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A relatively simple nonempirical formula for the imaginary part of the optical potential for elec-

tron scattering is derived from a quasifree-scattering model with Pauli blocking in which the target
is treated as a free-electron gas. The resulting absorption potential is local and energy dependent
and is a function of the electron density of the target. This model is tested for electron-helium and
electron-neon scattering at 30—3000 eV. For these tests the real part of the potential is also approx-
imated by a local expression, which is partitioned into static, exchange, and polarization terms.
Reasonably good agreement with experimental data is obtained for the elastic integral, absorption,
and elastic differential cross sections.

I. INTRODUCTION

In 1948, Goldberger, following up on a physical model
suggested by Serber, ' calculated the mean free path of a
nucleon in a nucleus by treating the nucleus as a degen-
erate Fermi gas and considering the nucleon-nucleon
scattering to be the result of individual nucleon-nucleon
collisions. An important element in this model is the role
of the Pauli principle in restricting the momentum space
available to the products of a collision. ' The model has
been successively refined by many workers. A more sys-
tematic approach along these lines may be derived from
the impulse approximation and the multiple-scattering
series in which the many-body transition amplitude T for
nucleon-nucleus scattering is approximated in terms of the
two-body transition amplitude t for the nucleon-nucleon
scattering. Then, if one assumes that only the forward-
scattering amplitude t(0) is important, one may recover
the original kinetic-theory argument in terms of binary-
collision total cross sections. The relation of the two
methods is provided by the optical theorem which relates
the imaginary part of t (0) to the total scattering cross sec-
tion for binary collisions. The forward scattering ap-
proximation is sometimes called the frivolous model to
emphasize the simplicity that follows from the neglect of
many-body effects. We will call the Goldberger approxi-
mation, which involves differential cross sections in order
to satisfy the Pauli-principle restrictions, the quasifree-
scattering model. This emphasizes that the differential
cross sections for the two-body collisions are calculated as
if the constituents of the target were free particles. The
target properties enter only through initial conditions of
the binary collisions, which are determined by the spatial
and momentum density distributions for the target parti-
cles, and through the Pauli-principle restrictions on al-
lowed final states of the binary collisions.

It is the purpose of the present paper to report an appli-
cation of the quasifree-scattering approximation to atomic
physics. In particular, we apply this model to calculate
the absorption potential for intermediate-energy and

high-energy electron scattering by the rare gases He and
Ne. In this application, unlike the nuclear applications
where the binary collisions are governed by the strong in-
teraction, the binary collisions are governed by a known
force law, the Coulomb potential. This means that the
binary cross sections need not be modeled phenomenologi-
cally. It also means that the binary-collision total cross
sections are infinite. Thus the Pauli-principle restrictions
are essential for the model to yield a finite mean free path
and absorption potential. Finally, the differential cross
section for Coulomb scattering is nonisotropic; as com-
pared to the isotropic cross section assumed in the nuclear
applications, this means that the differential cross section
is not totally determined by the integral cross section, and
it complicates the integrations considerably.

II. THEORY

In this paper we seek to approximate the absorption po-
tential for electron scattering by an energy-dependent
function V"( r, E) where r is the coordinate of the scatter-
ing electron and E is its impact energy. For electron
scattering by spherical atoms V"(r,E) will depend on the
magnitude of r and not on the angular coordinates; how-
ever, the derivation is more general and it applies equally
well to molecular targets or surfaces. The coordinate
frame in which the target is at rest will be called the labo-
ratory frame, and the coordinate frame in which the
center of mass of a pair of electrons (the scattering elec-
tron and a target electron) is at rest will be called the
binary-collision frame. In transforming between these
frames we assume that the nucleus is infinitely heavy
compared to the scattering electron; this is an excellent
approximation for all targets of interest.

For a local imaginary potential such as i V" the absorp-
tion probability per unit time is —2V /fi. Thus V"
should be negative. In kinetic theory the absorption prob-
ability per unit time for an electron of local kinetic energy
T~ and mass m, passing through a gas of density p, with
a binary-collision cross section O.

b for absorption-
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producing events, is (2Ti /m) pub .In the present ap-
plication, T~ depends on the magnitude p of the incident
momentum and on r, the density is the target electron
density, which depends on r, and ob depends on both p
and p because of the Pauli-principle restrictions.
Hence6, 9, ]o B(p', k', kF ) =H(p' kF—)H(k' —kF ), (8)

Nb(kF) =3/(4irkF') .

