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Relativistic radiative and radiationless atomic inner-shell transition rates have been calculated

with Dirac-Fock wave functions with the use of matrix elements that correspond to different

gauges. Radiative rates computed in the length gauge are found to be larger than Coulomb-gauge

results; for K-shell radiative widths, the difference is -20% at Z =-10 and falls to -4% at Z =30;
the difference for L2 radiative widths is a factor of 2 at Z = 18 and -7% at Z =48. Especially large

discrepancies between length- and Coulomb-gauge results are found for An =0 radiative transition

rates. Auger transition rates calculated in the Lorentz and Coulomb gauges agree to better than 1%
in all cases tested here; it is inferred that in first-order perturbation theory the Auger rate is practi-

cally gauge invariant. Certain general features of the effects of relativity on radiationless transitions

are also discussed. These effects can arise from relativistic changes in the transition energies, rela-

tivistic orbital effects, and relativistic aspects of the pertinent operators. The relative importance of
these factors is evaluated.

I. INTRODUCTION

The role of gauge invariance in the interaction between
the electromagnetic field and the electron-positron field is
discussed explicitly in well-known texts. ' The expres-
sions for transition matrix elements depend on the choice
of gauge. Certainly, the numerical results should be gauge
invariant if exact wave functions were used. But exact
atomic wave functions are not known, and the most effi-
cient relativistic atomic model which is suitable for treat-
ing inner-shell transitions is based on the relativistic self-
consistent-field method. In the approximate calculations
of relativistic radiative transition rates from Dirac-Fock
wave functions, the numerical results become gauge
dependent because of the nonlocal potential introduced in
the Dirac-Fock effective Hamiltonian. All existing rela-
tivistic self-consistent-field calculations of radiative atom-
ic transition probabilities have, however, been carried out
in the Coulomb or length gauge. No attempt appears
to have been made heretofore to compare Dirac-Fock re-
sults obtained in different gauges.

In the nonrelativistic theory, radiative electric dipole
transitions can be expressed in terms of a dipole-length,
dipole-velocity, or dipole-acceleration matrix element.
These expressions are equivalent in a single-particle
model, but they lead to different numerical results, for ex-

ample, in a Hartree-Fock approach. ' The length and
velocity forms constitute the nonrelativistic limits of rela-
tivistic expressions in different gauges (Sec. II A).

For radiationless (Auger and Coster-Kronig) transi-
tions, all relativistic calculations performed to date
are based on Mqfller's two-electron operator, which is in
the Lorentz gauge. The question of gauge dependence of
relativistic radiationless transitions computed with ap-
proximate wave functions has never been explored.

In order to investigate the extent of gauge dependence

in Dirac-Fock calculations of atomic inner-shell transi-
tions, we have performed a set of exploratory computa-
tions. We have calculated relativistic radiative transition
rates to E- and L-shell vacancy states, using Dirac-Fock
wave functions and employing both the Coulomb gauge
and the length gauge. The differences between these two
sets of results can shed some light on the uncertainty of
independent-particle Dirac-Fock calculations. We have
also performed relativistic computations of radiationless
rates with Dirac-Fock wave functions, using both the
Lorentz gauge and the Coulomb gauge. Results were cal-
culated for E and L shells of selected elements in various
different ranges of atomic numbers.

We also discuss certain general features of the effects of
relativity on radiationless transitions. These effects can
arise from several different factors: (i) relativistic changes
in transition energies; (ii) relativistic orbital effect caused
by the inclusion of the mass-velocity correction, the
Darwin term, and spin-orbit interaction in the Dirac equa-
tions; and (iii) relativistic aspects of the pertinent opera-
tors, viz. , the magnetic interaction and retardation correc-
tion in the two-electron operator, due to electron-photon
coupling. The relative importance of these factors is
evaluated.

II. RELATIVISTIC THEORY

A. Radiative transitions

In the theory of quantum electrodynamics, the interac-
tion potential between the electromagnetic field and the
electron-positron field depends on the choice of gauge. '
The expression for the electric multipole transition matrix,
in turn, also becomes gauge dependent. The spontaneous
emission rate for a transition i &f, in atomic un—its, is
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The II (co) and J' '(c]]) integrals are defined as follows ':
IL(co) = f (GfF;+FfG; j)L(cur)dr,

J' '(co)= f (GfG;+FfF; j)L (cur)dr .

Here, co is the photon wave number (E; Ef )/c; j;—]c;,,and
E; are, respectively, the total angular momentum, rela-
tivistic quantum number, and energy of the initial state.
The corresponding quantities for the final state are jf, Kf,
and Ef. The relativistic radial wave function has G as the
major and F as the minor component.

