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Resonant scattering in the presence of an electromagnetic field
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The theory of resonant reactions, in the projection-operator formulation of Feshbach, is general-
ized to account for the presence of an external electromagnetic field. The theory is used as the basis
for the construction of low-frequency approximations for the transition amplitude. Results ob-

tained here for scattering in a laser field confirm earlier versions of the low-frequency approxima-
tion when the resonances are isolated. However, if there are several closely spaced resonances addi-
tional terms must be included (their importance magnified by the appearance of near singularities)
which account for the effect of radiative transitions between pairs of nearly degenerate resonant
states. The weak-field limit of this result yields a low-frequency approximation for single-photon
spontaneous bremsstrahlung which, through the inclusion of correction terms associated with close-

ly spaced resonances, provides an improvement over the Feshbach-Yennie version derived some
time ago. A separate treatment is required to deal with the limiting case of a static external field
and this is worked out here in the context of a time-dependent formulation of the scattering prob-
lem. Linear and quadratic Stark splitting of the resonance positions, and resonance broadening due
to the tunneling mechanism, are expected to play a significant role in the static limit and these ef-

fects are included in the approximation derived here for the transition amplitude.

I. INTRODUCTION

It was suggested some time ago by Feshbach and Yen-
nie, ' in the context of nuclear reaction theory, that the
process of spontaneous bremsstrahlung of low-frequency
photons can serve as a probe of resonant scattering
dynamics. More recently, similar suggestions have been
made in connection with electron-atom scattering in a
low-frequency laser field (stimulated bremsstrahlung). '

The effect of a strong static electric field on resonant
states of the H system has been studied experimentally
and theoretically. ' In view of this interest it seems
worthwhile to have available a general formulation of the
theory of resonant scattering in the presence of a field (ei-
ther external or spontaneously produced), and this will be
developed below. It will allow one to examine, somewhat
more systematically than has been done in the past, the
domain of validity of various low-frequency approxima-
tions for the transition amplitude which have been pro-
posed. It turns out that in certain cases the approxima-
tions must be modified (if they are to preserve the level of
accuracy claimed for them) through the addition of cer-
tain correction terms and this will be discussed in detail.

As is well understood, the dominant effect of a low-
frequency field, over a wide range of field strengths, is to
modify the wave functions which describe the motion of
the projectile before and after the collision. Our main
concern here will be with the additional dynamical effect
which the field may have on the scattering system during
a resonance. Such an interaction will affect the probabili-
ty for emission and absorption of radiation and may also
introduce an observable change in the position and width
of a resonance. The most significant modification of ear-
lier theoretical treatments' occurs when there are a
number of closely spaced resonances in the absence of the

field. The effect of the field during the resonance is
enhanced as a result of this near-degeneracy. In particu-
lar, we shall see that additional terms must be added to
the standard Feshbach-Yennie approximation' for single-
photon bremsstrahlung to account for photon emission by
the resonant system. Analogous correction terms, corre-
sponding to absorption and stimulated emission of pho-
tons during the resonance, must be included in the low-

frequency approximation for scattering in a laser field.
Actually, it is this problem which we shall study in detail
since the result for spontaneous bremsstrahlung can be de-
rived from it very simply by taking the appropriate weak-
field limit.

Our analysis is based on the Feshbach projection-
operator formalism, generalized to include the effect of
the field. ' In Sec. II we consider scattering in a strong
external radiation field which we describe using the
occupation-number representation. This choice (as op-
posed to the classical description to which it is equivalent
in the intense-field regime) simplifies passage to the case
of single-photon spontaneous bremsstrahlung. While the
formalism is quite general we have in mind a situation in
which the resonance width 6 is comparable to or smaller
than the photon energy Ace. Furthermore, when we deal
with several closely spaced resonances the spacing is un-
derstood to be not substantially larger than Ace. In such
cases only a small subset of photon states —those which
bring the particle-field system into resonance —will contri-
bute significantly to the resonant component of the
scattering amplitude. A truncation of the infinite sum
over intermediate photon states [such a sum appears in
Eq. (2.50) below] may then be justified.

For Ace &&6 a very large number of photon states must
be included and a somewhat different approach is required
to deal effectively with this case. Here, in this extreme
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low-frequency limit, the field is essentially static during
the lifetime of the resonant state. As a result the tunnel-

ing mechanism, in which the projectile is "drawn out" of
the resonant state in which it is temporarily bound, with
the lifetime of that state thereby shortened, may play a
more significant dynamical role and some allowance
should be made for this effect in the approximation pro-
cedure. (In the opposite limit, fico»b„ the field changes
sign many times during the resonance lifetime and the
tunneling mechanism is presumably less important. ) In
Sec. III the theory is reformulated to allow for a con-
venient treatment of the limiting case of a static external
field. The procedure is not simply one in which the fre-
quency co is allowed to approach zero in the formalism of
Sec. II. That limit is a singular one; it corresponds to sub-
jecting the projectile in the initial or final state to a uni-
form acceleration over an infinite time interval. Such
singular behavior may be avoided, however, if the field is
taken to be a pulse of finite width. One can then con-
struct wave packets which spend only a finite amount of
time in the field. " In order to treat the field in this more
realistic fashion it is convenient to describe it classically
within the context of time-dependent scattering theory.
The present treatment generalizes one given earlier' in
which the scattering was explicitly assumed to be non-
resonant. In addition to the tunneling effect, which leads
to a broadening of resonance lines, the approximation
developed here takes into account transitions between
nearly degenerate resonant states which results in a linear
Stark shift of the resonance positions. Direct numerical
studies of the dependence of resonance parameters on the
strength of an applied static field have been made previ-
ously. ' ' The present discussion, in addition to provid-
ing a scattering-theoretic background for such studies,
leads to an approximation for the scattering amplitude in
which the effect of the field on the resonant intermediate
state, as well as on the asymptotic states, is accounted for
explicitly. Section IV contains a summary and discussion
of our results.

