(Application of the mean-value theorem would accomplish the same end. ) We dodge the issue of how the factors

a~ (R„co) are to be evaluated by limiting our attention to those special cases where they can be eliminated from t e
( )

cross-section formula by the condition gz ~
ax

~

=1. The criterion for this to happen is that Iccp=O i.e., that the (elec-

tronic orbital angular momentum) projection quantum number of the product diatomic ion equals that of the initial A-B

state. A (A, ,m') given by (2.8) is equal to 6 ~ when po ——0. Consequently, T (EOL', EL', eA, ;co) is replaced with the

approximation ( —1) czar' (R„cp)r (EpL',EL',ecp) and the quantities 8 '(8f), 8, and 8 ' given by (2.5), (2.6), and

(2.10) reduce to
2

g (
—L'+ L')

Apyg'(8f
~

E,e)=g, ~
g(2L'+ 1 )PL, (cos8f )e

"' "f r (EpL', EL', eA, ;co)
2E;

2773 —2 Im- L'

98~'(E,e)=g; 2
g(2L'+1)e 2™t

~

r~ (EpL', EL', eA:,co)
~

(2.15)

(2.16)

and
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A~'(E)=g; 2
(2L'+1)e 2™1

~

i.~ (E„L',EL', e„iA,;oi)
~

K;
(2.17)

respectively.
These formulas, specific to A; =Af, are unique in that they do not contain the proportionality factors ized' (R„co) and

are expressed solely in terms of matrix elements involving the photoionization partial widths I (e,oi
~

R). They are the

analogs for LIPI and LIAI of formulas that Hickman and Morgner proposed for the corresponding laser-free processes.

C. Formulas based on eigenchannel representation

A third possibility is that instead of the matrix elements (Pi, „+ ~

d
~ Pd ) or partial widths I (e,oi

~
R), electric di-

pole matrix elements involving states P,„for which the linear momentum of the photoelectron is unspecified, are avail-

able. Dipole matrix elements of this sort are the outputs of photoionization theories which use (either explicitly or impli-

citly) the "eigenchannel representation"

P(e, r;
~

R)= g Y~&(r; )„-P „(e,r;
~

R)
A, ,p

(2.18)

2

8 pg'(Bf
~
E,e) =5 ~ o g; i g (2L'+ 1 )Pt (cos8f )e ' T(EoL', EL ', e;oi)

2K;
(2.19)

for the wave function of the ejected electron.
According to this model, photoabsorption deposits the ejected electron in a continuum energy state (e & 0) with an un-

specified direction of motion. A theory of laser induced chemi-ionization that incorporates this model is outlined in the
Appendix. The resulting cross-section formulas are identical in form to Eqs. (2.3), (2.4), and (2.9) but the three functions
BP'(Hf ), 8, and 8 ~ [defined by (2.5), (2.6), and (2.10)] are replaced with

2

2773 $m-L'
8 '(E,e)=& ~ o g; i g(2L'+1)e 2™l

~

T(EoL', EL', e;oi)
~

i
K;

(2.20)

and

8 '(E e)=firn', o gi p
(2L'+1)e 2™1

l
T(EoL EL e'co)

~

i
l

(2.21)

respectively. Here, in analogy to (2.7), (2.8), and (2.2)

T(EoL', EL', e;oi) = +Am (Ff (Eo,N —1
~

R)
~

V, „+~(R,oi)
~
F; (E,N

~

R)),
m

A = g f dR Ao''(R)A'oo(R),
4n

(2.22)

(2.23)

and

V, „,~~(R,co)=i (2irIfico/c)' (P,„+ ~
d~

~ Pd ), (2.24)

where P,„=g& P,i„ is a sum of CI wave functions of the

type involved in the dipole matrix elements of
V,i & +m(R, co), defined by (2.2).

A qualitative distinction between the cross sections of
the "partial-wave" and eigenchannel representations of
Secs. IIA and IIC is that the latter are directly propor-
tional to cos 0 whereas the former exhibit polarization
dependencies of the type a+b cos 0~. The degree to
which the factor a differs from zero is a measure of the
inadequacy of the eigenchannel model which, as explained
in the Appendix and Sec. IV, is less rigorous than the cor-
responding partial-wave theory.

In principle, it is possible to construct the partial-wave

photoelectron function P+—(e, r
~

R) from a knowledge of
the corresponding eigenchannel wave function P(e, r

~

R ).