The Coulomb gauge and the length gauge correspond to
the choices gi ——0 and gi ——[(L +1)/L]', respectively. '

The necessary and sufficient condition for the transition
matrices for all rnultipoles to be gauge invariant is that
the transition matrix of electric multipoles for longitudi-
nal photons vanish identically. This condition is automat-
ically satisfied if exact wave functions are used, or for a
single-particle atomic model, but it may not necessarily
hold for a Dirac-Fock model. ' For electric dipole transi-
tions it has been shown that the Coulomb gauge leads to
the dipole-velocity form in the nonrelativistic limit, while
the length gauge leads to the dipole-length form. '

M ~ ~ lcoT'lP
v]2 ( 1 a ] a2)e /r]2 (12)

In the Coulomb gauge, the two-electron operator is'

l coP
l Pe—(a, a2)

r12

c~12=
12

B. Radiationless transitions

The initial hole is characterized by the quantum numbers
n'1, K1,j'1, the continuum electron by n 2 K2 j2, and the fi-
nal holes by n], ]c],j] and n2, K2,j2. In Eqs. (9) and (10),

(7) ~ j](1)j2(2)JM ) denotes the (not antisymmetrized) j-
j—coupled two-hole wave function. The continuum wave
function is assumed to be normalized so as to represent
one electron ejected per unit time. Atomic units are used
throughout.

In the nonrelativistic theory, the two-electron operator
represents just the Coulomb repulsion between the two
electrons. In the relativistic theory, the photon-electron
coupling is automatically included in the two-electron
operator. From quantum electrodynamics, the electron-
electron interaction operator is gauge dependent.

In the currently available relativistic Auger calcula-
tions, ' the two-electron operator is chosen to be the
Moiler operator, which is based on the Lorentz gauge:

where

M, M'

D = (j](1)j2(2)J'M
~

V]2
~
J](1)J2(2)JM),

E = (j'] (1)j2(2)J'M'
~

V]2
~
J](2)j2(1)JM),

(9)

(10)

The Auger transitions are treated as two-step processes.
The radiationless decay probabilities are calculated from
perturbation theory in the frozen-orbital approximation.
The total radiationless transition probability for a transi-
tion n1,K1~n1,K1,n2, K2, in j-j coupling, is'

167K
l Pe —1+(a] V])(a2 V2) 2

CO P'12
(13)

Here, the a; are Dirac matrices, and co is the wave nurn-
ber of the virtual photon.

In relativistic theory, the Auger matrix elements are
calculated in j-j coupling and can be separated into angu-
lar and radial parts with the aid of Racah algebra. For
the Mgller operator, a detailed derivation can be found in
Ref. 13. The relativistic matrix element in the Coulomb
gauge [Eq. (13)] has been reduced in Ref. 17 to a form
that is suitable for easy numerical computation.

The direct matrix element of the two-electron operator
in the Coulomb gauge is'
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and

1 if I'+J +l is even,
0 otherwise . (26)

The quantity r & (r & ) is the smaller (larger) of r] and r2,
and jx and Pz are spherical Bessel functions of the first
and second kind, respectively.

The exchange matrix elements can be obtained by per-
forming the exchange operation n &,~]~nq, ~z on the direct
matrix elements [Eq. (14)] and multiplying by the phase

factor ( —1)
The direct matrix element of the Mufller operator can be

found from Eq. (14) by dropping the last bracket and
changing ( W]]y2. W22) into (W»yxW22).

I The two-electron matrix elements of V&z and V&z are
~ M C

identical whenever the unperturbed electron orbitals satis-

fy Dirac equations in a local potential. ' The relativistic
Auger rate is therefore gauge invariant in the Dirac-
Hartree-Slater model. The matrix elements of V&z and

V&z are not necessarily identical when they are evaluated
with Dirac-Fock electron orbitals. In the nonrelativistic
limit Eqs. (12) and (13) lead to different expressions. It is
known, however, that the on-shell matrix elements of Eqs.
(12) and (13) give the same results. ' Brown and
Ravenhall make a convincing physical argument that
the Coulomb gauge is preferable because the dominant in-

teraction, which is the Coulomb interaction, is in essence
treated exactly in this gauge. There exists no proof, how-

ever, that this is the optimum choice.
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FIG. 1. Radiative widths (in eV) of atomic [1s] hole states, as
functions of atomic number Z. Solid curve represents results

computed in the Coulomb gauge; the dashed curve indicates re-

sults obtained in the length gauge. Dirac-Fock wave functions
were used throughout.