In nuclear-physics applications the Pauli-blocking func-
tion is usually assumed to be

—Q(r)[T~ (p, r)]' 'o'b(kF[p(r)], p)V"(r,E)=
(2m) 1/2 7

where kz is the Fermi rnomenturn given by

kF (p( r ) ) = [3ir p( r )] '
iri (2)

where H(x) is the Heaviside unit-step function. This
gives a finite result for the nuclear-physics case, namely,
constant dob/d. Q, but for Coulomb scattering it leads to
an infinite cross section. A physically acceptable model
for this case is obtained by taking account of the finite en-
ergy gap between the highest occupied orbital in the
ground-state target and the lowest unoccupied orbital.
This leads to a more stringent Pauli-blocking function
given by

and

E=pz/2m .
8(p', k', k )=H(k' —k —w)H(p' —k ),

where

(9)

As discussed by Goldberger, but in a more explicit nota-
tion,

Vb(kF, p)= —fdk N(k kF)
I p —k

I

p

d~b(po Po.pf)
dg

&( i 5(po —pf)8(p', k', kF),
Po (4)

g=p —P

=Pf —Po

(sa)

(5b)

darb/dII is the differential cross section for binary col-
lisions, and 8 is a function that is unity for Pauli-allowed
final states of the binary collision and zero for Pauli-
blocked collisions. If the electronic distribution of the tar-
get is modeled as a quasidegenerate Fermi gas then

Nb(kF), k (kF (6a)N(k, kF) =
0, k)kF (6b)

where

where N(k, kF) is the density per target electron in
rnornentum space, p and k are the laboratory-frame mo-
menta of the incident and target electrons before the col-
hsion, p

' and k ' are the final values, po and pf are the
initial and final momenta of the scattering electron in the
binary-collision frame, g is the momentum transfer

w =2m' (10)

5(f(x)}= 5(x —xo), f(xo) =0d

Z =Zo
(12)

yields

and 6 is the energy gap between the target ground state
and lowest excited electronic state. Equation (8) has the
interpretation that neither electron involved in the binary
collision may be scattered into the occupied Fermi sea, but
Eq. (9) involves an additional restriction that the final en-
ergy of the originally bound electron must exceed the en-
ergy of the highest occupied state by at least the energy
gap h. It is more convenient to use the quantity w defined
by (10) in the subsequent derivation.

The Coulomb scattering cross section for distinguish-
able particles is given by the Rutherford formula. For
identical particles we should use the quantum-mechanical
Mott formula but this leads to a complicated angle-
dependent, energy-dependent correction. Because of the
Pauli restrictions, the forward and much of the near-
forward scattering is excluded; hence we seek a good ap-
proximation for sideways scattering. For O=n. /2 the
quantum effect is to reduce the differential cross sections
by exactly a factor of 2 at all energies. " In this work we
use the sideways approximation of simply dividing the
Rutherford formula by 2 at all angles and energies. This
yields

d~b(po Po Pf) 2
dQ g4

'

Substituting (6), (9), and (11) into (4) and using
—1

~b«F,P») =

where

f f
8', kF fdg H(g +p +2g p kF)g Ii(p, g), —

p

]/p f 4dg dk H[k' —(kF+w) ]H(p' kF)g H(kF —k}5(po——pf)
2 2

(13a)

(13b)

Ii(p, g}=fdkH(g +k 2g k kF w)H(kF—k)5—(po ——pf) . — (14)
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The integral in (14) is most easily performed using cylindrical coordinates kii, kz, kq, for k with the kz axis antiparallel

to g. The k@ integral gives 2m and the kz integral may be evaluated to yield

Ii(p, g ) =(2ir/g) fdkR kii H(kR + (kzo+g) k—F w—)H(kF —kii —kzo) (15)

where

kzo= —g —p'g .

Evaluating the kz integral then gives

(16)

Ii(P, g)= H( ——g —2g P —w)H(kF —g '(g'+P g) )jkF' —kzo+H(kF+w —(kzo+g) )[(kzo+g)' —kF —w]I .