Thus, the "components" W~& can be extracted from the
latter by the projection operation

Pi&P(e, r
~

R)= f dr 'Qi+(r) Qi„(r ')--P(e, rr '
~
R)

(2.25)

with Qi,&(r) a unit-normalized spheroidal harinonic, and
then recomposed to form

P-+(e, r
~

R)= g [Yi (e)„ie+—' ]~&„(e-,r
~
R) .

iLjl

(2.26)
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III. SEMICLASSICAL APPROXIMATION V, (R,L') = V, (R)+Pi L'(L'+1)/2pR (3.2)

In this section we briefly summarize the procedure for
constructing semiclassical estimates of the heavy-particle
matrix elements that occur in the cross-section formulas
for laser-induced chemi-ionization. This procedure leads
to the three formulas (3.11), (3.13), and (3.15) for the ma-
trix elements specific to LIPI and to analogous formulas
for the LIAI matrix elements. The corresponding semi-
classical approximations to the cross sections then are ob-
tained by substituting these matrix elements and the asso-
ciated semiclassical (JWKB) phase shifts given by (3.7)
and (3.9) into the formulas of Sec. II.

A. Laser-induced Penning ionization

In each of the three situations considered in the preced-
ing section, the cross-section formulas for LIPI involve
matrix elements of the form

X '=X (EOL', EL', ceo)

=(Ff (E ON —1
i
R)

i
U(R)

i
F; (E,N

i
R)) (3.1)

with U(R) equal to one of V,~„+ (R,co), V, „+ (R,co),

or [I (e,co
~

R)I2m]'~ . The F 's are heavy-particle radial
wave functions. Specifically, Ff (E',N'

~

R) is the solution
of a one-dimensional Schrodinger equation containing the
effective potential

wherein gf denotes a real-valued phase shift and
Kf=(2pE'lA )'~. F; (E,N ~R) is a similarly defined
function, the radial dependence of which is governed by
the complex-valued potential V~(R,L') , i—N—R,co) He. re

Vg(R, L')= Vg(R)+A L'(L'+1)I2pR (3.4)

and I (R,cu) denotes the orientation average of the pho-
toionization level width. The complex-valued amplitude

F; is regular at the origin and has the asymptotic form

F; (E,N ~R) (2p/-M K;)'~ sin(K;R —, rrL'+rI; —)

(3.5)

with E; = (2pE/A )
'

our objective is to construct a semiclassical estimate of
X '. The procedure we use for this purpose is patterned
after that of Miller. The first step is to replace the two
radial wave functions and the corresponding pair of phase
shifts with the appropriate JWKB approximations,

This radial wave function is regular at the origin and sat-
isfies the asymptotic boundary condition

Ff (E',N' ~R)-(2plmR Kf)' sin(KfR —,'mL—'+rif ),
(3.3)

RF
Ff (E',N —1

~

R)-=[2plM Kf(R;E'L'))'~ sin 4 m+ f„dR'Kf(R';E'L') (3.6)
f

r)f (E')=- ,' rr(L'+ ,
'

) —KfR+—f„—dR'Kf(R', E'L'),
f

R

F; (E N
~

R) =[2plM K;(R;EL')]'~ sin ,'rr+ f„d—R'K;(R',EL') (3.8)
l

i); (E,co) = , rr(L'+ —, ) K—;R+f„dR—'K;(R', EL'),

wherein R~oo. Here Kf(R;E'L')=[(2rr/fi )[E'—V, (R,L')]I'~i and Rf Rf(E', L') is——the corresponding classical

turning point so defined that E' —V, (Rf,L') =0. Similarly,

K;(R;EL') = [(2p/A'i)[E —V~(R,L')+ , i I (R,co)] I
'~—

(3.7)

(3.9)

and R; =R;(E,L') is the largest positive root of E —V~(R,L') =0. The result of substituting (3.6)—(3.9) into (3.1) is that

X 'can be written as the sum of X+ and X ' with

X+' -—(2pIM ) f dR [U(R)/2[K;(R;EL')Kf(R;E'L')]'~ j

R
Xcos f„dR'K;(R', EL')+ f„dR'Kf(R', E'L') (3.10)