III. NUMERICAL CALCULATIONS
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The radiative transition rates are calculated in the
frozen-orbital approximation, both in the Coulomb gauge
and in the length gauge, with the use of Dirac-Fock wave
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FIG. 3. Radiative 2s-2p transition probabilities (in a.u. ) as
functions of atomic number Z. Relativistic results in the
Coulomb gauge (solid curve) are compared with rates computed
in the length gauge (dashed curve).
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functions ' that correspond to the initial hole-state config-
urations. The transition energies are calculated from rela-
tivistic binding energies that include relaxation and
quantum-electrodynamic corrections.

The Auger matrix elements are computed both in the
Coulomb gauge and in the Lorentz gauge, with Dirac-
Fock wave functions ' corresponding to the initial states
with one inner-shell vacancy. The continuum wave func-
tions are obtained by solving the Dirac equations in the
V ' potential without the exchange contribution. The
continuum wave functions are then orthogonalized to the
bound-state wave functions. We use the j-j configu-
ration-average energies in the calculations. These average
Auger energies were found by the use of the "Z+ 1 rule"
with theoretical neutral-atom binding energies. The con-
tinuum wave functions are normalized in the asymptotic
region by matching them with asymptotic Coulomb wave
functions. "

In order to explore the general characteristics of rela-
tivistic effects on Auger transitions, we have calculated
Auger rates with Dirac-Hartree-Slater wave functions and
several different two-electron operators: the Coulomb in-
teraction

1O-e the Coulomb and magnetic interaction without retardation
correction
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FIG. 2. Radiative widths (in eV) of [2s] (L, ) and [2p~qq]
(L2) hole states in atoms of atomic number Z. Relativistic cal-
culations with Dirac-Fock wave functions were performed in the
Coulomb gauge (solid curves) and in the length gauge (dashed
curves).

and the retarded Coulomb and magnetic interaction

lCdP]p
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(27c)

Results are compared with those from nonrelativistic
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TABLE I. Relativistic K-LL Auger rates (in 10 ' a.u. ), computed with Dirac-Fock wave functions in the Coulomb and Lorentz

gauges.

Transition
Z= 10

Coulomb Lorentz
Z=36

Coulomb Lorentz
Z=48

Coulomb Lorentz
Z=80

Coulomb Lorentz

K-L]L]
K-L ]L2
K-L]L )

K-L2L2
K-LpL )

K-L3L 3

1.207
1.132
2.227
0.150
3.751
2.157

1.208
1.133
2.229
0.150
3.757
2.160

2.652
2.937
4.824
0.474

10.631
5.774

2.662
2.948
4.846
0.475

10.692
5.803

3.446
3.974
5.393
0.543

11.511
5.950

3.464
3.989
5.424
0.544

11.600
5.991

8.403
13.155
7.585

8.449
13.182
7.619
0.746

13.626
5.921

Hartree-Slater calculations with either relativistic or non-
relativistic Auger transition energies, in order to study the
relative importance of the various aspects of the effects of
relativity.

IV. RESULTS AND DISCUSSION

A. Gauge dependence of Dirac-Fock results

We employed the Coulomb gauge and the length gauge
in calculating radiative transition rates to K- and L-shell
vacancies of selected elements with atomic numbers
10&Z &48. The computations are relativistic, based on
Dirac-Fock wave functions. Total rates from the present
Coulomb-gauge calculations agree to better than l%%uo with
Scofield's Dirac-Fock results including relaxation.

The length gauge is generally found to yield larger radi-
ative transition rates than the Coulomb gauge. For K-
shell radiative widths, the difference is -20% at Z=10
and falls off to -4%%uo at Z=30 (Fig. 1). For the L~ radia-
tive widths, the difference is approximately a factor of 2

at Z=18, falling to -7% at Z=48 (Fig. 2). For indi-
vidual transitions with An=0, the discrepancy between
length- and Coulomb-gauge results is large and persists to
moderately heavy elements, e.g. , 20%%uo for 2s-2p transitions
at Z=48 (Fig. 3).

Auger transition rates were calculated in the Lorentz
gauge and in the Coulomb gauge, for K- and L-shell ini-
tial vacancies in closed-shell atoms with atomic numbers
10&Z & 80. Dirac-Fock wave functions were used in
these relativistic computations. Some of the results for
K-LL transitions are listed in Table I. The two different
gauges are found to lead to radiationless transition rates
that agree to better than l%%uo in all cases. This is con-
sistent with the fact that the on-shell matrix elements of
Eqs. (12) and (13) give the same results. We thus conclude
that in first-order perturbation theory the Auger rate is
practically gauge invariant.