II. SCATTERING IN A LOW-FREQUENCY
RADIATION FIELD

A. Effective-potential formulation

In order to provide some background we begin here
with a brief summary of the time-independent effective-
potential approach to the problem of scattering in a low-
frequency laser field. '" A number of simplifying assump-
tions will be introduced to allow us to focus more directly
on those features of the problem of present interest. Thus,
the target is assumed to be neutral and infinitely massive.
The field consists of a beam. of photons each having fre-
quency co and linear polarization vector A, . The momen-
turn carried by the photon is assumed to be negligible; this
corresponds to the neglect of projectile-recoil effects of or-
der v/c. In that approximation the A contribution to the
particle-field interaction plays no role and will be dropped
here. ' ' We confine our attention to the case of elastic
scattering. That is, the target, initially in its ground state

~X), returns to that state after the collision. Pauli ex-
change processes will not be explicitly accounted for; the
particles are treated as if they were distinguishable. These
restrictions do not reflect any intrinsic limitations of the
theory.

As a result of the collision the projectile, of charge e
and mass p, has its momentum changed from p to p'
while the photon number of the field changes from n to
n' Upon entering the field the projectile, as a result of
multiple absorption and emission of photons, has its
plane-wave state modified to the form

(2.1)

Here we define

COP~ =—
P

'P
7

pc
(2.2a)

' 1/2
8mcI

7

CO

(2.2b)

where I, the field intensity, is related to the photon num-
ber n and quantization volume L (in units where A'= I)
by I =ncoc/L . The strength parameter p represents the

P
ratio of the particle-field interaction energy to the photon
energy and can be of order unity or greater, even for
moderate field strengths, if the frequency is sufficiently
low. This is a reflection of the near-degeneracy of the
asymptotic particle-field states in the low-frequency
domain and necessitates a nonperturbative treatment of
these states. Equation (2.1) may be obtained as follows. "
One first solves the Schrodinger equation, in the Coulomb
gauge, to account for the projectile-field interaction.
(With recoil effects ignored the projectile momentum p
remains fixed. ) The solution takes the form of an expan-
sion in photon occupation-number states with expansion
coefficients —they turn out to be Bessel functions —which
represent the probability amplitudes for the virtual emis-
sion or absorption of a specified number of photons. The
shift in momentuin from p to p(P):—p —(e/c)M cosP in
Eq. (2.1) arises from the introduction of a gauge transfor-
mation generated by the operator exp(iA g. eire/c),
where ej and rj- are, respectively, the charge and position
vector of the jth particle in the system, and A is the
operator representing the vector potential at the origin of
coordinates. In addition to introducing momentum shifts
in the initial and final states this gauge transformation has
the effect of converting the "p.A77 interaction of the
Coulomb gauge to the "r-E" form of the electric-field
gauge. This is a useful step to take since for low frequen-
cies, and in the absence of near-degeneracies, the
transformed interaction is effectively weaker. ' By
neglecting this interaction completely in intermediate
states as well as its effect on the target system in initial
and final states one arrives at the low-frequency approxi-
mation derived previously. '

We now indicate how that earlier result, for non-
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w(E)=P (E)+F(E)g(E)~(E) . (2.4)

In general, ' the interaction of the projectile with the field
is accounted for not only in the effective potential 7 but
in the single-particle propagator 8 as well since that in-
teraction persists even when the projectile and target are
well separated. However, as indicated above, the (gauge-
transformed) particle-field interaction is neglected in in-
termediate states in formulating the low-frequency ap-
proxiination for nonresonant scattering. (Inclusion of this
interaction in intermediate states could be accomplished
perturbatively but in the absence of resonances this would
introduce corrections of higher order in the photon fre-
quency. ' The importance of such corrections to the basic
low-frequency approximation is a matter of some interest,
deserving further experiinental and theoretical investiga-
tion, but we shall not pursue this question here. ) Accord-
ingly, 9 is replaced by the free propagator

resonant scattering, may be recovered in the context of the
effective-potential formalism. With the target-field in-
teraction in initial and final states ignored at the outset"
the amplitude for the transition [n, p}~[n', p'} may be
represented as

~„-, „-,=«„-,. i~(E) i~„-, ) (2.3)

Here E =(p /2p)+neo represents the total energy which,
in the initial state, consists of separate contributions from
the projectile and field subsystems. (The target energy
does not appear here since, for convenience, we have
chosen the target ground state as our reference level. ) The
scattering operator satisfies the equivalent one-body
Lippmann-Schwinger equation

plished by means of the projection operator
Q=l —~X)(X~ so that

G &(E)= [Q (E H—)Q] (2.7)

with H representing the Hamiltonian of the system. We
have the decomposition

H =Ho+HF+HI ) (2.8)

where Ho is the Hamiltonian of the projectile-target sys-
tem in the absence of the field. In the electric-dipole ap-
proximation the (gauge-transformed) particle-field interac-
tion takes the form

HI ———e E.R, (2.9)

where eR is the dipole operator of the system of particles

and E, the electric field at the origin of coordinates, is
given in terms of the photon creation and annihilation
operators as

COE=i
C

1/2
2~C'

A-, ( t)
coL

(2.10)

In the approximation in which Hz is neglected in the
definition of the effective potential, Eq. (2.6), as well as in

the propagator, Eq. (2.5), the field affects the a operator
only through the appearance of the energy term HF in Eq.
(2.4). The solution can therefore be expressed in terms of
the field-free scattering operator T. Explicitly, we have,
for arbitrary photon states ~1) and

~

1'), (1'~a(E) ~l)~T(E lcm)5i i—for HJ ~0. An exact forrnal solution of
the Lippmann-Schwinger integral equation for T(Q) may
be constructed with the aid of the resolvent operator; this
provides us with the representation

9' =(E HF K)— — (2 5)

~(E)= (X
~ [V+ VG ~(E)V]

~
X), (2.6)

where V is the projectile-target interaction energy and G~
is the resolvent operator for the full system, modified by
the "removal" of the target ground state. This is accom-

where HF ——cuba a is the field Hamiltonian and E is the
projectile kinetic-energy operator. The effective potential
is defined by

T(& q
' q)=(q'

l
T(I~)

I q)

=(q '
} (J ~

[V+ V(Q Hp) 'V]
~

X—) } q)
(2.11)

for the off-shell T-matrix element. With u expressed in
terms of T in the manner shown above, and with the aid
of the representation (2.1) of the asymptotic states, we ob-
tain the low-frequency approximation

2n dp' 2n dP=g f f exp[ —i[(l+n —n')P'+p, sing']}
P ~ P 0 2~ 0

I
P

Xexp[i(liti+p sing)]T(E (n +l)co;p '(P'), p—(P)) . (2.12)

Further analysis shows that the off-energy-shell com-
ponents of the T matrix cancel to good approximation
over a wide range of field stengths. ' The result may be
expressed in terms of the Bessel function