Since it is expected that ~X+'
~

&& ~X ~, we henceforth identify X ' with X '. The latter is then evaluated in the
stationary-phase approximation, the point of stationary phase R being the solution of the equation e=kcu+4E(R),
wherein hE(R):E~(R) E, (R). To simp—li—fy the calculation it is assumed that I is so small that K;(R;EL') can be re-
placed with K~ (R;EL ') +pI (R,co) /2AiK; (R;EL '), where K; (R;EL ') = [ (2p lh )[E—V~(R, L ') ] ]

' ~ . The result of these
manipulations is the formula

X ':(2plrrh )[(UI—2K)(2M Klp
~

V'
~

)'~ cos(r+ ,' m)]—. (3.11)

with V'=dV/dR, K=—K;(R;EL')=Kf(R;E'L'), and

r(R)= f dR'K;(R', EL') f„dR'Kf(R', E'L') . — (3.12)
l f

When there are two well-separated points of stationary phase the JWKB approximation to X ' equals the sum of their
individual contributions, each of which is of the form given by (3.11). However, two closely neighboring points of sta-
tionary phase interfere with one another and cannot be treated independently. An approximation to X ', which is uni-
formly valid for all values of the separation

~

R i —Rq ~, can be obtained using techniques that have been developed to
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handle the special case
~

R t
—Rz

~

~0, of two coalescing points of stationary phase. Thus, following Carrier, we find
that X =X] +X2' with

X~ =(2p/vrh' )[(U/2K)(2vrfi K/p
~

V'
~

)' ]„~(~P /8)' [exp[i(r +P —, rr)—]H&~3(P )

+exp[ i—(r +/3 —,' vr)]—Hf/3(P ) } . (3.13)

Here, H &/3 and H &/3 are Hankel functions, ~ is the value of r(R) evaluated at R =R', and

p~ = [(IM/3' K)[ V'(R)] /[ V"(R)]]„ (3.14)

When the value of P is large, X reduces to X ' given by (3.11) and one recovers from (3.13) the previously stated result
appropriate to widely separated points of stationary phase. However, when these points draw close together, V (R

&
) and

V'(R$) approach the common value of V'(R") =0,

P) ~(p/3R K) [2[V(R ( ) —V(R*)]]
r /[ V"(R *))'r

and Pq~ —P~. Near this point of coalescence the two contributions X~
' and Xq' combine to give the expression

X '=(2p/sruti )[( U /2K)(2A' K/p V")'~ 2m c so]rg gaAi( —z) (3.15)

B. Laser-induced associative ionization

Corresponding to X ' of (3.1) are the matrix elements

X =X '(E ~ L' EL'eAgco)

= (,Ff (E„,N —1
I
R)

~

U(R)
I
F (E,N

I
R) )

(3.16)

which appear in the LIAI cross-section formulas of Sec.
II. Here Ff (E„,N —1

~

R) is a unit-normalized bound-
state radial wave function with a vibronic energy equal to
W(n', L') =E„. The JWKB approximation to this eigen-
function is

Ff (E„,N —1
~

R):—N (n ', L ')Kf ' (R )E„L')
R

Xsin ,' sr+ f„dR'Kf(R—';E„L')
f

By invoking the JWKB eigenvalue relationship

(3.17)

f dR [(2p/A' )[W — (VR, L')]] '~ =rr(n'+ —,
'

)

(3.18)

one can show that the normalization constant appearing in
(3.17) is given by N (n ',L') = [(2)Lt, /rn6 )

~
r) W/Bn'

~

]'
X ' is then evaluated by the same approximation pro-

cedure as that which was used for X '. The only formal
differences that occur are that (i) additional multiplicative
factors of

~

BW/Bn'
~

'~ should appear in the LIAI coun-
terparts of formulas (3.11), (3.13), and (3.15) and (ii)
Kf(R';E'L') in (3.12) is to be replaced with Kf(R';E„L').

with Ai( —z) the Airy function and

z =2' (p/A' K) [V(R
&

)—V(R*)]/[V"(R*)]'

The Airy function occurring in this formula describes the
behavior of X ' within the transition region between
V(R~) & V(R~) and V(R~)p V(R~). [Ai( ~z

~
) rises

monotonically to a value of Ai(0)=0.355 as ~z
~

falls to
zero, whereas Ai( —

~

z
~

) oscillates with an amplitude that
rapidly diminishes with increasing

~

z
~

.]