It is interesting to note, incidentally, that total Auger
transition rates calculated with Dirac-Fock wave func-
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FICJ. 4. Total Auger widths (in eV) of [ls] (K) and [2p3/2]
(L3) vacancy states in atoms of atomic number Z. Solid curves
were computed with Dirac-Fock wave functions; dashed curves,
with Dirac-Hartree-Slater wave functions.

I I I ]

10 20 50 40 50
l0 ~

Z

FIG. 5. Atomic K-shell fluorescence yield, as function of
atomic number Z. Calculations in the Coulomb gauge (solid
curve) are compared with results obtained in the length gauge
(dashed curve). Experimental data are from Ref. 23.
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tions are larger than results from Dirac-Hartree-Slater
wave functions; the difference for K shells falls from
—10% at Z=18 to -3% at Z=80, and for L3 shells,
from —14% at Z=30 to 3% at Z=80 (Fig. 4). The
reason for these discrepancies appears to be that inclusion
of the full exchange potential in the Dirac-Fock equations
tends to pull the wave functions in toward the origin, thus
increasing the wave-function overlap and producing a
larger transition rate. A similar finding has been reported
for x-ray emission rates.

K-shell fluorescence yields from the present Dirac-Fock
calculations with different choices of gauge are compared
in Fig. 5. For Z ) 30, the E fluorescence yields from the
Coulomb and length gauges are virtually the same, and
agree very well with experiment. For low-Z atoms, K
fluorescence yields calculated in the length gauge seem to
agree better with experiment (Fig. 5).

I

50
I

50

IOO

40
Z

FIG. 6. Calculated L I -L2 3M4 5 Coster-Kronig transition en-

ergies (in eV), as functions of atomic number Z. Relativistic re-
sults (solid curves) computed with Dirac-Hartree-Slater wave
functions are compared with nonrelativistic energies (dashed
curve) calculated with Hartree-Fock wave functions.

B. Effects of relativity on radiationless transitions

Comparison of relativistic individual Auger rates with
nonrelativistic results seems highly confusing at first
glance; the relativistic effects are exceedingly uneven. For
example, the K-L &L &

rates are greatly enhanced by rela-
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FIG. 7. Theoretical L I -L2 3M4 5 Coster-Kronig transition
probabilities (in 10 ' a.u. ), as functions of atomic number Z.
Relativistic results from Dirac-Hartree-Slater wave functions
(solid curves) are compared with nonrelativistic Hartree-Slater
calculations in which the same relativistic transition energies
were used (solid squares) and with nonrelativistic Hartree-Slater
calculations with nonrelativistic transition energies (open
squares).
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FIG. 8. Theoretical K-LILI and K-L3L3 Auger transition
rates (in 10 ' a.u. ) as functions of atomic number Z. Relativis-
tic calculations with Dirac-Hartree-Slater wave functions were
performed with the two-electron operators of Eq. (27c) ( —-.—),
Eq. (27b) (—.—), and Eq. (27a) ( ). Also shown are nonre-
lativistic results computed from Hartree-Slater wave functions
with relativistic transition energies (solid squares) and with non-
relativistic transition energies (open squares).
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tivity, the K-L3L3 rates are somewhat reduced, and K-
L2L3 transitions are affected hardly at all.

In order to explain this apparent unevenness of the ef-
fects of relativity, we consider the different sources of re-
lativistic effects: (i) changes in transition energy, (ii)
differences between relativistic and nonrelativistic wave
functions, (iii) the contribution from the current-current
(magnetic) interaction, and (iv) retardation of the
Coulomb and magnetic interactions. By artificially in-
cluding these factors one at a time in the calculations, we
can study each effect separately.

Energy effects are obviously very important for Coster-
Kronig and super-Coster-Kronig rates, which generally
involve low transition energies and matrix elements that
are exceedingly energy sensitive (especially near thresh-
old). In fact, without relativity, all L2 L3X a-nd M2-M3X
Coster-Kronig transitions would be energetically impossi-
ble. In Fig. 6 we compare relativistic L

&
-L 2 3M4 5

Coster-Kronig energies from Dirac-Hartree-Slater calcula-
tions with nonrelativistic Hartree-Fock results. The re-
lativistic L

&
-L 3M &

transition energies are seen to be
roughly twice as large as the nonrelativistic energies. The
Hartree-Fock results predict an energy cutoff for
Li L2 3M45 t-ransitions at Z-=40, while the cutoff for
Li-L3M5 transitions predicted from Dirac-Hartree-Slater
calculations is at Z—=50; the latter prediction has been
confirmed by experiment.