~ .„~—=g Jn —n i(p- )~ i(p-) T(pi—~29~ p—i ~ pi) ~

(2.14)

as

2m dA i(lg —psinP)

2' (2.13)
where

p leo
PI =P—

p'A,
(2.15a)
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p, (n' n— l—)co ~PI=P +
p 'A,

(2.15b)

If we ignore terms of second order in co and make use of
energy conservation in the form (p /2p)+neo=(p' /2p)
+n'c0 we see that the on-shell condition pi /2p =p/ /2p
is satisfied. The origin of the shifted momenta pi and p i

which appear in Eq. (2.14} can be traced to the introduc-

tion of the above-mentioned gauge transformation whose

generator acts as a momentum-translation operator on the
initial- and final-state wave functions. These momentum

shifts introduce corrections of order co to the lowest-order

approximation obtained by Kruger and Jung. Details of
the derivation of Eq. (2.14) can be found in Ref. 15.

The amplitude T(Q;q ', q), when on the energy shell,

may be taken to be a function of two scalar variables, the

energy 0 and the momentum transfer squared
r=(q' —q) . In the absence of resonances the T matrix

in Eq. (2.14) may be expanded in a Taylor series about

Q=p /2p and ~=(p' —p}, with terms of order coi ig-

nored. The sum over I may then be performed with the

use of some well-known properties of the Bessel function

(recursion relation and addition formula}. The result may

be expressed as

energy parameter in deriving Eqs. (2.14) and (2.18). How-

ever, the field interaction has been ignored in intermediate

states and the validity of this approximation must be ex-

amined more carefully for resonant scattering. We now

turn to this analysis.

B. Resonant scattering

2

p=X lB, &(8, l, q=a p-
j=1

We then have the identity '

G~=G'i+(1+G H )pG~p(1+H G ),

(2.20)

(2.21)

For definiteness we shall suppose that there are two

closely spaced resonances of the Feshbach type near the

scattering energy of interest. Thus, following Feshbach,
we assume the existence of two bound states satisfying

N4g I BJ &=ej
l
BJ & (BJ

l
Bk &=~jk j k= 1 2

The resonances may be traced to the appearance of singu-

larities in W(E). To display these singularities explicitly

we introduce the projection operators

with

„(p-, -)T(II;p ', p ) (2 16} where

G i(E)= [q (E H)q]— (2.22}

p.(n' n)co ——
P~=P+

(p' —p} k
(2.17)

p(n' n)co „-—
P~=P +

(p ' —p}.A.

and Q„=p„/2p=p„' /2p. This is the version of the
low-frequency approximation obtained by Kroll and Wat-
son and is valid, it should be emphasized, in the absence
of resonances.

It is not difficult to verify that the Bessel functions in

Eq. (2.14) sum up the perturbation series for the
projectile-field interaction in asymptotic states; the result
of first-order perturbation theory is then obtained with the
use of the small argument limit of the Bessel function,

with I replaced by cue/L in the expression (2.2b) for M.
In this way we obtain the low-frequency approximation
for single-photon emission in the form

' 1/2
~Fg 2'

1 '0, p;, p p2 L3

Interaction of the resonant system with the field is

described by the propagator

pG~p =[p(E H HIG~H—I )p—] (2.23)

This may be expanded in terms of a conveniently chosen

set of basis states which we take to be of the form

g a' '(j, n) IBk) lm+n) .
m= —00 k=1

(2.24)

a '(j, n) = ~

( —i) —,
' [J (o)+J (o)], k =j

( i) , [J —(o)——J (o)], k&j
(2.25)

We require that H be diagonal in this basis in the limit of
exact degeneracy, e] ——e2, in this way we account nonper-
turbatively for the dominant contribution of the effect of
transitions between states

l Bi ) and
l
Bi ) induced by the

low-frequency field. This requirement (along with the
condition that

l 8~„)~ l 8/ )
l

n ) for HI ~0) fixes the ex-
pansion coefficients as

p T p, pcs
co 2p

&2pT p, pm
~P ~P

co 2p p ~ g

(2.18)
cocr = —e —M (Bi

l

R
l
8, );

C
(2.26)

as will be verified below in Eq. (2.32). The parameter o. is

defined by

This is just the Feshbach-Yennie result specialized to the
case of linear polarization of the emitted photon.

Note that we have not assumed that the field-free
scattering amplitude is a slowly varying function of the

we assume that (Bz
l

R
l
Bi ) =(Bi

l

R
l
Bi) is real and

(BJ
l

R
l
8 )=0,j=1,2. .

We wish to evaluate matrix elements of H in the basis

(2.24). This is done most conveniently by writing
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(IB+.&+ IB .)),
I».&= ( B+.&

—IB .&) ~

2

where

I
B+.&= (

I
Bi &+ IB2&) lb+. & .1

2

(2.27a)

(2.27b)

where

&»=(X
I
(V+ VG V) I&&

and

I y ) =(g
I
(V+ VG»Hr)

I
B ),

(y =(B
I
(V+HrG»V) IX) .

(2.36)

(2.37a)

(2.37b)

lt follows from the choice (2.25) that

lb+„)= g ( i—) Jp (cr)lm+n) .

The recursion relation

2mi(o)+J +i(o)= J (o)

(2.27c)

(2.28)
y q+ y qy~~ (2.38)

To display the resonant contribution to the scattering
operator in an explicit form we coinbine Eqs. (2.4) and
(2.35), and make use of some algebraic techniques familiar
froin the theory of integral equations with separable ker-
nels. Thus, we define the nonresonant contribution to
the scattering operator as the solution of

may now be used to verify the eigenvalue equation

[cuba a+ ,'icoon —' (a —a")]
I
b+„)=neo

I
b+„) . (2.29)

and introduce the level-shift matrix

(2.39)

(We use the large-n approximation a
I

n +m ) =n 1/2

X
I

n +m —1), a
I n+m ):n' —

I
n+m+1). ) Other

useful relations, which may be established with the aid of
the integral representation (2.13) for the Bessel function,
are

Then a (E) may be expressed as

w =wq+g g(1+a»9')ly )(D ') (y l(1+9'wq)
a' a

(2.40)

&b+n'
I
b+n ) =bn'n ~ (2 30)

(b+„ I

b „)=(b „ I

b+„)*=(—i)" "J„„(2o).
With these relations in hand we readily verify that

with

D=d —b . (2.41)

