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Degenerate perturbative treatment of the hydrogenic Zeeman effect
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Degenerate perturbation theory is applied to study the first 14 energy levels of the hydro-
gen atom in a uniform magnetic field up to the second order. The twofold degeneracy of all
the levels among them in terms of the oscillator or parabolic states is completely removed.
The results obtained with the use of the Pade approximant are compared with those found
in the literature. Level crossings are discussed.

I. INTRODUCTION II. FORMULATION

Rayleigh-Schrodinger perturbation theory has
been applied to study the hydrogen atom in a homo-
geneous electric or magnetic field. While the hydro-
genic Stark effect has been extensively investigated, '

the Zeeman effect has not received as much atten-
tion. The reason is perhaps twofold: nonseparabili-
ty and degeneracy. Larsen and Pokatilov and
Rusanov calculated the first few energy levels by
variational methods. Cabib, Fabri, and Fiorio
determined the 1s and 2s levels by numerical in-
tegration. Praddaude reduced the Schrodinger
equation to an infinite set of algebraic equations by
a suitable expansion of the wave function and calcu-
lated numerically the energy of the first 14 levels.
Perturbatively, Bednar, using the eigenfunctions of
SO(2, 1) operators, calculated explicitly the first
three Rayleigh-Schrodinger expansion coefficients
for the ground-state energy. Avron et al. derived
asymptotic formulas for the high-order ground-state
perturbation coefficients by an algebraic SO(4,2)
method and computer implementation. Adams
et al. then extended the Bender-Wu analysis to the
3s-3d degenerate levels. More recently, Bender,
Mlodinow, and Papanicolaou studied a semiclassi-
cal perturbative expansion of the ground-state ener-

gy in each azimuthal space. They also briefly dis-
cussed the Stark effect. This paper reports a
rigorous quantum-mechanical perturbative treat-
ment of the 14 levels studied by Praddaude. The
present calculation is carried up to the second order
and can be extended to higher orders. However,
with the use of the Pade approximant, our second-
order results compare well with those of Praddaude
for B=0.1 ( —10 Cx).

The problem is formulated in Sec. II. In Sec. III
we present the results followed by a discussion.
Some details of our calculation are presented in the
Appendix.

v = (2r /n )
'~ sin —,0, (2b)

the Schrodinger equation for the physical system
can be transformed into the form
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where the unperturbed Hamiltonian,
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is that of a pair of phase-coupled two-dimensional
harmonic oscillators, '

H = —iaB/Bq,

H'= 8 A, (p +v ) [(p +V2)z —(p2 —vz)z]/32

is the perturbing potential. The perturbed eigen-
value has the following Rayleigh-Schrodinger ex-
PBIlSIOIl:

2A, =2n ++A~(B /8)
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The spinless hydrogenic Zeeman Hamiltonian, in
atomic units, can be written in the form

H = ——,5—1/r+ , BL, + (B—/8)(r —z2)

(1)
where B is the strength of the uniform magnetic
field in the z direction measured in units of
2.35X10 Cx and L, = —iB/By. By means of the
following coordinates,

p=(2r/n)'~ cos —,0, (2a)
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The eigenstates of Ho can be denoted by
l
NiNzm ),

where N&,Nz, m are the oscillator quantum numbers.
These states correspond to the parabolic states

l
n &nzm ) and the set of quantum numbers are relat-

ed to the more familiar ones as follows"'.

Ni=2ni+ lm l+l=n+ni —nz

Ni ——2nz+ m + 1 =n ni+—n i. (8b)

Since N i +Nz N=——2n, the oscillator state

l
N&Nzm ) is doubly degenerate when N&&Nz. In

such a case, the unperturbed state is a linear com-
bination of

l
1)=

l

N iNpm ) and
l
2) =

l
N/Ni m),

and degenerate perturbation theory applies. There
are cases among the 14 levels considered where
Ni Nz. Fo——r these cases, the nondegenerate pertur-

G =8(N+ W)[(N+ W)' —(M+ V)'] .