IV. CLOSING REMARKS

Formulas have been presented in Sec. III for the semi-
classical approximations to the phase shifts and heavy-
particle matrix elements encountered in the theories of
LIPI and LIAI. The operators (functions of internuclear
separation) occurring in these matrix elements are the R
representatives of electronic transition amplitudes for pho-
toionization (or the closely related photoabsorptive level
widths). These transition amplitudes are proportional to
electric dipole matrix elements connecting the bound elec-
tronic state of the initial 3 8 configuration with elec-
tronic continuum states associated with the configuration
(~. . . a)++e-.

The theory which we presented in I was an extension to
laser-induced chemi-ioniziation of Bieniek s theory of
field-free chemi-ionization (FFCI) and, as such, treated
the ejected electron as a free particle with a specified ener-

gy e&0 and a linear momentum p=(2m, e)' e. How-
ever, as we have explained in Sec. II C, the dipole matrix
elements which occur in the LICI cross-section formulas
based on this theory differ from those occurring in
theories of the photoionization process which do not
specify the direction of motion (e) of the ejected electron.
In theories of this second type the ejected electron is treat-
ed as if it were in a sort of positive-energy Rydberg state.
Now one might argue that if there is no interest in the an-
gular distribution of ejected electrons, their directions of
motion then could be ignored from the very beginning.
But this is not the way quantum mechanics works: Aver-
ages over uninteresting (or difficult to measure) quantum
numbers are performed on probabilities, not on probability
amplitudes or (the linearly related) wave functions. Thus,
it seems to us that a "truly rigorous" theory of photoioni-
zation must be based on a final-state representation which
includes a specification of the direction of motion
(momentum) of the ejected electron. On the other hand, it
also seems quite likely on intuitive grounds that in many
situations the consequences of using the less rigorous rep-
resentation will be very slight. Therefore, we have con-
structed (and presented in the Appendix of this paper) a
theory of LICI which is based on a model of the final ion-
ized state, which leaves unspecified the direction of



THEORY OF LASER-INDUCED CHEMI- . ~ . . II. 2865

motion of the ejected electron. This theory produces

several interesting results, e.g. , (i) it predicts that the LICI
cross sections will be proportional to cos 0, whereas those

generated by the theory of I vary as a+b cos 0~ with

a&0; (ii) it is the analog of Miller's adaptation to FFCI
of O'Malley's very elegant theory of dissociative attach-

ment. It is obvious that a theory based on this model of
the final state cannot generate predictions about the angu-

lar distribution of the ejected electrons. However, this

particular shortcoming of the model is of no direct con-

cern to us here because we have chosen to limit our con-

siderations to cross sections which are independent of this

distribution. There is, of course, no difficulty whatsoever

in accounting for the angular distribution of ejected elec-

trons, provided that one uses a theory of the type
described in Sec. II A. Indeed, formulas for the LICI elec-

tronic energy-angle double-differential cross sections were

derived in I and formulas appropriate to the correspond-

ing field-free events have been reported by Miller, Slo-

comb, and Schaefer.
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APPENDIX: SCATTERING THEORY BASED
ON EIGENCHANNEL MODEL

(4' I4' )=p(e) &(e—e) (A1)

Our purpose here is to present a quantal theory of LICI
in which the direction of motion (momentum) of the eject-
ed photoelectron is left unspecified. A theory of this type
can be constructed by altering in a few critical ways our

previous theory which was based on the partial-wave rep-

resentation (2.1) of the wave function of the photoelectron.

Instead of presenting this modified theory in its entirety
we shall, whenever possible, use the space-saving device of
indicating how equations and formulas from the previous

paper can be suitably modified.
The Hamiltonian of the composite system of material

particles (m) and radiation (r) can be written (in the
center-of-mass frame) as the sum H =H +H„+H;„,
Here H =T„+H,] is the sum of relative kinetic energy

of the two atomic nuclei and the electronic energy opera-

tor H,]. H, is the Hamiltonian of the linearly polarized
single-mode laser field and H;„, is the energy of interac-

tion between the charged particles and the laser field. The
eigenstates of H, are denoted by the symbols

~

N ), with N
indicating the number of photons with energy Ace and po-

larization a. We denoteby the ket
~ Pd) =

~
P„ii) a varia-

tional CI approximation to the initial electronic state of
the bound A-B state. Associated with this state is the elec-

tronic energy Ed(R) = (R
~

(Pd ~
H, i ~ Pd )