(Br „ I B,„)=5, ,5„„, (2.31)
C. Low-frequency approximation

(Br „H
I Br„)=

e]+e2
2

+AN ~n'n ~j'j

e& —e2

2

with the matrix m defined by

(2.32a)

mj ', n',j,n
= '

( —1Y+' —,[1+(—1)" "], j'=j
(2.32b)

( —1Y—, [1—( —1)" "], j'&j .

pG p=g g I
B.. )(d-')...(B.I,

a' a

where

d ~—:(B ~

I
(E H HrG»Hr)

I

B —) .—

(2.33)

(2.34)

The propagator pG~p, defined by Eq. (2.23), may be ex-
panded in terms of the basis functions

I
Br„). For nota-

tional simplicity we denote the pair of indices j,n by the
single index a and write

The strength of the coupling between the laser field and
the nearly degenerate resonant states is measured by the
parameter o which, according to Eq. (2.26), is defined as
the ratio of the electric-dipole interaction energy to the
photon energy. The field interaction strength is effective-
ly magnified at low frequencies; o will be of order unity
or greater for a wide range of experimentally accessible
field intensities. (Recall the analogous remarks made ear-
lier in connection with the strength parameter p .) The

P
low-frequency approximation for nonresonant scattering
outlined in Sec. IIA may now be generalized. The two
strength parameters p and 0. are treated to all orders; the

P
interaction HI is treated as a small perturbation wherever
else it appears, i.e., wherever it couples nondegenerate
states. In the following we work to lowest order in this
nearly degenerate perturbation theory and neglect all ma-
trix elements of HI taken between nondegenerate states.

In working out the consequences of the approximation
scheme just described, results will be expressed in terms of
certain field-free scattering parameters. These may be in-
troduced by projecting out the resonant states from the
field-free scattering operator T(Q), following a procedure
analogous to that which led to Eq. (2.40). We have (as-
suming the resonant states to be uncoupled in the absence
of an external field)

The decomposition (2.21) for G~ leads to a corresponding
decomposition for the effective potential (2.6) of the form

2

T(fl)=T (Q)+ g I

I . )(fl —,) '&r,
I

(2.42)

~=~'+X X lr. &(d ')..&r. l

a' a
(2.35)

with
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zj ——eJ+6J . (2.43)

+~~NR ~R
n', p';n, p n', p';n, p n', p', n, p

(2.44)

Clearly, the argument which led to Eq. (2.16) can be re-

peated for the nonresonant contribution, starting with the
replacement of (l'

~

u~(E) ~1) by T~(E leo—)5ii Th. en

will take the form

The strong energy dependence associated with the reso-
nance appears explicitly here. In addition the vertex func-
tions I J and I J, and the level shifts 6J., carry a depen-
dence, presumably much weaker, on the energy parameter
Q. We make the simplifying and reasonable assumption
that in evaluating these resonance parameters Q is under-
stood to be fixed at the energy eJ.

To obtain the transition amplitude we evaluate matrix
elements of the low-frequency approximation for a (E)
with respect to the field-modified asymptotic states, as
shown in Eq. (2.3). The result is the sum of nonresonant
and resonant terms:

p Z1 Z2
MJ „.J „m——J „J„i.'" "' J„„(2o)(1—5„„)

(2.48)

with m given by Eq. (2.32b}. If the separation zi —zq be-
tween resonances is small compared with co then M may
be treated as a first-order quantity and the inversion of D
required in Eq. (2.40) may be accomplished approximately
as

(D '}~~=D~ '5~ +D~ 'M~ D~ (2.49)

Equation (2.40) still involves an infinite sum over photon
states but only a fmite (presumably small) number of
states will contribute significantly (i.e., lead to a small en-

ergy denominator) if the width of the resonance is not ap-
preciably greater than co.

The resonance contribution to the transition amplitude
inay be expressed in the form

~ „,-,,„-=J„„(p, )T~(Q„;p „',p ) . (2.45) =g g r. . .(D-')..r
a' a

(2.50)

It remains now to express the resonant contribution in
terms of the field-free resonance parameters introduced
above.

Consider first the construction of the matrix D =d —h.
Following the prescription outlined above we replace d ~

with the approximation (B
~

(E H)
~

B ).—Further-
more, the level-shift matrix (2.39) is evaluated by ignoring
the effect of the field on the operators 8 and uv, and
writing

~ y ) —= (&
~

I'
~

B ) and (y
~

—= (B ~

~

V
~

&). It
is convenient to separate off the diagonal part of D by set-
ting

The field-modified vertex function describing the (tem-

porary) capture of the projectile into the resonant state is
defined as

r ,. =&r—, (I+&~~) ~g„-, & (2.51)

and is evaluated, in the low-frequency approximation, and
with the use of the adjoint of Eq. (2.24), as

00 2

I, = g g ai""(j,m)(m+1
~
(r„

I=—oo k=1

a'a a~a'a Ma'a (2.46) (2.52)

with M« ——0. Explicitly, we find, using the relations
(2.31) and (2.32), that

Z1 +Z2 Z1 Z2DJ„E— ——neo+ ( ——1 }J Jo(20 ),

(2.47)
I

This expression may be simplified by making use of the
integral representation (2.13) for the Bessel functions
which appear in the definition (2.25) of the expansion
coefficients. Let us recall the representation (2.1) of the
continuum state g, and write I z(p)=—(I 1 ~

p) for the

field-free vertex function. We then find

P I. p+I p+eP I. p I p

(2.53)

p sinP+crcosg=(p2 +a )'~ sin(/+re) (2.54)

with tang =o/p we shift the integration variable in Eq.
P

(2.53} from P to P+ri in the first term and to P —i) in the
second term. The integration may then be performed with
the result

where j=1 for j =2 and j=2 for j =1. Further simplifi-
cation is obtained if we replace p(P)—= p —(e/c)icos/
by p (an excellent approximation for moderate field inten-

sities ). Then, writing

J [(p2 + 2)i/2]

X [I J(p)cos[(m n)ri]—
+i I -( p)sin[(m —n)g] I .