(17)

Next we substitute (17) into (13b) and use (5a) to change the integration variable to p '. We use spherical coordinates
(p', ri, P) for p

' where the pz axis is along p. The P integral yields 2m. , and this simplifies the cross section to

16' Nk(kF)
o ( kF p ) = fdp 'p 'H (p

' kF—)H (p
' p'—w—)

p

X dyH kF' p,p'y,
2 2, 5/2(p'+p' 2pp'y )'—"

where

( li+ I )2f(p pt y) P PP y

p +p —2pp y

and

y =cos'g ~

X [kF f(p,p', y—)+H(kF+w —f(p', p,y))[f (p',p,y) —kF —w] I, (18)

(19)

(20)

o(kF,p) =

Evaluating the y integral yields

dp'p'H p' —kF H p —p' —m +H kF+m —p +p'

where

0=(p' p') ~kF'—
and

g=(p p' )/(kF+ w) —.

kF(5p 3kF ) 2(2kF+w —p )'
+H(2kF+w —p )

(p' kF)— ( —k )

Evaluating the final integral then yields

32ir Nk(kF ) 2 i 5kF
o(kF,p) =

z H(p kF w)——
15p N

(21)

(22)

(23)

(24)

Notice that the dependence of ob on p is iinplicit through kF [p( r )], and crb also depends on the energy gap through w.

The final expression for the absorption potential is obtained by combining equations (1)—(3), (7), and (24). Notice that
the result becomes infinite for p greater than kF if the gap is zero. Our choice of gap makes V (n, E) have the correct

' threshold.

III. CALCULATIONS
V (r,E)=V (r)+V (r,E)+V (r,E) . (26)

The whole optical potential is approximated as

V'~'(r, E)=V (r,E)+iV"(r,E), (25)

where the real part V is further partitioned into static
(S), exchange (E), and polarization (P) terms':

The static part is obtained from a fit to the results of
Hartree-Fock calculations, and the exchange term is cal-
culated by the semiclassical-exchange approximation' as
a function of the unperturbed Hartree-Fock density' and
the Hartree-Fock static potential. The polarization term
for most of the calculations is a spline fit to results' '
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TABLE I. Parameter c (E) of the SEPaAp potential (in a.u. ).

E (eV)

100
1000

He

1.411 03
1.416 96

Ne

0.386 29
0.704 97

Ti (r,E)=E V(r) ——V (r,E) . (27)

The calculations with the potential model just described
will be called SEPaA or SEPaAf, where the capital letters

obtained in the adiabatic approximation by the finite-field
variational method' using Hartree-Fock wave functions
with an extended basis set including diffuse functions.
Notice that, in general, as written in (26), the V term
may be energy-dependent, but in the adiabatic approxima-
tion it is independent of energy. The absorption potential
is evaluated using the formula derived in Sec. II; this re-

quires the density and the local kinetic energy. For the
former we used the unperturbed Hartree-Fock density; the
latter was modeled using the static and semiclassical-
local-exchange potentials, i.e.,

denote the four terms in the potential, "a" denotes adia-

batic polarization, and "f' denotes the quasifree-scattering

approximation for absorption. We will also report a few

calculations with other polarization or absorption models
or with one of these terms neglected. In the SEPlkeAf
model the adiabatic polarization potential V ' is replaced

by the local-kinetic-energy semiclassical polarization ap-

proximation, ' i.e.,

V '"'(r,E)=[1+Ti (r,E)/b, ,„] 'V '(r), (28)

where Ti is given by (27) and b,,„ is an average excitation
energy. The SEPleAf model involves the low-energy
semiclassical polarization approximation, ' i.e.,

V "(r,E)=I 1 —[V (r)+ V (r,E)]/b, )+'V '(r) .