Denote the matrix element

(N&+a, Nz+b G lN&+c, Nz+d)

(10)

by (abed) The.n, with the help of the 21 nonvanish-
ing matrix elements of G given in the Appendix, we
calculate the following quantities:

bation theory suffices. It should be noted that we
choose to work with the oscillator quantum numbers
because of convenience. The results obtained can be
easily converted into the more familiar forms by
utilizing Eq. (8).

To calculate the matrix elements in the oscillator
representation, " we express the coordinate-
dependent part of the perturbing potential, i.e,
G =(p'+v')[(p'+v')' —(p' —v')'], in terms of
SO(4,2) generators. If we denote the relevant gen-
erators L34 L35 L$6 and L~6, respectively, by M,
V, W, and N, then it can be shown that

M'i'i' —M ~z' ——(0000),

MIz' ——Mz'i' ——(OONz N i,N i
—Nz), —

M'ii' ——Mzz' ——g (OON'i Ni, Nz ——Nz) l(Ni+Nz N'i —Nz ), —
N'@N

(&) (&)Mlp ——Mpl

(12)

(13)

(14)(OON'i Ni, Nz N—z )(N'i —Ni, Nz N—z,Nz N i,Ni—N—z )/(N—i +Nz N i N'z )—. —
N'~N

Details of the calculation are indicated in the Appendix. Their explicit expressions for the various cases con-
sidered are given below and their numerical results are shown in Table I.

According to the perturbation theory, the expansion coefficients Az for p= 1,2 in Eq. (7) can be obtained
from the eight M f' defined above Depen. ding on the value of q = —,(Ni —Nz) =n i nz, they are—given as fol-
lows:

(a) q =0 (nondegenerate case)

A, i ——Mii(&)

(&)
A,z ——M ii

TABLE I. Numerical values of M;~
' and expansion coefficients.

(15a)

(15b)

1$

2$

2p (0)
2p (+1)
3$
3$

3p (0)
3d (0)
3d(0)
3p (+1)
3d (+1)
3d (+2)

0
1

1

0
0

2
0
2
1

1

0

16
80
80
96

336
192
192
336
192
288
288
288

Mlp(1)

—2 656/3
—33 248/3
—33 248/3
—13 184

—101 664
—48 576
—48 576

—101 664
—48 576
—79 104
—79104
—73 536

12

—20 864/3
—20 864/3

—3 456
—3 456

—3 456
—43 028
—43 028

16
112
48
96

336
192
192
336
192
384
192
288

—2 656/3
—54 112/3
—12 384/3
—13 184

—101 664
—52 032
—45 120

—101 664
—52 032

—122 132
—36 076
—73 536

2
28
12
24

90

108

144
72

108

—53/3
—30 592/3
—2 688
—7 424

—383 940

—225 990

—338 499

—3 687 039/8
—1 258 497/8

—295 974
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where

M'&'&' ——4n(3n —3q +1—m ),
M'&, ' —( —1106n —1316n 234n+1692n q —586nq +388nq +132m nq +796m n

+356m n —122m n)/3;

(b)
~ q ~

=1 (degeneracy removed in the first or-
der)

(17)

A, ) ——M)) +M(p(1) (1)

(2) (&)
Ap

——M)) +M)z

M",,' =4n(n' —m'),
M')p' ——( —572n '+ 320n 3+662m ~n 3

+320m ~n —94m n)/3;

(18a)

(18b)

(20)

3s (q =2,0),
~

300) =(
~

020) +
~

200)+
~

110))/3'";
3p(0) (q =2),

~

310)=(
~

020) —
~

200) )/2'~

3d(0) (q =2,0),
i
320) = (

i
02Q)+

i
200) )/6' —( —, )'

i
110);

(c)
~ q ~

=2 (degeneracy removed in the second or-
der)

3p(+1) (q =1),
~

310&=(
~

0» &+
~

001))/2'";

where

(21b)
3d(+1) (q =1),

i
320) =(

i
011)—

~

001))/2'i

MPp' ———18n +36n —18n +36m n3

+ 36m n —18m ~n . (22)