J
(2.55}

To obtain the function I . one takes the complex
n, pj;, m

conjugate of I . , in either the form (2.53} or (2.55),
J,Nl ~8, P

and then replaces I J ( p ) by I J( p ). Specifically, in the ap-
proximation corresponding to that shown in Eq. (2.55), we
have
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J[(p2+g2)1/2]

X [I J(p)cos[(m —n)iI]

—ii J(p)sin[(m —n)i)]] . (2.56)

Note that if there were only one resonance the terms
and a" could be combined using Eq. (2.42), and the

result (2.14) would be regained. It also follows that the
Feshbach-Yennie approximation for single-photon spon-
taneous bremsstrahlung (which, as pointed out earlier, can
be derived from the external-field version by taking the
weak-field limit) is verified in the case of an isolated reso-
nance. The advantage of the present derivation lies in the
fact that the resonance contribution has been extracted ex-

plicitly and the low-frequency approximation has been ap-
plied only to those components (the nonresonant "back-

1

ground" scattering amplitude, the vertex functions, and
the level shift) which are free of near singularities. Fesh-
bach and Yennie, recognizing that photon emission during
the resonant collision might introduce corrections, wrote
down their basic result [Eq. (21) of Ref. 1] with an addi-
tional, unspecified "error term" appended to it. We now
see that this error term vanishes, to the level of accuracy
of the underlying low-frequency approximation, for isolat-
ed resonances. If, however, there are closely spaced reso-
nances the system can make a transition from one
resonant state to another (assuming the selection rules are
satisfied) and emit a low-frequency photon. The radiative
coupling strength is small but its effect is magnified by
the presence of an additional small resonance denomina-
tor. This process, which is easily computed perturbative-
ly, contributes to the Feshbach-Yennie error term. The
improved approximation obtained in this way is

~FY 1 1 —,1 1~, —,-=~, —,-+ I (p ') (H ), I (p)+I (p ') (H ), 1,(p)1, p', O, p 1, p', O, p E—Z1 —cO E —z2 E —Z2 —CO E —z1
(2.57)

with. u" given by Eq. (2.18) and with

(HI ~jk = & ~q I
& 1

I
HI

I
O & I ~k &

1/2
27TCO=ie
L

& &~, IRI~k& (2.58)

III. SCATTERING IN A STATIC EXTERNAL FIELD

A. Effective-potential formulation

It may be expected that approximation procedures ap-
plicable to scattering in a low-frequency plane-wave radia-

To check that Eq. (2.57) is obtained in the weak-field
limit of the more general result derived above it is con-
venient to begin by expressing the resonant term in Eq.
(2.44), somewhat schematically, as

w "(p,o )-=a "(p,O) + [a "(O,o)—~ "(O,O) ],
where p stands for the field dependence contained in p p
and p, and we work to first order in p and o. The first

term, W"(p, O), combines with a to give the
Feshbach- Yennie amplitude, Eq. (2.18). (The detailed ver-
ification is straightforward and will not be reproduced
here. ) The remaining terms give rise to the two resonant
emission amplitudes shown in Eq. (2.57). The derivation
of Eq. (2.57), which represents one of the main results of
this paper, illustrates, in the relatively simple context of
single-photon bremsstrahlung, how low-frequency approx-
imation techniques can be generalized to account for reso-
nances. The result may be useful in the analysis of certain
experimental studies of resonant reactions; we return
briefly to this point in Sec. IV, below. More generally, the
strong-field version of the low-frequency approximation
derived above can be expressed as the sum of two parts,
the first being the form (2.14) derived previously and the
second being a sum of correction terins corresponding to
transitions of the system from one resonant state to the
other.

[The correspondence between the amplitudes shown in

Eqs. (2.3) and (3.1) is essentially one of Fourier transfor-
mation. ] The modified plane-wave states are given by

(t)) =exp[ i(p /2p—)t+i4 (t)]
I
p(t)) (3.2)

with

and

p(t) = p eA(t)lc— (3.3)

2+2 I

(t)= —f — p A(t')+, dt' . (3.4a)
pc 2pc

The vector potential is chosen as A(t)= E~t with Eo-
representing the homogeneous static electric field. With
the integration constant in Eq. (3.4a) discarded we then
have

f

tion field will have useful analogs when the field is taken
to its zero-frequency limit, i.e., a constant crossed field.
That this is, in fact, the case has been demonstrated earlier
for nonresonant scattering by a structureless target. '

That treatment will now be extended to the case of
resonant scattering by a compound system in the frame-
work of the theory developed in Sec. II of the present pa-
per. We begin, in this subsection, by transcribing the
effective-potential formalism into the language of time-
dependent scattering theory. The approximation pro-
cedure of Ref. 12 will then be introduced into this forrnal-
ism. This will provide the necessary background for the
extension of the theory to the resonant case, taken up in
Sec. III B.

The amplitude for scattering in a classical external field
may be represented, in close analogy with the form (2.3),
as

i f d—t' f dt&P, (t') I~(t', t)
I g (t)) .

(3.1)
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2
4 (t)= — E, pt' — Fot'.

2p 6p

The scattering operator satisfies the integral equation

(3.4b)
the modified resolvent 6~ as the solution of

Q i, —(Ho+ht) QG&(t', t)=5(t' t—)Qat' (3.7)

(3 5) and express the effective potential as

Here, in order to emphasize the analogy with Eq. (2.4), we
write operator relations of the form C (t', t )
=f A(t', t")B(t",t)dt" in the condensed notation
C =AB. The projectile-field propagator is

9'(t', t)= iB—(t' t)f—d q ~
1i (t'))(f (t), (3.6)

where B is the step function. Note that (in analogy with
the time-independent treatment of Sec. II) we work not in
the Coulomb gauge but rather in the electric-field gauge
generated from it by the transformation exp[ieA(t) R/c],
with eR=Q. ej r~ representing the dipole operator of the
system. This tranformation has the effect of modifying
the form of the particle-field interaction (see below) and
also leads to the momentum shift indicated in Eq. (3.3).