A comparison is made in Fig. 7 of L &-L2 3M4 5 Coster-
Kronig rates computed with relativistic and nonrelativis-
tic wave functions, the latter with relativistic and nonrela-
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FIG. 10. Theoretical K-L&L3 and K-L2L3 Auger rates (in
10 a.u. ), as functions of atomic number Z. Notation is the
same as in Fig. 8.
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FICs. 9. Theoretical K-LIL2 Auger rates (in 10 ' a.u. ), as
functions of atomic number Z. Notation is as in Fig. 8.

FIG. 11. Calculated L~-M4M5 and L2-M4N~ Auger transi-
tion probabilities (in 10 a.u. ), as functions of atomic number
Z. Results of relativistic computations with Dirac-Hartree-
Slater wave functions and the complete two-electron operator of
Eq. (27c) are compared with nonrelativistic rates calculated from
Hartree-Slater wave functions with relativistic transition ener-
gies (solid squares) and nonrelativistic transition energies (open
squares) ~
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tivistic transition energies. This comparison clearly illus-
trates the fact that the effect of relativity on Coster-
Kronig transitions is dominated by relativistic changes in
the transition energies.

The effect of using different two-electron operators
[Eqs. (27)] has been explored through calculations of K
and L-shell Auger matrix elements. Both Dirac-Hartree-
Slater wave functions and nonrelativistic Hartree-Slater
wave functions were employed, with both relativistic and

FIG. 12. Theoretical L2-M&M2 3 Auger transition rates (in

10 ' a.u. ), as functions of atomic number Z. Notation is the
same as in Fig. 8.

I I I I I I
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Z

FIG. 14. Calculated total Auger widths (in eV) of [Is] (K
shell) vacancy states, as functions of atomic number Z. Nota-
tion is as in Fig. 8.

nonrelativistic transition energies. The results, illustrated
in Figs. 8—15, lead to the following observations.

(1) The energy effect on K L~L~, -K L~L2, K L~L3-, and-

L2-M2M2 transition rates is small because the relativistic
energy shifts largely cancel out between initial and final
states.

(2) For K LL transit-ions, important effects usually arise
from all factors: energy and wave-function changes, mag-
netic interaction, and retardation correction.

(3) The nonrelativistic K L~ L t rat-es are greatly
enhanced if we use relativistic wave functions, and in-

creased further by the current-current interaction and by
retardation. The K-L3L3 rates, on the other hand, are re-
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FIG. 13. Theoretical L3-M4M5 and L3-M5M5 Auger rates (in
10 ' a.u. ), as functions of atomic number Z. See caption of Fig.
8 for explanation.
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FIG. 15. Theoretical Auger widths (in eV) of [2p3/2] (L3-
subshell) vacancy states, as functions of atomic number Z. No-

tation is as in Fig. 8.
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duced by relativistic energy and wave functions, decreased
further by the current-current interaction, but increased
by the effect of retardation —to the extent that the net ef-
fect of relativity becomes quite small. A nearly complete
cancellation is seen in the K-L2L& rates, where the energy
effect and magnetic interaction counteract the wave-
function effect and retardation correction. By contrast,
we note the huge effect that both the relativistic wave
functions and the current-current interaction have on the
K-L &Lz rates, which are enhanced by more than an order
of magnitude in heavy elements.

(4) For the L-shell transitions, we again find the inter-
play of energy, wave-function, magnetic, and retardation
effects. Here too, they can nearly cancel, as for the L&-
M4M, rates (Fig. 13). Generally, for L MM tr-ansitions,
the relativistic energy changes and the orbital wave-
function effect are more important than the magnetic in-
teraction and the retardation correction. For Lz-M2Mz 3,
the relativistic effect is dominated by the change in wave
functions. An example of a very pronounced effect of
relativity is found in the L2 M4Mq t-ransitions (Fig. 11),
for which energy, wave functions, and retardation reduce
the Coulomb term, and the magnetic term is out of phase
with the Coulomb term, so that it further reduces the rate.

(5) The exact effect of including relativity in the calcu-
lation of Auger rates cannot be predicted in general terms
without going through the specific calculations. It de-

pends on the relative strengths and phases of all factors
involved (i.e., energy, wave-function, magnetic, and retar-
dation effects).

(6) For total Auger level widths, which are sums of a
large number of transition rates, the disparity of relativis-
tic effects on individual rates tends to average out to some
extent (Figs. 14 and 15). Nevertheless, for the K shell, a
pronounced increase in the Auger widths is found, close to
a factor of 3 at the high end of the Periodic Table.

Sample calculations with Dirac-Fock wave functions
have not altered the conclusions reached here from work
with Dirac-Hartree-Slater wave functions.
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