It should be noted that the diagonal quantities in
Eqs. (16) and (17) are also applicable to cases (b) and
(c). As it can be seen, we need to calculate only four
of these

M~~f
' since they are invariant with respect to

interchange of the indices.
It is understood that the two values of the coeffi-

cient in Eqs. (18) and (21b) are actually the roots of
the secular equation obtained from the 2&&2 pertur-
bation matrix in degenerate perturbation theory.
The positive and negative signs correspond, respec-
tively, to the symmetric and antisymmetric com-
binations of the unperturbed states

~

1) and
~

2).
The choice depends upon whether the degenerate
state in question is symmetric or antisymmetric.
The choice can be made by referring to its expansion
in terms of the parabolic states which, as noted, are
equivalent to the oscillator states. Such expansions
for all the degenerate states considered are as fol-
lows

The coefficients A.
&

and A, z can therefore be deter-
mined in accordance with the above. In the case of
the states 3s and 3d (0), since they are a mixture of a
doubly degenerate state and a nondegenerate state,
their eigenvalues are taken to be the weighted aver-

age as follows:

S

A, = —A, (q =2)+ —& (q =0);2 1

3d (0),
A, = —,

'
A, (q =2)+ —, A.;(q =0) .

The values of A, ~
and A, q for all levels are shown in

Table I.

III. RESULTS AND DISCUSSION

The perturbed energy E can now be calculated by
using

i
200) =(

~

010)+
~

100) )/2' ';
2p(0) (q =1),

E = —1/(2X')+ hE

where b,E is, according to Eq. (5), given by

b.E~ = —,Bm .

(23)

i
210) =(

~

010)—
i
100))/2'i Utilizing Eq. (7), we obtain the following Rayleigh-
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E1 ——n A, 1/8,

E,=n'(5X', /4+n~2)/32 .

(26)

Their values are given in Table I. The perturbation
series is known to be divergent but Borel summable.
Using E1 and E2 we construct the first Pade ap-
proximant to determine the energy correction

b E")=E)F/(1 E2F/—E, ),
so that

E = —1/(2n )+ —,Bm +hE(" .

(28)

The values of E for the 14 levels are given in Table
II. They are, in general, lower than the values ob-
tained by Praddaude. For 8=0.1, good agreement
exists for many of the levels. It is believed that the
energy values can be made higher by carrying the
calculation to higher orders. For example, using the
higher-order coefficients in Ref. 7 for the Is level,
we calculate the second Pade approximant'

(, )
I:E)F +«2+ b1E1)F']gE(2)

(1+b)F+b2F )

to replace b,E") in Eq. (29), where

bl (E2E3 E1E4)/(E1E3 E2)

b2 —(E E4 —E3)/(E1E3 E) . —
Consequently, we get for the ls level

(30)

Schrodinger expansion in powers of F =8 /8:

E = —1/(2n )+ —,Bm +E1F+E2F +O(F ) .

(25)

The expansion coefficients can be determined from

E = —0.4975 (8 =0.1)

E = —0.3536 (8 =1 0)
It has been observed that, at low fields, the low-

lying levels with the same value of m do not cross. '

While, according to Ref. 5, the two levels 3s and
3p(0) cross somewhere in the range 0.1&8&1.0,
our results show that the no-crossing rule prevails
up to 8=1.0. We believe that the same rule will
persist in the strong-field limit because the pth Pade
approximant for the energy correction tends to a
constant as 8~ oo. For p = 1, the constant is

E1/—E2 according to Eq. (28). The binding ener-
gies for the 3s and 3p(0) levels in the strong-field
limit are —0.0345 and —0.0327, respectively. With
3s being the lower level, the two levels do not cross
at any field strength.

