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Excitation of positive ions in Coulomb-Born approximation
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We have presented a method for the evaluation of the Coulomb-Born matrix element between ar-

bitrary initial and final Slater orbitals. Since for the two- or more-electron ionic target the wave

functions may be constructed by the combination of the Slater orbitals of various angular momenta,

one can easily apply this method to calculate the cross sections for the electron-impact excitation of
a complex ion from an arbitrary initial state to an arbitrary final state. As an example we have cal-

culated the excitation cross sections of the He+ ion from the ground state to the 4f state at several

energies.

INTRODUCTION J=fJ, ( rz)X;( rz)XI( rz)d rz, (2)

In recent years much attention has been focused on in-
tensive studies of the excitation of positive ions under elec-
tron impact. Tully' has calculated the excitation cross
sections of a number of one-electron ions in the Coulomb-
Born (CB) approximation up to the d state and it is
worthwhile to extend the investigation to higher—
angular momentum states. Moreover, in a complex ionic
system with two or more electrons, one may construct the
target wave functions both for the initial and the final
channels by combining the Slater orbitals of various angu-
lar momenta. These are the facts that motivated us to
study the excitation of positive ions from an arbitrary ini-
tial Slater orbital to an arbitrary final Slater orbital in the
CB approximation. This investigation is thus equally
applicable in simple as we11 as complex ionic systems.

THEORY
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then using the back Fourier-transform formula, we can
write
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To calculate the matrix element between arbitrary initial
and final Slater orbitals in the CB approximation, we need

to evaluate integrals of the type

n+II = f f e 'r, Yt ~, (r])Y]~ (r])

XX ( r2)Xf ( r2)~ r 1+ r2

4~(2i) L!
(2~)3

K YLM(K)fX K'(X'+K') +' e
' "dK

Using the Feynman identity

Substituting Eq. (5) in Eq. (3) we obtain
N+1

aJ, (r, ) = 4m ai

(6)

where 7; and J~ are the Coulomb wave functions for the
initial and final states.

Using the expression for the product of two spherical
harmonics appearing in Eq. (1), I can be obtained in terms
of the integrals of the type

1 (m +n —1)! 1 xm —1(1 x)n —1

dx
a b" (m —1)!(n —1)! o [ax +b(1—x)] +"

with a =A, +K, b =K, m =L+1, and n =1 we get,
writing p, ] ——A.~x,

aJl(r2) =2'
aA,

4~(2;)t.L] f K Ytst(K) (p.-, ,e 'dK x dx.
(2~)3 (p2+K2)L +1

Making use of Eq. (5) and performing the differentiation with respect to pl we obtain
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J, (r2) =2m. a
N+1 —A,~xr2'e

r2YLM(r2)x ' dx .
0

Applying the Leibniz theorem for the differentiation of a product we have

2~f g ( + I
e t'~ 2rL+sY (r )

L+s /2 —1/2dx
0 tgN+2 s

(8)

We now substitute Eq. (8) in Eq. (2) and obtain

p 1gN+ 2 s f e
" 'r2+'YL~(r2)e 'dr2 p(a, , t, )p(a2, t2)dt~dtz

4~2

y ~ L +s/2 —1/2d~
7 (9)

where p=p1 —iK;t1 —iKft2 and q =K;(1—t, ) —Kf(1 —t2).
In deriving Eq. (9) we have used the following integral representation for the confluent hypergeometric function ap-

pearing in 7; and gf ..

1 zE.
1F1(iaj, 1;z)= . dtjp (a, t )e

2m

with

p(aj, tj. ) =t& (t& —1) ', j =1,2 .

The integration over r2 in Eq. (9) can now be performed with the help of Eq. (4):
1+' (N +1)! 9 4~(2I, )LL t q YLM(q L +s/2 —1/2

, p(a, , t, )p(a2, t2)dt, dt2 x +' dx .
p
s!"+' ' ~p 4m' "~ "2 (p'+q') +'

(10)

The (s+1)th-order differentiation with respect to p in Eq. (10) is then converted into a series of differentiations with

respect to p by using the formula of Todd et al. The differentiation with respect to p can be carried out easily and we

arrive at

J =8tr i
1 N+1 (++1)! [(s+1)/2)