Turning now to the analog of Eq. (2.6) for the effective
potential we write the gauge-transformed interaction
operator Ht(t', t) as ht5(t' t) w—ith ht ———eEo R. The
Hamiltonian is then H(t', t)=(Ho+hi)5(t —t) In ter. ms
of the projection operator Q =1—

~

X)(X
~

we introduce
I

w (Q', Q) =2ir5(Q' —Q)T(Q), (3.10)

where T(Q) is the field-free scattering operator introduced
in Sec. II. Equation (3.1) then becomes

W(t', t)=(X
~

[V5(t' t)—+VG&(t', t)V] ~X) . (3.8)

It is convenient at this point to introduce the Fourier
transformation

I

W(t' t)= f f e '"'~(Q' Q)e'"' (39)
271 tm 2'

The dominant effect of the field is on the asymptotic
states —the field has a long time to act and its cumulative
effect must be treated nonperturbatively, as in Eq. (3.2).
We assume, however, that the field is weak enough (com-
pared with the strength of the interactions which bind the
target and scatter the projectile) so that, as a first approxi-
mation, it may be ignored in intermediate states. In this
approximation we have

i f — f dt' f dt exp {i [S (Q, t ) —S,(Q, t')] ) T(Q; p '(t'), p(t) ) (3.11)

with

S (Q, t)=(Q p'/2p)t+—C (t), (3.12)

vanish. Thus, in the term proportional to [Q p(t)/—
2p]dT/dg, for example, we may write

and with T(Q;q ', q) given by Eq. (2.11). The T-matrix in
Eq. (3.11) is off the energy shell. However, we may recog-
nize that due to rapid oscillations of the exponential factor
the dominant contributions to the time integrations come
from the neighborhood of the points of stationary phase

Q —(p /2p)+4 (t)=0,
Q (p' /2p)+—4(t') =0 . ,

(3.13a)

(3.13b)

Now these are just the conditions which place the T ma-
trix in Eq. (3.11) on the energy shell. That is, in terms of
the scalar variables

$=Q p(t}/2p, g'=Q—p' (t')/2p, —
r = [p '(t') —p(t) ]'

(3.14)

we have T[Q;p '(t), p(t)]—:T(Q, r, g', () with T(Q, r, 0,0)
representing the physical, on-shell scattering amplitude.
Since Eqs. (3.13) correspond to g=g'=0 the on-shell con-
tributions are expected to dominate. As a first approxi-
mation the scattering amplitude in Eq. (3.11) may be re-
placed by its on-shell value T(Q, r, 0,0). This approxima-
tion is better than one might expect since, upon introduc-
ing a Taylor-series expansion of the T matrix about=f=0, th'e first-order correction terms may be seen to

(Q —p' /p2)e xp i{[(Q—p' /p2)t +@ (t)])

i (e—' —i' ~ " ')ei(Q — 2 )f

dt

X T(p'(t)/2p; p '(t), p(t)) (3.15)

and integrate by parts. Since the surface terms vanish due
to rapid oscillations of the exponential as t~+ oo we have
effectively replaced 0—p /2p by —4, corresponding to

P(=0. Similarly, the first-order correction term propor-
tional g' drops out. The integration-by-parts procedure
brings in a higher-order correction term involving the
derivative of the T matrix with respect to the
momentum-transfer variable. This has been dropped
under the assumption that the scattering amplitude is
slowly varying in the r variable as well as in g and g'. In
the absence of resonances we may also assume that
T(Q, r, 0,0) is slowly varying in its energy argument. Ex-
panding about Q=p (t)/2p and keeping only the leading
term (again, the first-order correction term vanishes) we
find that the integration over Q in Eq. (3.11) may be car-
ried out very simply with the result

i f dt e—xp {i [4 (t) —@,(t)
+(p'/2V p'/2V )t]{—
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with the T matrix understood to be evaluated on the ener-

gy shell. It is not difficult to derive an approximation of
the same form as (3.15) in the more realistic case where
A(t) vanishes for

l

t
l

larger than some finite cutoff
value. '

It should be emphasized that the validity of the approx-
imation (3.15) must be carefully examined when reso-
nances are present; the derivation given in Ref. 12 was ex-
plicitly limited to the nonresonant case. We now turn to a
consideration of resonant scattering in a static field within
the framework of the effective-potential formalism.

B. Resonant scattering

To account for resonances we follow the method of Sec.
II 8 and project out the resonant states; the approximation

i

procedure leading to Eq. (3.15) is then applied only to the
slowly varying, nonresonant components of the resultant
expression. The starting point is again the identity (2.21)
where

p=g lBj)&B, l, q=g —p (3.16)

and G~ satisfies

q i —(H0+ht) qG~(t', t)=5(t' —t)q .Bt' (3.17)

The propagator in p space is a 2X2 matrix with elements
ujk(t', t) = (BJ

l

G~(t', t)
l
Bk ) satisfying

with

(X)i, —ej ujk(t', t) —dt" g sjt(t', t")utk(t", t}=5(t' t)5jk—,
1=1

(3.18)

sjk(t', t) = (Bj [h15(t' t)+h&—G~(t', t)hl ] l
Bk ) .

Combining Eqs. (2.21) and (3.8) we are led to a formal solution of Eq. (3.5):

~ =~~+/ g((+~~a) r, ) Ujk(rk l(I+&~~)
j k

where Ujk ( t ', t ) satisfies

(3.19)

(3.20)

(X)i, —ej Ujk(t', t) — dt" g [sjt(t', t")+Aj)(t', t")]Utk(t", t)=5(t' t)5jk . —
Bt 1=1

(3.21)

The level-shift matrix is

~k &yj I(&+&~ &)

Irk�&

and the vertex functions are given by

(3.22)

l
yj(t', t)) = (X

l

[V5(t' t)+ VG~(t', t)—ht]
l B, ),

(3.23a)

&rk(t' t)
l

=&Bk
l

[I'5(t' t)+htG'(t' t}v—] l&~ .

(3.23b)

(I+a 8)
l y&)

-=I e ' " "l I J.(Q)), (3.25a)

(yt, l
(1+gw ) —= f e '"" "(Ik(Q)

l

. (3.25b)

U U(0)+ U(0)(s+g)U

U' ' is diagonal and satisfies

(3.26)

The differential equation (3.21) defining the resonance
propagator can be recast as the integral equation

The decomposition (3.20) leads to a corresponding
separation of nonresonant and resonant coinponents of the
transition amplitude:

i —e, U,
", (t', t) =5(t' t);-t' (3.27)

(3.24)

Since a~(E) is nonresonant an approximation for uzi
can be derived of the form shown in Eq. (3.15), but with
the field-free T matrix replaced with its nonresonant com-
ponent T't, as defined in Eq. (2.42). Turning now to the
remaining terms in Eq. (3.20) we note first that the vertex
functions are nonresonant. Following the basic approxi-
mation scheme we shall ignore the effect which the field
has on these functions and express them, by Fourier
transformation, in terms of the field-free vertex functions
which appear in Eq. (2.42). Explicitly, we have

the Fourier representation is

U(0)( i
)

d~~ iQ(r' r) —j-d~~v ~ k
e2' 0—eJ

(3.28)