(29)

In the SEAf model the polarization potential is neglected
entirely. In the SEPaAp model, we tested the effect of us-

ing a different shape for the absorption potential. We
took the absorption potential as

V"~( n, E)= c(E)p—( r ),
where c(E) is an empirical constant that we adjusted to

TABLE II. Cross sections (ao ) and differential cross sections (ao/sr) at four scattering angles for various potentials.

dO, ]/d 0
Potential

SEPaA
SEPleA

SEPlkeA
SEA

SEPaAp
SEPa

0 el

2.82
2.44
1.98
1.84
2.23
3.13

0 abs

1.93
1.92
1.90
1.89
1.89
0

4.75
4.35
3.88
3.73
4.12
3.13

0.827
0.703
0.690
0.676
0.581
1.14

2'

He at 100 eV
3.61
3.32
1.54
1.21
3.13
3.68

10'

2.49
2.24
1.33
1 ~ 11
2.09
2.47

60'

0.177
0.148
0.147
0.143
0.142
0.224

120

0.0296
0.0254
0.0270
0.0273
0.0157
0.0506

SEPaA
SEPleA

SEPlkeA
SEA

SEPaAp
SEPa

0.267
0.219
0.153
0.151
0.269
0.286

0.446
0.445
0.444
0.444
0.616
0

0.713
0.664
0.598
0.596
0.885
0.286

He at 1000 eV
0.0155 2.61
0.0135 2.29
0.0132 0.731
0.0132 0.700
0.0145 2.64
0.0200 2.70

0.680
0.551
0.374
0.367
0.700
0.696

0.002 18
0.002 08
0.002 13
0.002 13
0.001 90
0.003 16

0.000218
0.000223
0.000223
0.000223
0.000 188
0.000 349

SEPaA
SEPleA

SEPlkeA
SEA

SEPaAp
SEPa

7.49
7.14
5.73
6.26
6.60
9.43

4.69
4.65
4.65
4.59
3.01
0

12.2
11.8
10.4
10.9
9.60
9.43

3.66
3.39
3.33
3.27
2.48
6.60

Ne at 100 eV
10.9
10.4
6.09
6.22
9.52

10.0

7.89
7.44
5.17
5.46
6.56
6.89

0.172
0.167
0.141
0.153
0.302
0.413

0.141
0.151
0.120
0.147
0.0662
0.272

SEPaA
SEPleA

SEPlkeA
SEA

SEPaAp
SEPa

1.60
1.41
1.24
1.23
1.65
2.35

1.90
1.89
1.89
1 ~ 89
1 ~ 31
0

3.51
3.30
3.13
3.12
2.96
2.35

Ne at 1000 eV
0.0914 13.9
0.0845 12.2
0.0839 7.35
0.0838 7.23
0.0876 14.2
0.308 15.6

4.53
3.91
3.56
3.54
4.57
5.23

0.0129
0.0121
0.0123
0.0123
0.0138
0.0529

0.001 68
0.001 70
0.001 70
0.001 70
0.000 776
0.0107
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TABLE III.
tions for He.

Theoretical (SEPaA and SEPlkeA) and experimental (Refs. 19, 26, 27, and 30) cross sec-

E (eV)