(
1)&'2s+L+1 2r'(s +1)t(s +—L + 1 —r )1

Q~+~ ' (s+1—2r')!r'~

L ~ s+1—2r'
YLM(q )v L +2/s —1/2

2 f' p 2 2 L 2 —' p(a1st1)p(a2, t2)dt1dt2 ' dx
4~2 I'& I 2 (+2+q2)s+L +2—r'

where [(s +1)/2] represents the largest integer ((s +1)/2.
We now consider an integral of the type

(13)

where

—1 YLM(q)
H =

2 2 2 z p (a1,t1)p (a2, t2~dt1dt2 (12)
4 2 f'& p2 ( 2+ 2)8

with 8)A +L. Here p, q, and (p +q ) are linear functions of t1 and t2. Using the addition theorem of regular solid

harmonics (see Ref. 5) we get, after choosing our axis of quantization along the direction of K;,
L

q YLM(g )= g Ni'I"(t i
—l)' (t2 —1)'

I'=0

I tritN

1/2
4m(2L +1)(L +M)!(L —M)!

( —1)t Kr Kr' Y (K )Y (K )
(2I'+ & )(2I"+ &)(I'!) (~"+M)!(~"—~)!

where 1"=L —I'.
Also, we can write

r~s A —r —s) $1~ —~ ( i) 'A!p) — '(K;t, )'(Kft2) '

P r!s1!(A —r —s1 )!
(14)
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and

(B)a Ft
( 2+ 2) —8 E—8

u! E

where E =X—Yt2, F= U —Vt2 with

Xp]+Kg +Kf 2K(Kf, Y=2(tpiKf +Kf —Ki.Kf )

U =2(ip)K(+E; K; '—Kf ), V= 2(E—;Eg+K; Kf ),
and (8)„ is the Pochhammer symbol

(8) =B(8+ 1)(8+2) ' ' ' (8 +u —1) (B)o= 1 (u =0 1 2 ~ ~ ~ )

Making use of Eqs. (13)—(15) we arrive at

(16)
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(17)

Now using the results

( —1) (ia)p(1 —ia) gi+ia(t 1) w —iad
2m.i

~

~

~
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(P+ W)!

(C+D)!=C!(C+1)v, and (T)c+D=(T)c(T+C)D

we get from Eq. (1'7)

(g f +S 3 P S] S]~ —~ ( —1) ( i) —'A!p, 'K;"Ef'(1 ia, )t (ia—~)„H=
r!s)!(A r —s, )!(r +1')!—

(18)

M

s, —]+i~& I"—ia g ( )u( a]+ )u F'(t, —1) 'E, — dt2
27Tl 2 v u!(r + l'+ 1)„E (19)

The infinite summation within the t2 integral represents a Gaussian hypergeometric function zF&(a, b, c;z) with a =8,
b =ia&+r, c = r +I + 1, and z =F/E. Since c —a in our case is a negative integer we can write (see Ref. 6)

r(r+l'+1)I (8 —r —la&) E F
2F~ B,ia~+r, r +l'+1;—' E I (B)I (l'+1 —ia, ) E

(ia)+r), ( —m')„E
v v!(i ,ar++1 —B)„E F—

where —m ' =r +l'+ 1 —8, m ' being a positive integer.
Substitution of Eq. (20) into Eq. (19) gives us

P +S A —1' —$1 $1L ~ —& ( —1) ( —i ) '3!p
&

'K Kf'(1 —ia& )( (ia& )„I (8 —r —ia& )
H = X((- r!s,t(A —r —s, )! (8)I (l'+ 1 —i a, )

(20)

(ia~+r)„( —m')„1 &, I+la& ("—i a2
X . . t2 (t2 —1}

0 v!(i a
& + r + 1 —B)„2mi

E '(E —F) 'dt (21)

We now consider the evaluation of the contour integral

6 = . f t2' '(t2 —1) 'E ~(E F) "dt2, —
2m.i r 2

(22)

where Q =B —r —v ia, and R =—r+v+ia~. Expanding E ~ and (E F) in an infini—te power series of t2 we obtain



28 EXCITATION OF POSITIVE IONS IN COULOMB-BORN. . . 2809

21' 31
s& ——Os3 ——Q

(Q),,(R),, ( Y/X) '( Y) /XI )
'

G =X ~Xt
1 s

I +s&+s3 —1+ia& I"—i a2
(1,—1) d&z

2ni
(23)

with X~ ——X —U and Y&
——Y —V, where X, Y, U, and V are given in Eq. (16).