The no-crossing rule has been successfully used by
Simola and Virtamo' in linking the Landau orbitals
to hydrogenic levels. These authors studied the hy-
drogenic levels in the strong-field limit by taking the
Coulomb potential as the perturbation after separat-
ing the unperturbed wave function into a transverse
part (1B) described by the Landau orbital and a
longitudinal part (

~
~8). Since the unperturbed states

are no longer hydrogenic, their identification was
made on the basis of the no-crossing rule in conjunc-
tion with the evenness or oddness of l +m as well as
the number of nodes in the wave function. Consid-
er, for example, the four m =0 levels 3s, 3p(0),
3d (0), and 4p (0). The number of nodes in the wave
function is 4, 3, 6, and 5, respectively. Therefore, in
the strong-field limit, they are arranged in the order
of increasing energies as 3p (0), 3s, 4p (0), and 3d (0).
The result is that in this scheme the 3s level is
higher than the 3p(0) level for strong fields as in
Ref. 5 which shows that the levels cross as discussed

TABLE II. Energies in a.u. Those in columns 3 and 5 are obtained from Ref. 5.

Is

2s

2p (0)
2p ( —1)
2p (+1)
3$

3p (0)
3p ( —1)
3p (+1)
3d (0)
3d ( —1)
3d(+1)
3d ( —2)
3d (+2)

—0.4951
—0.1009
—0.1133
—0.1534
—0.0534
—0.0378
—0.0373
—0.0696

0.0304
—0.0281
—0.0815

0.0185
—0.1251

0.0749

8 =0. 1

—0.4975
—0.0981
—0.1124
—0.1508
—0.0508
—0.0249
—0.0199
—0.0312

0.0688
0.0122

—0.0578
0.0422

—0.0878
0.1122

—0.2624
—0.0498
—0.0733
—0.5493

0.4507
—0.0345
—0.0327
—0.5107

0.4893
—0.0212
—0.5228

0.4772
—1.0163

0.9837

B =1.0
—0.3312

0.3395
0.2399
0.0434
1.0434
0.4336
0.4098
0.3745
1.3745
1 ~ 1469
0.2934
1.2934
0.1469
2.1469
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earlier. Since no numerical results are given for
B &1.0 in Ref. 15, it is not known whether the 3s
level remains higher in the weak-field limit.

On the other hand, our results and the results of
Refs. 5 and 15 show that the levels 2p (0) and
3d( —2) cross. With the use of Eq. (29), it can be
shown that the crossing takes place at B=0.093.
This consensus is in contrast to the conclusion
reached in Ref. 8, in which the two levels are taken
to be combinations of two tunneling states lI~ and

lII& as follows:

vanishing matrix elements of the perturbing poten-
tial, given below:

(0000)= 4NiNp(Ni+Np)+Np(a ~ +a )

~N)(A ~ ~A ),
(0020) =a [ 2N, (N, ~N, ~2) ~2N, N,

~ —,A+ ~ —,A' ],
(00—20) =a [2Np(N$ /N~ —2) /2N[Np

~ —,A~ ~ —,A ], (A3)

l

3s ) = —0.402
l
I ) —0.915

l
II),

l
3d ) = —0.915

l
I ) +0.402

l

II),
instead of the parabolic states mentioned in Sec. II.

We believe that our second-order results are useful
for relatively weak fields. For stronger fields and/or
higher levels, higher-order calculations are needed.
Clearly, the controversy over the Zeeman level struc-
ture also needs to be studied and definitively
resolved. Our degenerate perturbative approach
with the use of oscillator (or the underlying parabol-
ic) quantum numbers provides a way for resolving
the issue on level crossing. '

APPENDIX

Let us define

l

ab)=
l
N~+a, N&~b, m ),

(abed)=(N]+a, Np+b, m
l
G lN/+c, Np+d, m),

a~ =[(N&+1) —m ]'~

b~ ——[(N(+3) —m ]'~

c+ ——[(N)+5) m]'~~, —

A =[(N, +1)'—m']'~',

B~ =[(Ng+3) —m~]'~

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A 10)

(00—22) =2a A ~(N) ~Np),
(0042) = —,a ~ b ~A ~,
(00—42) = —,a b A+,
(004—2) = —,a+ b+A

(00—4 —2) = —,a b A

(0024) = —,a ~A ~ B~,
(00—24) = —,a A ~B~,
(002 —4) = —,a+A B

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(0002) =A ~ [ 2N)(N)+Np ~2) ~2N)Np
2 & 2+ —,a++ —,a ],