30
50

100
200
400
700
800

1000
3000

SEPaA

9.148
5.804
2.817
1.277
0.627
0.374
0.330
0.267
0.0914

SEPlkeA

7.744
4.476
1.984
0.839
0.385
0.220
0.192
0.153
0.0507

Ref. 26

cr„(ao')
7.54
4.51
2.00
0.88
0.41
0.23
0.21
0.15

Refs. 19 and 27

7.99
4.95
2.18
0.98
0.44
0.236

0.149
0.048

Ref. 30

8.46
5.21
2.36
1.07
0.43

30
50

100
200
400
700
800

1000
3000

0.370
1.295
1.934
1.652
1.024
0.623
0.550
0.446
0.153

0.372
1.279
1.898
1.629
1.015
0.620
0.548
0 AHA

~ T

0.154

e,b (ao)
0.815
1.52
1.89
1.65
1.16
0.80
0.73
0.61
0.25

30
50

100
200
400
700
800

1000
3000

9.518
7.099
4.751
2.929
1.651
0.997
0.880
0.713
0.245

8.116
5.755
3.881
2.467
1.399
0.839
0.740
0.598
0.204

2
Otot (&0)

8.36
6.04
3.89
2.53
1.57
1.04
0.95
0.76

8.80
6.47
4.07
2.63
1.61
1.04

0.76
0.31

30
50

100
200
400
700
800

1000
3000

6.623
3.018
0.827
0.205
0.0630
0.0272
0.0221
0.0155
0.002 47

5.783
2.550
0.690
0.169
0.0520
0.0228
0.0187
0.0132
0.002 17

5.38
2.51
0.75
0.22

6.00
2.93
0.93
0.29
0.079

30
50

100
200
400
700
800

1000
3000

2.269
2.100
1.529
0.874
0.433
0.222
0.186
0.135
0.0207

1.639
1.384
0.966
0.564
0.290
0.157
0.133
0.0989
0.0177

der, ~/dQ (ao/sr) at 0=20'
1.88
1.56
0.90
0.49

0.93
0.53
0.29
0.154

0.098
0.018

make the absorption cross section agree wth experi-
ment. ' ' The resulting values of e(E) are given in Table
I. Finally, in the SEPa model, we neglect the absorption
potential.

Since most results in this paper are for the Af model for
absorption, we further abbreviate Af by A in tables and
figures.

For the energy gaps in the absorption potential we used
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TABLE IV. Theoretical (SEPaA) and experimental (Refs. 20
and 27 —29) cross sections for Ne.

TABLE V. Differential cross sections (a+sr) for electron-He
scattering at E =800 eV.

E (eV) SEPaA Refs. 20 and 27 Ref. 29 Ref. 28 9 (deg) SEPaA SEPlkeA Expt. '

30
40
50
70

100
200
400

1000
3000

10.71
10.70
10.26
9.076
7.493
4.619
2.652.
1.604
0.774

o,l (ao)
11.3
10.7
10.8
9.99
8.74
4.99
3.22
1.63
0.75

12.9

11.2
10.1

7.96 8.55
4.92
3.24

10
20
30
50
70
90

110
130
150

'Reference 31.

0.814
0.186
0.0499
0.006 69
0.001 79
0.000 725
0.000 389
0.000225
0.000 197

0.433
0.133
0.0404
0.006 25
0.001 76
0.000735
0.000 399
0.000262
0.000 202

0.46
0.15
0.051
0.0093
0.0029
0.0013
0.000 80
0.00049
0.00040

30
40
50
70

100
200
400

1000
3000

30
40
50
70

100
200
400

1000
3000

1.236
2.374
3.208
4.166
4.693
4.517
3.503
1.902
0.783

11.95
13.07
13.47
13.24
12.19
9.136
6.155
3.506
1.556

2o b (ao)
0.75
1.35
1.85
2.53
2.92
2.99
2.30
1.31
0.55

2
crt, t (ao)

12.1
12.1
12.7
12.5
11.7
7.98
5.51
2.94
1.30

) 1.01

) 1.99

)2.79

13.6

13.0
12.6
10.9

the quasifree-scattering model for He and Ne, respective-
ly.

The complex phase shifts and the cross sections were
calculated using methods discussed elsewhere. ' To
converge the partial-wave sums in the cross-section for-
mulas we used l,„values in the range from 13 to 351; in
some cases the high-1 phase shifts were computed in the
polarized Born approximation with the asymptotic po-
larization potential. In all cases the results presented are
well converged with respect to increasing l,„and, where
applicable, with respect to increasing the I value at which
we switched from numerical phase shifts to polarized
Born ones for the asymptotic polarization potential.

IV. RESULTS

Table II compares cross sections computed with all six
types of potential for two energies. The abbreviations

I 1 I I
[

I I I I
l

I / I I

30
40
50
70

100
200
400

1000
3000

30
40
50
70

100
200

1000
3000

9.305
8.834
7.849
5.796
3.659
1.174
0.260
0.0914
0.0225

1.810
2.783
3.520
4.307
4.534
3.524
1.991
0.787
0.173

10.5

8.57
5.93
4.71

4.15
2.75
1.84
0.91
0.28

3.24
4.27
3.70

do,1/dQ (ao/sr) at 8=20'
2.18

4.54
2.10
0.88

4.48
2.50
1.96

UJ

-0.5

-1.5

400 eV(xO. 1)

19.9181 eV for He and 16.6194 eV for Ne. ' For the aver-
age excitation energies in the semiclassical polarization
potentials we used 25.42 eV for He and 25.27 eV for Ne.
Figures 1 and 2 show absorption potentials computed by