U (
i }= rn(r r)U (0—)'—

2' (3.29)

with 0 in the denominator understood to carry an infini-
tesimal positive imaginary part. Since the level-shift ma-
trices s and 6 have similar representations the Fourier
representation of Eq. (3.26) may be solved algebraically,
leading to
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with

[U '(Q)]rk =(Q —er —6r )5rk s—r.k(Q) (3.30)
1

D(Q)

Q —z2 s)2

$2] Q —z)
(3.33)

and

sjk(n) = &&
l ["r +"r[q(n —Ho —hr )q] 'hr

I l
&k )

where

and

zj =ej+6j+sjj (3.34)

In arriving at this representation of the resonance propa-
gator Urk(t', t ) we have used the relation

oo QG~(t', t)= f e ' " "[q(Q Ho ——hi)q]
2 IT

(3.32)

in the definition (3.19) of s and have expressed the time-
dependent level shift 4, defined in Eq. (3.22), as the
Fourier transform of the field-free level shift, in accor-
dance with the approximation scheme adopted here. Note
that the particle-field interaction has been retained in
higher orders in Eq. (3.31) to allow for the effect of tun-
neling on the energy and lifetime of the resonant state.
Performing the inversion indicated in Eq. (3.30) we find

D(Q) =(Q —z] )(Q —z2) —$]2$2] (3.35)

It follows from Eqs. (3.25) and (3.29) that the resonant
part of the scattering operator a in Eq. (3.20) can, in the
present approximation, be put in the form

~r](r~ r) e in]—t t)' —
2'

xg g ~ r, (n) &Uk(n)(rk(n)
~

.
j k

(3.36a)

With the time dependence thus specified we construct the
resonant contribution to the transition amplitude a

P P
according to the prescription (3.1) and obtain

~"-,-=—i dt' dt exp i S Q, t —S, Q, t'

Xg g ( p '(&')
~
r, (n) ) U,,(n)( r„(n)

~

p(r) ) .
j k

(3.36b)

with

I -„(Q)=—f dt e ' (I k(n)
~

p(r) ),
I, .(Q):—J dt'e '' (p'(t') ~rr(Q)) .

(3.38a)

(3.38b)

Assuming that the vertex functions and level shifts are
slowly varying in energy we may replace Q, as it appears
in these functions, by a fixed value in the resonance re-
gion. Further simplification is achieved by evaluating the
time integrations in Eq. (3.38) by the saddle-point method,
an approximation which becomes increasingly accurate as
the strength of the external field is decreased. The calcu-
lation is outlined in the Appendix. Let us remark here
that the saddle points are determined by the conditions
(3.13). The first of these may be written as

This form may be simplified by recognizing that the main
contribution to the integral over Q comes from the neigh-
borhood of the resonance energy. The Q-integration
domain may then be replaced by a short segment
Q& & Q (Q2 covering the resonance region, with the con-
tribution from the remainder of the integration domain
absorbed into the nonresonant term ~ ",-. The resonant

P P
term, thus redefined, is

2dQ'2" r-. 'Q U" Qr —. Q
j

(3.37)

Q —p/2]M= (e/pc—) p A(t)+(e /2Irc )A (t) (3.39)

with Q now understood to lie within the resonance region.
It would appear that this condition could be satisfied (by
suitable choice of the time variable) for a wide range of
scattering energies p /2]]], since the interaction energy on
the right-hand side is unbounded as it stands. Recall,
however, the implicit assumption that the field vanishes
for

~

t
~

exceeding some finite cutoff value. In the weak-
field limit, when the interaction energy is small compared
with the scattering energy (for all values of the time), Eq.
(3.39) does, in fact, restrict the initial energy p /2]M to the
resonance region and a similar restriction holds for the fi-
nal energy p' /2]M. There is a broadening of the resonance
shape with increasing field strength.

In the foregoing discussion we have assumed initial
conditions appropriate to the scattering problem. Alterna-
tively, one may consider a different situation in which a
composite bound state (H in the experimental study of
Ref. 4) is introduced into the field. The level structure of
the perturbed system is then probed by means of a laser
field of variable frequency. The dependence of the reso-
nance parameters on the strength of the static field can be
studied theoretically by examining the position of the
poles of the resolvent operator in the complex-energy
plane. The resonance positions are determined, in the
present formulation, by the zeros of the denominator
function D(Q) defined in Eq. (3.35). {In the context of
the photodetachment experiment mentioned above, Q
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would represent the energy to which the atomic system
has been excited by absorption of a laser photon. ) With

the 0 dependence of the level-shift matrix s ignored, the
roots of the equation D(Q)=0 are immediately deter-
mined as

z+ Y(zl+z2) —I 2 (zi —z2)+~12~21]
1 1 1/2 (3.40)

Consider now the limiting case where
I
z, —z2 I

«
I
s ~2 I

and suppose that s~k can be well approximated by the first
term on the right-hand side of Eq. (3.31). The resonance
positions are then estimated as

z+ =- —,
'

(z, +zq)+
I (8& hj I

~2 & I
(3.41)

IV. SUMMARY AND CONCLUSIONS

The theory of resonant reactions, in the form set up by
Feshbach and others, has been generalized here to apply
to the situation where the scattering takes place in the
presence of an external field. Particular attention has been

paid to the low-frequency domain since in that limit ap-
proximations for the transition amplitude can be derived,
even for fields of appreciable intensity, which are simple
enough so that they stand the chance of being useful in fu-
ture resonance studies. The great virtue of the Feshbach
procedure lies in the fact that it allows, formally at least,
for a clean separation of resonant and nonresonant com-

This formula shows how the linear Stark splitting of the
resonance positions can be accounted for in the present
formalism.

In the opposite limit, where Iz, —z2
I

&& Is&2 I, we

have z+ =-z~ and z =zz, corresponding to the case of
isolated resonances. Equation (3.33) then reduces to

U~k -=(0—z~) 5~k. This is to be inserted into Eq. (3.36b)
and the result combined with the nonresonant contribu-
tion u, -. Recalling Eq. (2.42) we see that the approxi-

P P
mation thus obtained is of the form (3.11) with the T ma-

trix now understood to include the effects of the isolated
resonances. It must be noted, however, that due to the ra-

pid variation of the T matrix with energy, the further sim-

plification introduced previously (in the nonresonant case)
through the passage from Eq. (3.11) to Eq. (3.15) is not
justified here. Of course, the general result (3.40) allows
for a smooth interpolation between the two limiting cases
discussed above.