~

R) and the

corresponding potential Vd(R) =Ed(R) Ed( oo ). The-
symbol

~ P, ) =
~ P„+,e (e)) will be used to indicate an

ionized state with an unbound electron of energy e. Be-
cause the direction of motion of this electron is unspeci-

fied, one can think of
~
P, ) as a positive-energy analog of

a molecular Rydberg state. It is assumed that these elec-

tronic continuum states are orthogonal to
~
Pd) and so

normalized that

(P,
~
H, i ~ P, ) =(e+E, )p(&) '6(~ —~') (A2)

with p(e) denoting the density of states. Analogous to
Ed(R) and Vd(R) are the two functions E, (R) and V, (R),
specific to the AB+ molecular ion. The principal distinc-
tion between this and our previous theory is that the
final-state basis functions

~ P ) of I included specifica-

tions of both the energy (e) and the direction of motion (e)
of the ejected electron whereas the

~ P, ) used here contain

no reference whatsoever to e.
LICI is a collisionally induced photoabsorptive transi-

tion from the initial state
~
PqN)—:

~ Pd )
~

N) to a final

state
~ P,N —1)=

~ P, )
~

N —1). As in I, we restrict our

attention to the two orthogonal subspaces spanned by

these states and completely disregard all others. Associat-

ed with this two-state model is the pair of approximately

complementary projection operators

I' = f de' ~P, N —1)[p(e')] '(P, N —1
~

The T matrix for LIPI can be written in the form

T '(E', e
~

E)= f dR[qip (E',N —1
~

R)]"

(A3)

(A4)

)( (e,N —1
~

R,N )Xd+(E,N
~

R)

(A5)

I ( ', N'
~
R,N)=2 p( ')

~

(e', V'
~

R,N)
~

(A7)

With the wave function of the ejected electron given by
the expression (2.18) of the text, the many-electron wave

function P,( r
i
R) becomes a sum g„P,&( r

~

R), each

term of which is a CI wave function constructed from

with E=(E,K; ) indicating the kinetic energy (E) and

direction (E; ) of relative motion of the two colliding parti-

cles A and B and E'= (E',K~) providing an analogous
characterization of the postcollisional motion of the A-B+
pair. The quantity [cf. (3.1) and (3.2) of I]

(e', N —1
~

R,N)

= f dr P,(r ~

R)*[i(2irIfico/c)' a.d]P (dr
~

R)

(A6)

appearing in this expression, is the photoionization transi-

tion amplitude specific to the internuclear separation R.
Here, I is the incident flux of laser photons and

d—:—g,. er; denotes the electronic contribution to the

electric dipole moment operator. P,(r ~

R) and Pd(r
~

R)
are the coordinate representatives of the two kets

~ P, )
and

~ Pd ), respectively.

The wave function 4'p (E ',N —1
~

R), occurring in (A5),
is descriptive of the A-B heavy-particle motions subse-

quent to ionization. Xd+(E,N
~

R) is specific to the inter-

nuclear motions associated with the initial electronic state

~
P~). The wave equations for these functions which we

derived in I are applicable here as well, provided that the
electronic basis elements

~ P ) are everywhere replaced

with
~
P,). Thus, the width of the discrete state

i Pd ),
which contributes to the equation satisifed by Xd, is to be
identified here with
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(e', N —1
I
R,N) =i(2mI~/c)'i'g (y, I

a d Iy„)

with

(A8)

n —1 bound orbitals and a single continuum orbital
g&~&&(e, r

I
R). Consequently, the transition amplitude

can be written as

(A.p I
a d

I dd &

=(—,~)' g Y*, (a)-(Q,„Id I pd), (A9)
m

and where the d (with m=0, +1) are spherical com-
ponents of d. We assume that the (orbital electronic an-
gular mornenturn) projection quantum number of the ini-
tial AB electronic state is A; and that of the product ion is
Af. The selection rule for the matrix element
(P,„I

d
I Pd ) is then p=icp+m with pp=A —Af and so

(e,N —1
I
R N) =( 3

m)' g Y& (a)-V, „+ (R,co) =(—', m )li2 g Y| (a)~'i' (R )( —1) V (R,co) .
m m, m'

(A10)

Here V, & + (R,co) is given by Eq. (2.24) of the text and Am' (R) denotes a representation coefficient of the three-
dimensional rotation group.