-2 I

0 2

FIG. 1. Absorption potentials computed by the quasifree-
scattering model for He.
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FIG. 2. AAbsorption potentials c
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FIG. 5. Same as Fi .~ . e as ig. 3 except for 100 eV.
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0.3—
C4

O
CO

0.1—
'0

0
0.03—

He
200 eV—SEPaA
---SEPlkeA

Co

Ol ~
CO

C

0

0, 1

0.01—

0.001 =

He
10006V

SEPaA
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0.0001
30

I I I I I I I
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0 30 60 90 120 150 180
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of the bottom of a French wine bottle. Wine-bottle ab-
sorption potentials are familiar in nuclear physics, where
absorption is believed to be most probable at the nuclear
surface. The absorption potentials of most models used in
electron-atom scattering are peaked at the origin, al-
though McCarthy et al. presented a series of reasonably
successful calculations with a wine-bottle-shaped absorp-
tion potential that they adjusted to experimental data. In
the present model a greater absorption probability at the
atomic surface arises physically from the lower Fermi mo-
menta in the outer low-density regions of the atom. Ac-
cording to the model, the Pauli blocking is less severe in
regions of lower Fermi momentum. In order to test the
significance of the surface absorption feature we replaced
the Af absorption potential by the Ap one, Eq. (30). The
reason for using p( r ) is that it is the simplest nonsingular

FIG. 8. Same as Fig. 3 except for 1000 eV.

function associated with the atom that is peaked at the
nucleus, and, in fact, it represents the simplest possible
binary-collision model in which the probability of absorp-
tion is simply proportional to the probability of finding an
electron. Table II shows that for many properties of the
cross sections the nonempirical Af model and the empiri-
cal Ap model predict similar results. Figures 5 and 12
show, however, that the Ap absorption potential predicts
too little large-angle elastic scattering for He and Ne at
100 eV. In both cases the angle dependence of the elastic
differential cross section is predicted much more accurate-
ly by the Af absorption potential than the Ap one. Rather
than explore nuclear-peaked absorption potentials further,
we shall concentrate in the rest of this paper on testing the
Af absorption potential to see if the quasifree-scattering
model with Pauli blocking can provide a useful basis for
accounting for flux loss from the elastic channel.

We also ask the following: Can we draw reasonably re-
liable conclusions about the absorption potential when the
real polarization potential also has uncertainties? Several
of the calculations in Table II were designed to answer
this question. Comparison of the SEPaAf or SEPaAp dif-
ferential cross sections to the SEPa ones shows that the
main effect of the absorption potential is to decrease the
large-angle scattering. But comparison of the SEPaAf,
SEPlkeAf, and SEPleAf differential cross sections at large
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scattering angles shows that they are very similar. Chang-
ing the polarization potential also has only a small effect
on o,b, . Thus the two most important effects of V",
namely, the absorption cross section and the lowering of
the large-angle differential elastic cross section, are insens-

itive to the polarization potential. We conclude that the
answer to the question posed at the beginning of this para-

graph appears to be yes.
To test the new model for the absorption potential we

will use the Pa and Pike polarization potentials for He and
the Pa polarization potential for Ne. We know from pre-
vious work on He at 12—400 eV and on Ne at 10—700
eV that these potentials are reasonably adequate over wide

energy ranges. ' ' ' ' ' At still higher energies it might
be more appropriate to use the SEAf model. However, as

discussed above, our conclusions about o.,b, should be
reasonably independent of the polarization potential. Ad-

ditional calculations show that at high energy the effect of
the polarization potential on der, ~/dQ is limited to very

e (deg)

FIG. 12. Same as Fig. 3 except for Ne at 100 eV.