A knowledge of the field dependence of the level-shift

matrix s would enable one, through Eq. (3.40), to estimate
the resonance level splitting as a function of field strength.
If this procedure were carried out for the nearly degen-

erate Feshbach resonances of H (lying just below the
n =2 level of H) the result could then be compared with

the observations reported in Ref. 4. We have found that
the simplest approximation, in which s is replaced by the
first term on the right-hand side of Eq. (3.31), gives the
general trend of the linear Stark splitting effect but fails to
reproduce the experimental data in detail. This may be
taken as an indication of the relevance, in this problem, of
the second term in Eq. (3.31) which accounts not only for
the quadratic Stark splitting but also for tunneling effects
depending nonlinearly on the field strength.

ponents of the scattering amplitude. The nonresonant

parts (vertex functions and level shifts) are characterized

by a weak dependence on energy since all "small energy
denominators" have been removed. It follows that earlier
work, devoted to the construction of low-frequency ap-
proximations for scattering in the absence of resonances,
can be taken over in the resonant case and applied, not to
the full amplitude, but to its nonresonant components.

The strategy outlined above has been worked out in

some detail for three physically distinct situations with re-

sults which may be summarized as follows.
(i) An approximation for the amplitude for scattering in

a low-frequency laser field (described in the occupation-
number representation) has been obtained in the form

(2.44). The nonresonant part is given in Eq. (2.45) in

terms of Tq, the nonresonant component of the on-shell

field-free scattering amplitude. To the amplitude shown

in Eq. (2.45) we must add the resonant part u",
n', p ', n, p

given by Eq. (2.50). Approximate expressions for the ver-

tex functions appear in Eqs. (2.55) and (2.56). The reso-

nance propagator is obtained by inverting the matrix D
defined in Eqs. (2.46)—(2.48). This inversion is accom-

plished approximately in Eq. (2.49), a form which is ap-

propriate when the separation between resonances is small

compared with the photon energy. The presence of close-

ly spaced resonances introduces corrections to the earlier

version of the low-frequency approximation reproduced in

Eq. (2.14); these corrections correspond physically to the

effect of radiative transitions from one resonance state to
another.

(ii) The correction terms mentioned above are shown ex-

plicitly in Eq. (2.57) for the particular case of single-

photon spontaneous bremsstrahlung. The first term on

the right-hand side is the Feshbach-Yennie version of the
low-frequency approximation given in Eq. (2.18). It
would be of interest to see how inclusion of the correction
terms affects comparison between the Feshbach-Yennie

theory and observations of the bremsstrahlung cross sec-

tion; a case in point would be p-' C scattering in the
neighborhood of the two closely spaced resonances near

1.7 MeV
(iii) A modified procedure, based on time-dependent

scattering theory, has been used to treat the case of a stat-
ic external field. The nonresonant contribution to the
transition amplitude, a, , is given approximately by a

P P

form similar to that shown in Eq. (3.15), but with the T
matrix replaced by its nonresonant part. The approxima-
tion derived here for the resonant part u",- is shown in

P P

Eq. (3.37). The vertex functions which appear in that

equation are studied further in the Appendix', there a
weak-field approximation is derived which requires as in-

put the field-free vertex functions entering into the repre-

sentation (2.42). The applicability of the present formal-
ism to photodetachment as well as scattering processes has

been pointed out.
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APPENDIX

Here we derive an approximation for the vertex func-
tions (3.38). We begin by making use of Eqs. (3.4b) and
(3.12) to write, in Eq. (3.38a),

I „(Q)=y '~ exp[ —ia(P/y)+i(2y/3)(P/y) ]Ik

where

I„=f du exp[i(Au, +u'/3)]

XI k(p —eEO(P/y)+y eEou ) .

(A5a)

(A5b)

with

S (Q, r)=ar+Pr'+(y/3)t' (Al)
The contour C is the straight line obtained by rotating the
real axis through an angle of m. /3 about the origin. The
parameter A. is defined as

a=Q —p /2p, P= —(e/2p)p Eo,

y= (e /2—p)Eo .
(A2)

p+:pi+(2pQ pt) Eo —.
With the change of variable

r =y —'"u —P/y

Eq. (3.38a) becomes [recall that p(t) = p+eEot]

(A3)

(A4)

The field-free vertex function is written as
(I k(Q)

~

p(t)) =I k(p(t)) where, in conformity with the
notation introduced in Sec. II, the 0 dependence is
suppressed, it being understood that 0 is evaluated at the
resonance energy. As we have mentioned, and will con-
firm below, the dominant contribution to the integral in

Eq. (3.38a) comes from values of the integration variable
for which Q=p (t)/2p. Writing p=p, +p~~ with

p~~=(p Eo)Eo the condition Q=p (t)/2p be-

comes pi+pI~ =2pQ and the values of p(t) which satisfy
this condition take the form

k =y' '[(a/y ) —(P/y )']

'(e Eo/2p) ' '(Q p, /2—p) (A6)

and is assumed to be sufficiently large (weak-field condi-

tion) so that the integral in Eq. (A5b) can be estimated by
the saddle-point method. The saddle points are at

=+(—A, )'~, which implies the condition Q=p (t)/2p
For Q —pi/2' &0 (this corresponds to real t) the saddle

points lie on the contour C at u =+e™/3
~

A,
~

' . We ig-

nore the saddle points corresponding to 0—p&/2p&0.
These lie at u =+e" ~

~

A,
~

'~ and the path of steepest
descent does not pass through these points.

The vertex functions are evaluated at the saddle points,
with the remaining integration performed in the standard

way. Note that at u =+e'
~

A,
~

', p(t) becomes p+
defined in Eq. (A3). The condition p+/2itt=Q places
these vertex functions on the energy shell; they are there-

fore measurable in field-free resonant scattering processes.
Keeping only the leading term in the asymptotic expan-
sion of the integral in Eq. (A5b) we find

inI„=-, I k(p+)exp i —',
~

k
~

' + —I k(p )exp i—
12

(A7)

An approximate evaluation of the integral in Eq. (3.38b) can be obtained with the use of very similar methods.
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