We use for Xd+ and %'~ the partial-wave expansions (4.1) and (4.4) of I. These, combined with (A10), lead from (A5) to
the formula

T '(E', e
I

E)= g Y& ~ (a) YI I (K/)[(2L'+ I)/3]'i (2L +1)i e ' / T(E'L'M', ELO, e;co),
L,L', M'

where

T(E'L'M', EL 0,e;co) = 2Am(LL'1
I

OM') T(E'L', EL,em;co)

(A11)

(412)

and

T(E'L', EL,em;co)=(Ff (E N 1
I
R)

I Ve, p +m(Rico)

IFi�
(EiN

I
R)) i (A13)

I I

4m
(A14)

This expression has been simplified by choosing the polar axis of the center-of-mass frame to coincide with the initial
direction of relative motion K;. It can be further simplified by the approximation

(
—L

g
—L'

i e ' T(E'L', EL,em;co)=i e ' T(E'L,EL', em;co), (A15)

which should have a negligible numerical effect provided that a large number of partial waves contribute to the cross sec-
tions. As a consequence of (A15) the T-matrix formula (A11) reduces to

T '(E', e
I
E)= Yip(a) g Yi p(Kf)[(2L'+1)/3]' e ' "f T(E'L', eL', e;co)

L'
(A16)

with T(E'L ',EL,e;co) given by (2.22) of the text.
Analogous expressions appropriate to LIAI are obtained by the replacement of the scattering function Oz in (A5) with

I I +
a square-integrable eigenfunction %e (E„,N —1

I
R) descriptive of the vibronic final state of the AB+ molecular ion.

Then, corresponding to (A11) and (A16) one obtains the two formulas

and

T '(E„,e
I
E) = Y& ~ (a)[(2L'+ I)/3]'i g (2L +1)i e ' T(E„L'M',ELO, e;co)

L

g
—L'

T '(E„,e
I
E) =5scpI Y]p(a)[(2L'+1)/3]' i e ' Tp(E„L',EL',e co)],

(A17)

(A1S)

respectively.
From (A16) and the definition' d o/dedKf g;(2')

I
T '——(Ep, e

I
E)

I /K;, we obtain the LIPI cross-section formu-
las

d2 PI g. 2

(E,e)=
2 g(2L+1)S, (co)Pz(cos8f) cos~9

dedSCf 4&' (A19)

PI

(E,e) =
d6 2 g (2L +1)

I
S, (co)

I
cos 9

K;
(A20)
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The quantity

S, (co)= —2trie ' "f QA~(Ff (E&&,N —1
~

R)
~

V, &,+~(R,co)
~
F; (EN

~

R)) (A21)

appearing here is an S-matrix element associated with the T matrix of (A16). Corresponding to (A20) is the formula

crn't. 'M'(E) ~M'0 2 (2L + 1)
~
Se (co)

~

K;
(A22)

for the integral cross section for LIAI. The S-matrix element appearing here is similar in form to S, (m) defined by
(A21) but with t)f set equal to zero and Ff (Eo,N —1

~

R) replaced with the bound-state wave function Ff (E„,N —1
~

R).
The three cross-section formulas (A19), (A20), and (A22) can be written in the forms (2.3), (2.4), and (2.9) of the text,

with the functions B (Of), B ', and B ' replaced with B '(Of), B ', and B ' of (2.19)—(2.21), respectively. However,
we have presented them here in terms of S-matrix elements in order to make a comparison with previously derived for-
mulas for field-free (FF) chemi-ionization. Thus, when the photoionization transition amplitude of (A6) is replaced with
the FF autoionization amplitude

(EN ~RN)= f dr[/(r ~R)]*&(Pd(r ~R)= g(P u~H [ ~ad) (A23)

one obtains in place of (A19) and (A20) and FFPI cross-section expressions

d2 PI g. 2

(E,e) =
2 g (2L +1)S,Pt (cos6f )

deaf 4&

PI

(E,e) =
z g (2L + 1)

i
S,

idE' +i L

with

(A24)

(A25)

S, = 2trie' "'—+"f
(,Ff(Eo,N

~

R)
) (e,N

~
R,N)

~
F; (E,N

~
R)), (A26)

These formulas (and the corresponding one for FFAI) are the same as results which Miller reported that he had obtaine
using a theory by O' Malley. What the present analysis reveals is that these are the cross-section expressions appropriate
to the eigenchannel model for the wave function of the ejected electron.
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