small scattering angles.
We next consider O.,b, in Tables III and IV. The central

issue of this study is the following: How well does the
quasifree-scattering model with Pauli blocking predict
o,b, '? The answer given by Tables III and IV is as follows:
reasonably well over a wide range of energy. For He the
nonempirical calculated cr,b, values agree with the experi-
mental values to 16% or better at 50—400 eV and un-

derestimate the experimental values by 27% and 38% at
1000 and 3000 eV. For Ne the nonempirical calculated
o.,b, are systematically higher than the experimental values
with the overestimation factor in the relatively narrow in-

terval of 1.42 —1.73 over the whole 30—3000 eV range.
To learn whether this represents a trend whereby the
model becomes worse for targets with more electrons or
heavier nuclei we applied the model to Ar; this study will

be published elsewhere"' but we note that the agreement
between the calculated and experimental u,b, values for
Ar is even better than that found here for He. This makes
us suspect that the experimental values may be systemati-
cally low for Ne; however the matrix-effective-potential
calculations that we reported previously are only slightly
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less accurate for Ne than He, ' ' ' so the amount of sys-
tematic error in the experiment is probably not large. If
we discount the possible experimental error, then we con-
clude that the accuracy of the present model does not vary
rnontonically with target size for the rare gases. Further
work to confirm or improve the experimental values of
cr,b, for Ne would be very welcome. In any event it is en-
couraging that the calculated o.,b, values have the same
energy dependence as the experimental ones for Ne. For
He, the calculated a,b, values are relatively low at 30 eV
and as already mentioned, at 1000—3000 eV.

Finally, we consider the large-angle elastic scattering
cross sections. For He the agreement with experiment is
excellent at 30 and 50 eV (Figs. 3 and 4) and somewhat
worse but still good at 100—800 eV (Figs. 5 —7 and Table
V). At 1000—3000 eV the agreement with the experimen-
tal differential cross sections is excellent but the latter are
available only for 0(50. For Ne the best agreement be-
tween theory and experiment is for 50, 100, and 3000 eV
with worse agreement at 30, 200, 400, and 1000 eV. The
elastic momentum-transfer cross sections are sensitive to
the large-angle scattering, and the comparisons of these
values to experiment in Tables III and IV provides anoth-
er test of the calculated cross sections for large-angle elas-

tic scattering. The agreement is within 22% for He at
30—200 eV and for Ne at 30—100 eV. However the
momentum-transfer cross sections are more severely un-
derestimated (factors of 1.8 and 3.4) for Ne at 200 and 400
eV.

VI. CONCLUDING REMARKS

We have proposed a nonempirical model for the absorp-
tion potential and have tested it thoroughly: in this article
for two targets and over a range of two orders of magni-
tude of impact energies, and in a previous report for Ar
over the same energy range. Over the energy range
50—1000 eV the rrns relative deviation of the calculated
absorption cross sections from experiment is 15% for He
and 57% for Ne. Over the full 30—3000-eV range the
rms relative deviation is 28% for He and again 57%%uo for
Ne. The agreement with experiment for the differential
cross sections is not consistent. In some cases it is excel-
lent but there seems to be a trend to somewhat underesti-
rnate the large-angle elastic scattering especially at high
energy.

It is interesting to compare the present approach to
several previous approaches to calculate o.,b, and absorp-
tion effects on do,~/dII nonempirically.

Garrett and coworkers have developed a complex op-
tical potential approach and have applied it to e -H
scattering. Their approach involves a nonlocal complex
potential for the elastic-channel optical potential whereas
our work, both here and previously, ' has been aimed at
developing useful local forms for the optical potential.

McCarthy, Stelbovics, and Saha have developed an
approximation scheme for the complex optical potential in
momentum space and a convenient equivalent local poten-
tial in coordinate space. Their method is based on explicit
consideration of the discrete-state and continuum-state
contributions to the optical potential, whereas the present
approach uses no information about the excited wave
functions of the target. An advantage of their method is
that it is extendable to calculations of coupled channels
plus the optical potential. As for the method discussed in
the previous paragraph, this method has been applied only
to e -H scattering, so no numerical comparisons to the
present results are possible.
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The eikonal optical model has been applied to He, Ne,
and Ar by Byron and Joachain. ' For He it overesti-

mates o,b, by factors of 1.9 and 1.4 at 100 and 200 eV,
respectively, and for Ne it overestimates cr,b, by factors of
2.7 and 1.8 at the same two energies; these errors are
much larger than those obtained with the present model.
For Ar the same version of the optical eikonal model has

a 28% rms error for 100—1000-eV energy range, as

compared to 8% for the present method over the same en-

ergy range. It does appear, however, that the eikonal op-
tical model gives more accurate differential cross sections
at high energy and large scattering angles. A major disad-