With the help of the results in Eq. (18) we can write

( —1)' X X& (iuz), ,
(1—iaz)t- (Q), (R),, (iaz+s& ),+,6= (s)+l")! X X

s =Qs =Q &' 3! & s2+s3

Y
' Yi

X X)
(24)

The double infinite summation in Eq. (24) represents an Appell hypergeometric function of two variables,

F, (a, b, ,bz, c,z, ,zz ) with a =t'az+s, , b, = Q, bz ——R, c =s, + l"+ 1, z, = Y/X, and zz ——Y, /X~. Here we see that

c —(b)+by) = —m",
m" being a positive integer. Thus we may write (see Ref. 7)

F, (iaz+s, , Q R, s~+1"+1;Y/X, Y~/X, )=(1—Y, /X, ) Ft(a, P, —m", yet, ez),

where a=iaz+s, , P=Q, y=s, +l"+1,
Y& /X& —Y/X Yi /Xi

and
Yi /Xi —1 Yi /Xi —1

(25)

Now if we take the expansion of the F~ function on the right-hand side of Eq. (25) in powers of ez we see that the
series will terminate and each term will be a 2F& function. Thus we finally obtain

( —1)' X X& (iaq)s, (1—ia2)r-(1 —Y~ /X~ ) ~" (e)~( —m")~(e2)"6= zF)(a+h, P, y+h;e() . (26)
(s ) + l")!

h =O h!(y)g

Equations (26), (21), and (11) give us the matrix element
I in Eq. (1) as a one-dimensional integral over x ranging
from 0 to 1 which is to be evaluated numerically.

It is to be noted that the first and third parameters of
the zF~ functions appearing in Eq. (26) increase gradually
by unity up to a certain limit. This fact can be exploited
with advantage for the evaluation of the series. We need
not calculate all the qF~ functions. If we calculate only

10

(cj
(b)

10

two such successive functions, the others can be obtained
from these two by repeated use of contiguous relations for
the 2F~ functions.

RESULTS AND DISCUSSIONS

For a consistency check we have reproduced by this
method, our earlier results for 1s-3p and 1s-4p excitation
cross sections of the He+ ion in the Coulomb-Born ap-
proximation. Next we applied this method to calculate
the excitation cross section of the He+ ion from the
ground state to the 4f state. The one-dimensional in-

tegrals, with respect to the Feynman parameter have been
evaluated by using the Gaussian quadrature formula, and
suitable contiguous relations for the 2F& functions have
been used for considerable reduction of computation time
without affecting the accuracy of the results.

In Fig. 1 we have plotted the n differential cross sec-
tion (DCS) for the excitation of the He+ ion from ground

~ 10
Nocj

4e
r 10

TABLE I. Scaled total cross section (o.n Z in units of m.ao)
for ls 4f excitation of th-e He+ ion by electron impact in

Coulomb-Born approximation. Figures in brackets indicate the

power of 10 by which the corresponding value is to be multi-

plied.
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Energy in unit
of threshold

energy

Total scaled cross section
in units of m.ao

0 20 40 60 80 100 120 140 160 180
SCATTERING ANGLE (deg)

FIG. 1. Scaled differential cross sections n'do/dQ, for ls4f-
excitation of the He+ ion by electron impact in Coulomb-Born
approximation at energies (a) 1.5, (b) 2, and (c) 3 times the
threshold.

1.5
2
3

4
6

1.5504( —2)
1.3907( —2)
1.0413( —2)
8.0754( —3 )

5.5129( —3)
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state to the 4f state against the scattering angle at incident
energies 1.5, 2, and 3 times the threshold (n being the prin-
ciple quantum number for the final state). It should be
noted that with the increase of energy the DCS increases
at small angles but decreases at large angles. Also, the
DCS falls off as the scattering angle increases, at all ener-

gies. However, the rate of fall for a lower-energy curve is

smaller than that for a higher-energy one.
In Table I we have tabulated the scaled total cross sec-

tion o.„=n Z o., at 1.5, 2, 3, 4, and 6 times the threshold

energy (Z being the nuclear charge for the target ion).
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