(000—2) =A [2N)(N( ~Np —2) ~2N)Np
1 p 1+ —,a++ —,a ],

(0040) =N~a ~ b ~,
(00—40) =Nba b

(0004) =N, A ~B~,
(000—4) =N (A B

(0022) =2a+A+(N, ~N, ~2),
(00—2 —2) =2a A (N)+Np —2),
(002 —2) =2a~A (N) ~Np),

Then we can write the action of N, 8; M, and V as
follows:

N loo)= —,'(N, ~N, ) loo),
8'

l
00)= —,[a+ l

20)+a
l

—20)+A+ l02)

M loo)= —,(N, —N, ) loo),
I'

I
00) = —.[a~ l

»)+a-
I

—»)—A+
I
0»

—A
l
0—2)] .

It then follows that there are, all together, 21 non-

(00—2 —4)= —,a A B (A21)

The matrix element M'~", is given by (Al), which,
after a little algebra, becomes

M't )' ——2(N ) ~Np )(3N (Np + 1 —m ) =—M pp' .

Using Eq. (8), we obtain the result shown in Eq.
(16). To calculate M', &' from Eq. (13), we square all
the above matrix elements except (Al), (A12), and
(A13) and divide each by its appropriate denomina-
tor. It can be seen that the terms fall into four
groups. It is convenient to sum them separately and
combine the subsums. The result is given in Eq.
(17).
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4 ~1F

FIG. 1. Intermediate states in MI2',
I q I

= 1. ~
denotes initial/final states 02 and 20. 0 denotes inter-

mediate states 04, 24, 44 (in the top row), etc.

FIG. 2. Intermediate states in MIq,
I q I

=2. ~
denotes initial/final states 04 and 40. 0 denotes inter-
mediate states 24, 44 (in the top row), etc.

The first-order off-diagonal matrix element is
nonvanishing only for the case N2 N~+2 ——or

I q I
=1. It can be obtained from (A12) or (A13).

For this case, we have

M', ~2' ——(0220) =4a+ (N~+ 1)=4n(n —m ) =M2'~',

which is Eq. (19).
To calculate the quantity MIz' for the two cases

I q I
=1 and (c)

I q I
=2, we refer to Figs. 1 and

2 to ascertain the intermediate states. It is seen that
there are 12 terms and 6 terms to sum for the two
cases, respectively. They are as follows:

——,(0200)(2220)

= ——,a+[4(N(+2) +2N, (N, +2)
2 ' 2 2+ ~a++ ~b+]

—,(0200)(0020)

= —,a+ [4N ) +2N( (N) +2)+ —,a+ + —,a ]
—(0244)(4420) /6 = —a +b + /24,

(02 —2 —2)( —2 —220) /6 =a +a /24,
——,(0204)(0420)

= ——,a+b+ [6N&(N~+2)+ —,a++ —,a ],
—,(02—22)( —2220)

= —,a+a [6N((N)+2)+ —,a++ , b+], —

—,(022 —2)(2 —220)
2 2 2 & 2= —,a+a [6N~(N~+2)+ —,a++ , b+]—

——,(0240)(4020)

, a+b+ —[6N,(N) +2)+ —,a+ + —,a ],
——,(0242)(4220) = —a+b+ (N)+2)

——,(0224)(2420) = a+b+ (N )
—+2)

—,(02 —20)( —2020) =a+a N, ,

—,(020 —2)(0—220) =a+a N, ;

(c) IqI=2,

——,(0424)(2440)

, a+b+—[6(N, +4)(N, +2)+ ,b+—
2+ ~c+]

——,(0442)(4240) = ——,(0424)(2440),

—,(0402)(0240) = , a b [ 6N, (N,—+2)+—,a

—,(0420)(2040) = —,(0402)(0240),

——,(0444)(4440) = —
4 N2a +b +,

400)(0040) = N~a +b +-

The results are given in Eqs. (20) and (22).
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