vantage of the eikonal optical model is the difficulty in

evaluating the expression for the absorption potential; a
numerical integral is required even for atomic targets. In
contrast, the present model reduces to a universal func-
tional of target electron density, and this functional is

equally as applicable to rnolecules as to atoms.
Another approach to o,b, is the dispersion-equation ap-

proach employed by Valone and two of the authors.
In this approach the absorption potential is obtained by
solving a principal-value integral equation involving the
energy-dependent polarization potential as a function of
impact energy. To be accurate over a wide energy range
this theory requires knowing the polarization potential
over a wide energy range. Also it is not clear with what

accuracy the dispersion equation applies to localized
model potentials. Further testing is underway in our labo-

ratory to try to determine which of the following three ap-
proaches is most accurate: (i) model V directly and use
the dispersion equation to calculate V" as in Ref. 44; (ii)

model V" directly, for example by an empirical ap-

proach ' or by the present model, and use the dispersion
equation to calculate V; or (iii) model both V and V"

directly, as in the present paper. The development of a
successful nonempirical model for V, as attempted here,
is of course a necessary first step for nonempirical ap-
proaches of types (ii) and (iii).

Another approach to calculating o.,b, is the matrix-
effective-potential (MEP) method. ' ' ' This
method does not require an accurate energy-dependent po-
larization potential as input but rather an accurate adia-

batic polarization potential, which is easier to obtain. It
involves only real potentials but it requires explicit treat-
ment of an electronically excited pseudochannel. It does
not require any free-electron approximations, and so it is,
in principle, less approximate. For He the rms relative er-

ror in ~,b, is 11% for 50—400 eV or 19% for 30—400
eV. ' For Ne the rms relative error is 37% for 50—700
eV but a factor of 2.8 at the near-threshold energy of 30
eV. ' As compared to the present model, the MEP
method is less accurate for Ne at 30 and 50 eV, about the
same for He at 50 eV and above, and more accurate for
He at 30 eV and for Ne at 100 eV and above. Above 100
eV the MEP also appears to give more accurate elastic
momentum-transfer cross sections and elastic differential
cross sections at large scattering angles '" than either the
eikonal optical model or the present model. Thus, at the

computational expense of treating two coupled electronic

channels instead of one, the MEP appears to be a more ac-
curate way to treat absorption effects above 100 eV.
Nevertheless, a single-channel complex potential has im-

portant interpretive advantages, and we are encouraged by
the success of the present very simple model for calculat-

ing such a potential nonempirically.
A brief communication of parts of the present work has

been published elsewhere ' and an application to Ar will

appear in a symposium proceedings. The present paper
presents the derivation and our first complete discussion
of the quasifree-scattering model, plus the results for He
and Ne over a very wide energy range. The overall con-
clusion of the study is that the simple binary-collision
model with Pauli blocking is remarkably successful for
the absorption cross sections over the whole energy range
and for the differential elastic cross sections at 50—100
eV. The high-energy, large-angle differential elastic cross
sections, which are very small, are underestimated.
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APPENDIX

The Strand-Bonham fits for p(r) fail for very small r,
where the use of the tabulated constants from their paper
leads to inaccurate values due to the inexact cancellation
of terms. In particular, for p(0) to be finite it is required
that

(A 1)

For He, we forced (A 1) to be satisfied by changing their
constant 'A, i from 2.4907 to 2.490795 656, and for Ne we
replaced p(r) by p(2X10 ao) whenever r &2)&10 ao.
~ith these modifications, p(0) for He and Ne are 3.5991
and 604.04 a.u. , respectively. For comparison, the
Hartree-Fock values of p(0) obtained from the tabulation
of Fraga et al. are 3.5959 and 619.90 a.u. for He and
Ne, respectively. The (13,9,3) Gaussian basis of Douglass
et al. ' yields p(0) =604.04 a.u.

If (A 1) is satisfied, then the density at the origin is

given by

(A2)

It is possible to adjust the Strand-Bonham fits to give an
accurate value of p(0), when one is known, by adjusting
two of their constants to simultaneously satisfy (A1) and

(A2). This was not done for the present calculations be-

cause it would have had a negligible effect on the results.
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